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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR
NEUTRAL LIÉNARD DIFFERENTIAL EQUATIONS WITH A

SINGULARITY

FANCHAO KONG, SHIPING LU, ZAITAO LIANG

Abstract. By applying Mawhin’s continuation theorem, we study the exis-
tence of positive periodic solutions for a second-order neutral functional dif-

ferential equation

((x(t)− cx(t− σ)))′′ + f(x(t))x′(t) + g(t, x(t− δ)) = e(t),

where g has a strong singularity at x = 0 and satisfies a small force condition at

x =∞, which is different from the corresponding ones known in the literature.

1. Introduction

In recent years, the existence of periodic solutions for the second order differential
equations with a singularity have been studied in many literature. See [1]-[15] and
the references therein.

Wang [15] studied the Liénard equation with a singularity and a deviating argu-
ment

x′′(t) + f(x(t))x′(t) + g(t, x(t− σ)) = 0, (1.1)
where 0 ≤ σ < T is a constant, f : R → R, g : R × (0,+∞) → R is an L2-
Carathéodory function, g(t, x) is a T -periodic function in the first argument and
can be singular at x = 0, i. e., g(t, x) can be unbounded as x→ 0+.

Let (1.1) be of repulsive type and set

g(x) =
1
T

∫ T

0

g(t, x)dt, x > 0.

Assume that

ϕ(t) = lim
x→+∞

sup
g(t, x)
x

,

exists uniformly for a. e. t ∈ [0, T ], i.e., for any ε > 0, there is gε ∈ L2(0, T ) such
that

g(t, x) ≤ (ϕ(t) + ε)x+ gε,

for all x > 0 and a. e. t ∈ [0, T ]. Assume that ϕ ∈ C(R,R) and ϕ(t + T ) = ϕ(t),
t ∈ R.
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Wang established the following theorem.

Theorem 1.1. Assume that the following conditions are satisfied:
(H1) (Balance) There exist constants 0 < D1 < D2 such that if x is a positive

continuous T -periodic function satisfying∫ T

0

g(t, x(t))dt = 0,

then
D1 ≤ x(τ) ≤ D2, for some τ ∈ [0, T ].

(H2) (Degree) g(x) < 0 for all x ∈ (0, D1), and g(x) > 0 for all x > D2.
(H3) (Decomposition) g(t, x) = g0(x) + g1(t, x), where g0 ∈ C((0,+∞),R) and

g1 : [0, T ] × [0,+∞) → R is an L2-Carathéodory function, i. e., g1 is
measurable with respect to the first variable, continuous with respect to the
second one, and for any b > 0 there is hb ∈ L2((0, T ); [0,+∞)) such that
|g1(t, x)| ≤ hb(t) for a.e. t ∈ [0, T ] and all x ∈ [0, b].

(H4) (Strong force at x = 0)
∫ 1

0
g0(x)dx = −∞.

(H5) (Small force at x =∞)

‖ϕ‖∞ < (
√
π

T
)2.

Then (1.1) has at least one positive T -periodic solution.

Meanwhile, the problem of the existence of periodic solutions to the neutral
functional differential equation was studied in many papers, see [16]-[11] and the
references therein. For example, in [7], Liu and Huang studied the following neutral
functional differential equation

(u(t) +Bu(t− τ))′ = g1(t, u(t)) + g2(u(t− τ1)) + p(t).

And in in [11], Lu and Ge studied the existence of periodic solutions for a kind of
second-order neutral functional differential equation of the form

d2

dt2

(
u(t)−

n∑
j=1

cju(t− rj)
)

= f(u(t))u′(t) + α(t)g(u(t)) +
n∑
j=1

βjg(u(t− γj)) + p(t),

where f , g ∈ C(R; R), a(t), p(t), βj(t), γj(t) (j = 1, 2, . . . , n) are continuous periodic
functions defined on R with period T > 0, cj , rj ∈ R are constants with rj > 0
(j = 1, 2, . . . , n). By using the continuation theorem of coincidence degree theory
and some new analysis techniques, the authors obtained some new results on the
existence of periodic solution.

However, to the best of our knowledge, the studying of positive periodic solutions
for the neutral functional differential equation with a singularity is relatively infre-
quent. As we know, in order to establish the existence of positive periodic solutions,
a key condition is that the greatest lower bound must be estimated because of the
singularity. However, it is difficult to verify the greatest lower bound, especially for
the neutral functional differential equations with a singularity. Besides, because of
the singularity, the third condition of Mawhin’s continuation theorem is not easy
to verify.
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Inspired by the above facts, in this paper, we consider the following neutral
Liénard differential equation with a singularity and a deviating argument

((x(t)− cx(t− σ)))′′ + f(x(t))x′(t) + g(t, x(t− δ)) = e(t), (1.2)

where c is a constant with |c| < 1, 0 ≤ σ, δ < T , f : R → R is continuous,
g : [0, T ] × (0,+∞) → R is a continuous function and can be singular at u = 0, i.
e., g(t, u) can be unbounded as u→ 0+. e(t) is T -periodic with

∫ T
0
e(t)dt = 0. And

we can easily see that when c = 0, the (1.2) transforms into (1.1). To sum up, our
results are essentially new.

The rest of this paper is organized as follows. In Section 2, we state some
necessary definitions and lemmas. In Section 3, we prove the main result. At last,
we will give an example of an application in section 4.

2. Preliminaries

To prove the announced result, we state the following necessary definitions and
lemmas. Denote the operator A by

A : CT → CT , (Ax)(t) = x(t)− cx(t− σ),

where CT = {ϕ ∈ C(R,R), ϕ(t+ T ) = ϕ(t)}, with norm ||ϕ||0 = maxt∈[0,T ] |ϕ(t)|.
Clearly, CT is a Banach space. Define the operator

L : D(L) ⊂ X → Y, Lx = (Ax)′,

where D(L) = {x ∈ C1(R,R), x(t) = x(t+ T )}. Define

N : CT → CT , (Nx)(t) = −f(x(t))x′(t)− g(t, x(t− δ)) + e(t).

Then (1.2) can be rewritten by Lx = Nx.

Lemma 2.1 ([10]). If |c| < 1 then A has continuous inverse on CT and

(1) ‖A−1x‖ ≤ ‖x‖0
|1−|c|| for all x ∈ CT ;

(2)
∫ T
0
|(A−1f)(t)|dt ≤ 1

|1−|c||
∫ T
0
|f(t)|dt for all f ∈ CT ;

(3)
∫ T
0
|A−1f |2(t)dt ≤ 1

(1−|c|)2
∫ T
0
f2(t)dt for all f ∈ CT .

From Hale’s terminology [4], a solution of the (1.2) is x ∈ C(R,R) such that
Ax ∈ C1(R,R) and (1.2) is satisfied on R. In general, x is not from C1(R,R).
Nevertheless, it is easy to see that (Au)′ = Au′. Thus, a T -periodic solution x of
the (1.2) must be from C1(R,R). According to Lemma 2.1, we can easily obtain
that kerL = R, ImL = {x : x ∈ X,

∫ T
0
x(s)ds = 0}. Thus L is a Fredholm operator

with index zero.
Let the projections P and Q be

P : CT → kerL,Px =
1
T

∫ T

0

x(s)ds;

Q : CT → CT \ ImL,Qy =
1
T

∫ T

0

x(s)ds.

Let Lp = L|D(L)∩kerP : CT ∩ kerP → ImL. Then LP has continuous inverse L−1
p

on ImL defined by

(L−1
p y)(t) = A−1

(∫ T

0

G(t, s)y(s)ds
)
,
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where

Gk(t) =

{
s−T
T , 0 ≤ t ≤ s;
s
T , s ≤ t ≤ T.

Lemma 2.2 ([2]). Let X and Y be two real Banach spaces, and Ω is an open and
bounded set of X, and L : D(L) ⊂ X → Y is a Fredholm operator of index zero
and the operator N : Ω̄ ⊂ X → Y is said to be L-compact in Ω̄. In addition, if the
following conditions hold:

(1) Lx 6= λNx for all (x, λ) ∈ ∂Ω× (0, 1);
(2) QNx 6= 0 for all x ∈ kerL ∩ ∂Ω;
(3) deg{JQN,Ω∩ kerL, 0} 6= 0, where J : ImQ→ kerL is a homeomorphism.

Then Lx = Nx has at least one solution in D(L) ∩ Ω̄.

For the sake of convenience, we list the following assumptions:
(H1) There exist positive constants D1 and D2 with D1 < D2 such that

(1) for each positive continuous T -periodic function x(t) satisfying∫ T
0
g(t, x(t))dt = 0, there exists a positive point τ ∈ [0, T ] such that

D1 ≤ x(τ) ≤ D2;

(2) g(x) < 0 for all x ∈ (0, D1) and g(x) > 0 for all x > D2, where
g(x) = 1

T

∫ T
0
g(t, x)dt, x > 0.

(H2) g(t, x) = g1(t, x) + g0(x), where g1 : [0, T ] × (0,+∞) → R is a continuous
function and
(1) there exist positive constants m0 and m1 such that

g(t, x) ≤ m0x+m1, for all (t, x) ∈ [0, T ]× (0,+∞);

(2)
∫ 1

0
g0(x)dx = −∞.

3. Main results

Theorem 3.1. Suppose that the conditions (H1)-(H2) hold, |c| < 1 and

|c|(1 + |c|) +m0T
2

(1− |c|)2
< 1,

then the (1.2) has at least one positive T -periodic solution.

Proof. Consider the operator equation

Lx = λNx, λ ∈ (0, 1).

Let Ω1 = {x ∈ Ω, Lx = λNx, λ ∈ (0, 1)}. If x ∈ Ω1, then x must satisfy

((Au)′(t))′ + λf(u(t))u′(t) + λg(t, u(t− δ)) = λe(t). (3.1)

Integrating (3.1) on the interval [0, T ], we have∫ T

0

g(t, u(t− δ))dt = 0. (3.2)

It follows from (H1)(1) that there exist positive constants D1, D2 and τ ∈ [0, T ]
such that

D1 ≤ u(τ) ≤ D2. (3.3)
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Then, we obtain

‖u‖0 = max
t∈[0,T ]

|u(t)| ≤ max
t∈[0,T ]

|u(τ) +
∫ t

τ

u′(s)ds| ≤ D2 +
∫ T

0

|u′(s)|ds. (3.4)

Multiplying the both sides of (3.1) by u(t) and integrating on the interval [0, T ],
we obtain∫ T

0

((Au)′(t))′u(t)dt

= −λ
∫ T

0

f(u(t))u′(t)u(t)dt− λ
∫ T

0

g(t, u(t− δ))u(t)dt+ λ

∫ T

0

e(t)u(t)dt

= −λ
∫ T

0

g(t, u(t− δ))u(t)dt+ λ

∫ T

0

e(t)u(t)dt.

(3.5)

Furthermore,∫ T

0

((Au)′(t))′u(t)dt = −
∫ T

0

(Au)′(t)u′(t)dt

= −
∫ T

0

(Au)′(t)[u′(t)− cu′(t− σ) + cu′(t− σ)]dt

= −
∫ T

0

(Au)′(t)[(Au′)(t) + cu′(t− σ)]dt

= −
∫ T

0

|(Au′)(t)|2dt−
∫ T

0

cu′(t− σ)(Au)′(t)dt.

(3.6)

Substituting (3.6) in (3.5), we obtain∫ T

0

|(Au′)(t)|2dt

= −
∫ T

0

cu′(t− σ)(Au)′(t)dt+ λ

∫ T

0

g(t, u(t− δ))u(t)dt− λ
∫ T

0

e(t)u(t)dt

≤ |c|
∫ T

0

|u′(t− σ)||(Au)′(t)|dt+
∫ T

0

|g(t, u(t− δ))||u(t)|dt+
∫ T

0

|e(t)||u(t)|dt.

It follows from (H2)(1) that∫ T

0

|(Au′)(t)|2dt ≤ |c|
∫ T

0

|u′(t− σ)||(Au)′(t)|dt+m0

∫ T

0

|u(t)|2dt

+m1

∫ T

0

|u(t)|dt+
∫ T

0

|e(t)||u(t)|dt.
(3.7)

Moreover, by applying Hölder inequality and Minkowski inequality, we can have∫ T

0

|u′(t− σ)||(Au)′(t)|dt

≤
(∫ T

0

|(Au)′(t)|2dt
)1/2(∫ T

0

|u′(t− σ)|2dt
)1/2

=
(∫ T

0

|(Au)′(t)|2dt
)1/2(∫ T

0

|u′(t)|2dt
)1/2
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=
[( ∫ T

0

|u′(t)− cu′(t− σ)|2dt
)1/2]( ∫ T

0

|u′(t)|2dt
)1/2

≤
[( ∫ T

0

|u′(t)|2dt
)1/2

+
(∫ T

0

|cu′(t− σ)|2dt
)1/2]( ∫ T

0

|u′(t)|2dt
)1/2

≤
[( ∫ T

0

|u′(t)|2dt
)1/2

+ |c|
(∫ T

0

|u′(t)|2dt
)1/2]( ∫ T

0

|u′(t)|2dt
)1/2

= (1 + |c|)
∫ T

0

|u′(t)|2dt. (3.8)

Substituting (3.8) into (3.7) and by (3.4), we can obtain∫ T

0

|(Au′)(t)|2dt ≤ |c|(1 + |c|)
∫ T

0

|u′(t)|2dt+m0T‖u‖20

+ (m1 + ‖e‖0)T‖u‖0

≤ |c|(1 + |c|)
∫ T

0

|u′(t)|2dt+m0T (D2 +
∫ T

0

|u′(s)|ds)2

+ (m1 + ‖e‖0)T (D2 +
∫ T

0

|u′(s)|ds).

(3.9)

By applying the third part of Lemma (2.1), we have∫ T

0

|u′(t)|2dt =
∫ T

0

|(A−1A)u′(t)|2dt ≤ 1
(1− |c|)2

∫ T

0

|(Au′)(t)|2dt. (3.10)

Substituting (3.10) into (3.9) and by applying Hölder inequality, we obtain∫ T

0

|(Au′)(t)|2dt

≤ [|c|(1 + |c|) +m0T
2]
∫ T

0

|u′(t)|2dt

+ [2m0D2 +m1 + ‖e‖0]T
√
T
(∫ T

0

|u′(t)|2dt
)1/2

+m0TD
2
2 + (m1 + ‖e‖0)TD2

≤ |c|(1 + |c|) +m0T
2

(1− |c|)2

∫ T

0

|(Au′)(t)|2dt

+
[2m0D2 +m1 + ‖e‖0]T

√
T

1− |c|

(∫ T

0

|(Au′)(t)|2dt
)1/2

+m0TD
2
2

+ (m1 + ‖e‖0)TD2.

It follows from |c|(1+|c|)+m0T
2

(1−|c|)2 < 1 that there exist a positive constant M such that∫ T

0

|(Au′)(t)|2dt ≤M,

which combining with (3.10) gives∫ T

0

|u′(t)|2dt ≤ M

(1− |c|)2
. (3.11)
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Then by (3.4), we obtain

‖u‖0 ≤ D2 +
√
TM

1− |c|
:= M1. (3.12)

Since [Au](t) is T -periodic, there exists t0 ∈ [0, T ] such that [Au′](t0) = 0. Hence,
we have that, for t ∈ [0, T ],

|[Au′](t)| = |[Au′](t0) +
∫ t

t0

([Au′](s))′ds|

≤ λ
∫ T

0

|f(u(t))||u′(t)|dt+ λ

∫ T

0

|g(t, u(t− δ))|dt.
(3.13)

Set FM1 = max|u|≤M1 |f(u)|, then by (3.11) we obtain∫ T

0

|f(u(t))||u′(t)|dt ≤ FM1

∫ T

0

|u′(t)|dt ≤ FM1

√
TM

1− |c|
. (3.14)

Write

I+ = {t ∈ [0, T ] : g(t, u(t− δ)) ≥ 0}; I− = {t ∈ [0, T ] : g(t, u(t− δ)) ≤ 0}.

Then it follows from (3.2) and (H2)(1) that∫ T

0

|g(t, u(t− δ))|dt =
∫
I+

g(t, u(t− δ))dt−
∫
I−

g(t, u(t− δ))dt

= 2
∫
I+

g(t, u(t− δ))dt

≤ 2m0

∫ T

0

u(t− δ)dt+ 2
∫ T

0

m1dt

≤ 2m0T‖u‖0 + 2Tm1.

(3.15)

According to (3.14) and (3.15), we have

‖Au′‖0 ≤ λ
∫ T

0

|f(u(t))||u′(t)|dt+ λ

∫ T

0

|g(t, u(t− δ))|dt

≤ λ
(FM1

√
TM

1− |c|
+ 2m0TM1 + 2Tm1

)
,

which combining with the first part of Lemma 2.1, we see that

|u′(t)| = |[A−1Au′](t)| ≤ ‖Au
′‖0

|1− |c||

≤
FM1

√
TM

1−|c| + 2m0TM1 + 2Tm1

|1− |c||
,

i. e.,

‖u′‖0 ≤
FM1

√
TM

1−|c| + 2m0TM1 + 2Tm1

|1− |c||
:= A3. (3.16)

On the other hand, it follows from (3.1) and (H2) that

((Au)′(t+ δ))′ = −λf(u(t+ δ))u′(t+ δ)− λ[g1(t+ δ, u(t)) + g0(u(t))]

+ λe(t+ δ).
(3.17)
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Multiplying both sides of (3.17) by u′(t), we have

((Au)′(t+ δ))′u′(t) = −λf(u(t+ δ))u′(t+ δ)u′(t)

− λ[g1(t+ δ, u(t)) + g0(u(t))]u′(t) + λe(t+ δ)u′(t).
(3.18)

Let τ ∈ [0, T ] be as in (3.3). For any t ∈ [τ, T ], integrating (3.18) on the interval
[τ, T ], we have

λ

∫ u(t)

u(τ)

g0(u)du = λ

∫ t

τ

g0(u(t))u′(t)dt

= −
∫ t

τ

((Au)′(t+ δ))′u′(t)dt− λ
∫ t

τ

f(u(t+ δ))u′(t+ δ)u′(t)dt

− λ
∫ t

τ

g1(t+ δ, u(t))u′(t)dt+ λ

∫ t

τ

e(t+ δ)u′(t)dt.

Set GM1 = max|u|≤M1 |g1(t, u)|, then from the inequality above, we obtain

λ|
∫ u(t)

u(τ)

g0(u)du|

= λ|
∫ t

τ

g0(u(t))u′(t)dt|

≤
∫ T

0

|((Au)′(t+ δ))′u′(t)|dt+ λ

∫ T

0

|f(u(t+ δ))||u′(t+ δ)||u′(t)|dt

+ λ

∫ T

0

|g1(t+ δ, u(t))||u′(t)|dt+ λ

∫ T

0

|e(t+ δ)||u′(t)|dt

≤ ‖u′‖0
∫ T

0

|((Au)′(t+ δ))′|dt+ λFM1‖u′‖20T + λGM1‖u′‖0T + λ‖e‖0‖u′‖0T,

i. e.,

λ|
∫ u(t)

u(τ)

g0(u)du| ≤ ‖u′‖0
∫ T

0

|((Au)′(t+ δ))′|dt+ λFM1‖u′‖20T

+ λGM1‖u′‖0T + λ‖e‖0‖u′‖0T.
(3.19)

Moreover,∫ T

0

|((Au)′(t+ δ))′|dt =
∫ T

0

|((Au)′(t))′|dt

≤ λ
(∫ T

0

|f(u(t))||u′(t)|dt+
∫ T

0

|g(t, u(t− δ))|dt
)
,

which combining with (3.14) and (3.15) yields∫ T

0

|((Au)′(t))′|dt ≤ λ
(∫ T

0

|f(u(t))||u′(t)|dt+
∫ T

0

|g(t, u(t− δ))|dt
)

≤ λ
(FM1

√
TM

1− |c|
+ 2m0TM1 + 2Tm1

)
.

(3.20)

Substituting (3.20) into (3.19) and combining with (3.16), obtain

|
∫ u(t)

u(τ)

g0(u)du| ≤ A3

(FM1

√
TM

1− |c|
+ 2m0TM1 + 2Tm1

)
+ FM1A

2
3T
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+GM1A3T + ‖e‖0A3T < +∞.

According to (H2)(2), we can see that there exists a constant M2 > 0 such that,
for t ∈ [τ, T ],

u(t) ≥M2. (3.21)

For the case t ∈ [0, τ ], we can handle similarly.
Let us define

0 < A1 = min{D1,M2},
A2 = max{D2,M1}.

Then by (3.3), (3.12) and (3.21), we obtain

A1 ≤ u(t) ≤ A2. (3.22)

Set

Ω = {x = (u, v)> ∈ X :
A1

2
< u(t) < A2 + 1, ||u′||0 < A3 + 1}.

Then condition (1) of Lemma 2.2 is satisfied.
Assume that there exists x ∈ ∂Ω∩ kerL such that QNx = 1

T

∫ T
0
Nx(s)ds = 0, i.

e.,
1
T

∫ T

0

[−f(u(t))u′(t)− g(t, u(t− δ)) + e(t)]dt = 0, (3.23)

then we have
1
T

∫ T

0

g(t, u(t− δ))dt = 0.

It follows from the (H1)(1) we can see that

A1

2
< D1 ≤ u(t) ≤ D2 < A2 + 1,

which contradicts the assumption x ∈ ∂Ω. So for all x ∈ kerL ∩ ∂Ω, we have
QNx 6= 0. Therefore, condition (2) of Lemma 2.2 is satisfied.

Finally, we prove that condition (3) of Lemma 2.1 is also satisfied. Let

z = Kx = x− A1 +A2

2
,

then, we have

x = z +
A1 +A2

2
.

Define J : ImQ→ kerL is a linear isomorphism with J(u) = u, and define

H(µ, x) = µKx+ (1− µ)JQNx, ∀(x, µ) ∈ Ω× [0, 1].

Then,

H(µ, x) = µx− µ(A1 +A2)
2

+
1− µ
T

∫ T

0

g(t, x)dt. (3.24)

Now we claim that H(µ, x) is a homotopic mapping. Assume, by way of contradic-
tion, i. e., there exists µ0 ∈ [0, 1] and x0 ∈ ∂Ω such that H(µ0, x0) = 0.

Substituting µ0 and x0 into (3.24), we have

H(µ0, x0) = µ0x0 −
µ0(A1 +A2)

2
+ (1− µ0)g(x0). (3.25)
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It follows H(µ0, x0) = 0 that x0 = A1 or A2. Furthermore, If x0 = A1, it follows
from (H1)(2) that g(x0) < 0, then we have

µ0x0 −
µ0(A1 +A2)

2
+ (1− µ0)g(x0) < µ0(x0 −

A1 +A2

2
) < 0. (3.26)

If x0 = A2, it follows from (H1)(2) that g(x0) > 0, then we have

µ0x0 −
µ0(A1 +A2)

2
+ (1− µ0)g(x0) > µ0(x0 −

A1 +A2

2
) > 0. (3.27)

Combining with (3.26) and (3.27), we can see that H(µ0, x0) 6= 0, which contradicts
the assumption. Therefore H(µ, x) is a homotopic mapping and x>H(µ, x) 6= 0,
for all (x, µ) ∈ (∂Ω ∩ kerL)× [0, 1], then

deg(JQN,Ω ∩ ker L, 0) = deg(H(0, x),Ω ∩ ker L, 0)

= deg(H(1, x),Ω ∩ ker L, 0)

= deg(Kx,Ω ∩ ker L, 0)

=
∑

x∈K−1(0)

sgn|K ′(x)|

= 1 6= 0.

Thus, condition (3) of Lemma 2.2 is also satisfied.
Therefore, by applying Lemma 2.1, we can conclude that (1.2) has at least one

positive T -periodic solution. �

4. Example

In this section, we provide an example to illustrate results from the previous
sections.

Example 4.1. Consider the neutral Liénard differential equation with a singularity
and a deviating argument,

((u(t)− 0.1u(t− π))′))′ +
( u2(t)

3 + u(t)
+ 9
)
u′(t)

+
1
2

(1 +
1
2

sin 8t)u(t− δ)− 1
u(t− δ)

= sin 8t.
(4.1)

Corresponding to Theorem 3.1 and (1.2), we have

f(u(t)) =
u2(t)

3 + u(t)
+ 9, e(t) = sin 8t,

g(t, u(t− δ)) =
1
2

(
1 +

1
2

sin 8t
)
u(t− δ)− 1

u(t− δ)
.

Then, we choose

σ = π, c = 0.1, T =
π

4
, m0 =

3
4
, D1 = 2, D2 = 3.

Thus, |c| < 1 and the conditions (H1) and (H2) are satisfied. Meanwhile, we have

|c|(1 + |c|) +m0T
2

(1− |c|)2
≈ 0.706 < 1.

Hence, by applying Theorem 3.1, we can see that (4.1) has at least one positive
π
4 -periodic solution.
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Remark 4.2. Since only a few papers consider positive periodic solutions for the
neutral Liénard equation. One can easily see that all the results in [1]-[4] and
the references therein are not applicable to (4.1) for obtaining positive periodic
solutions with period π

4 . This implies that the results in this paper are essentially
new.
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