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PERSISTENCE AND EXTINCTION FOR STOCHASTIC
LOGISTIC MODEL WITH LÉVY NOISE AND IMPULSIVE

PERTURBATION

CHUN LU, QIANG MA, XIAOHUA DING

Abstract. This article investigates a stochastic logistic model with Lévy noise
and impulsive perturbation. In the model, the impulsive perturbation and

Lévy noise are taken into account simultaneously. This model is new and

more feasible and more accordance with the actual. The definition of solution
to a stochastic differential equation with Lévy noise and impulsive perturba-

tion is established. Based on this definition, we show that our model has a

unique global positive solution and obtains its explicit expression. Sufficient
conditions for extinction are established as well as nonpersistence in the mean,

weak persistence and stochastic permanence. The threshold between weak
persistence and extinction is obtained.

1. Introduction

Persistence and extinction of logistic model is one of the important topics in
mathematical biology. Many scholars have investigated the topic for the classical
stochastic logistic model with Lévy noise (see [6, 5, 16, 36]):

dx(t) = x(t)(r(t)− a(t)x(t))dt+ σ(t)x(t)dB(t) + x(t−)
∫

Y
γ(u)Ñ(dt, du), (1.1)

where x(t) is the population size, B(t) is a standard Brownian motion, x(t−) =
lims↑t x(s), N(dt, du) is a real-valued Poisson counting measure with characteristic
measure λ on a measurable subset Y of R+ = [0,∞) with λ(Y) < ∞, Ñ(dt, du) =
N(dt, du)−λ(du)dt and γ(u) > −1. There is an important and interesting literature
about stochastic differential equation with jumps (see [1, 2, 3, 8, 32]). To simulate
the phenomena well in reality, e.g., epidemics, earthquakes, hurricanes, ocean red
tide and so on, Lots of authors have introduced the Lévy noise into biological model
(see [15, 24, 25, 26, 28, 33]).

However, in the real world, owing to some natural and man-made factors, such
as fire, drought, crop-dusting, deforestation, hunting, harvesting, etc., the growth
of species often undergoes some discrete changes of relatively short time interval
at some fixed times. These phenomena cannot be considered continually, so in this
case, system (1.1) cannot describe these phenomena. Introducing the impulsive
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effects, which can not boil down to Lévy noise from its definition, into the model
may describe such phenomena well, see [4, 10].

Recently, several authors have incorporated the impulsive perturbation into the
stochastic population dynamics and some results on dynamical behavior for such
systems have been reported (see [17, 18, 19, 27, 34]) and the references therein.
However, so far as we know, there are no papers published which consider the im-
pulsive perturbation in stochastic population model with Lévy noise. Motivated by
these arguments presented above, we will consider the following stochastic logistic
model with Lévy noise and impulsive perturbation:

dx(t) = x(t)(r(t)− a(t)x(t))dt+ σ(t)x(t)dB(t) + x(t−)
∫

Y
γ(u)Ñ(dt, du),

t 6= tk, K ∈ N
x(t+k )− x(tk) = hkx(tk), k ∈ N

(1.2)

where N denotes the set of positive integers, 0 < t1 < t2 . . . , limk→∞ tk = ∞,
r(t), a(t) and σ(t) are continuous and boundeded function on R+ and inft∈R+ a(t) >
0. Here, we assume that B(t) is independent of N(dt, du). Other parameters are
defined and required as before.

The main contributions of this paper are listed as follows:
(1) The model includes two types of environmental noise and impulsive pertur-

bation which is more grounded in the real world. We establish the definition of
solution to a stochastic differential equation with Lévy noise and impulsive pertur-
bation. The explicit solution for the model is given in Theorem 2.3;

(2) We give sufficient conditions for extinction, nonpersistence in the mean, weak
persistence and stochastic permanence of the solution. In addition, the threshold
between weak persistence and extinction is obtained.

(3) The effects of the impulsive perturbation on the population are investigated in
detail, see Remark 3.10, examples and figures. Our results imply that the impulsive
perturbation has great impacts on the model.

For model (1.2) we assume the following conditions:

(A1) As far as biological meanings is concerned, we consider 1 + hk > 0, k ∈ N.
When hk > 0, is satisfied, the perturbation turn to be the description
process of planting of species and harvesting if not hk < 0.

(A2) For each m > 0 there exists Lm such that
∫

Y |H(x, u) −H(y, u)|2λ(du) ≤
Lm|x− y|2 where H(x, u) = γ(u)x(t−) with |x| ∨ |y| ≤ m.

(A3) There exists a constant c > 0 such that
∫

Y(ln(1 + γ(u))2λ(du) ≤ c.

For simplicity, we define the notation:

〈f(t)〉 =
1
t

∫ t

0

f(s)ds, f∗ = lim inf
t→∞

f(t), f∗ = lim sup
t→∞

f(t).

If ν(t) is a continuous bounded function on R+, define ν̂ = supt∈R+
ν(t) and ν̌ =

inft∈R+ ν(t). The following definitions are commonly used and we list them here.
1. The population x(t) is said to be extinct if limt→∞ x(t) = 0.
2. The population x(t) is said to be nonpersistence in the mean [29] if

lim supt→∞〈x(t)〉 = 0.
3. The population x(t) is said to be weak persistence [7] if lim supt→∞ x(t) > 0.
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4. The population x(t) is said to be stochastic permanence [16] if for an arbitrary
ε > 0, there are constants β > 0, α > 0 such that

lim inf
t→∞

P{x(t) ≥ β} ≥ 1− ε and lim inf
t→∞

P{x(t) ≤ α} ≥ 1− ε.

2. Positive and global solutions

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions andB(t) denotes a standard
Brownian motion defined on this probability space.

Definition 2.1. Consider the stochastic differential equation with Lévy noise and
impulsive perturbation:

dx(t) = f(t, x(t), ω)dt+ g(t, x(t), ω)dB(t) +
∫

Y
γ(t, x(t−), u, ω)Ñ(dt, du),

t 6= tk, k ∈ N
x(t+k )− x(tk) = hkx(tk), k ∈ N

(2.1)

with initial condition x(0) = x0. Here, x(t−) = lims↑t x(s), N(dt, du) is a real-
valued Poisson counting measure with characteristic measure λ on a measurable
subset Y of R+ with λ(Y) < ∞, Ñ(dt, du) = N(dt, du) − λ(du)dt and B(t) is
independent of N . A stochastic process x(t), t ∈ R+, is said to be a solution of
(2.1) if

(i) x(t) is Ft-adapted on (0, t1) and each interval (tk, tk+1) ∈ R+, k ∈ N;
f(t, x) : R+×R×Ω→ R, g(t, x) : R+×R×Ω→ R and γ : R+×R×Y×Ω→
R are jointly measurable and Ft-adapted where, furthermore, γ is Ft-
predictable;

(ii) For each tk, k ∈ N, x(t+k ) = limt→t+k
x(t) and x(t−k ) = limt→t−k

x(t) exist and
x(tk) = x(t−k ) with probability one;

(iii) For almost all t ∈ [0, t1] and k ∈ N, x(t), x(t) satisfies the integral equation

x(t) = x(0) +
∫ t

0

f(s, x(s), ω) +
∫ t

0

g(s, x(s), ω)dB(s)

+
∫ t

0

∫
Y
γ(s, x(s−), u, ω)Ñ(ds, du).

(2.2)

And for almost all t ∈ (tk, tk+1], k ∈ N, x(t) satisfies

x(t) = x(t+k ) +
∫ t

tk

f(s, x(s), ω) +
∫ t

tk

g(s, x(s), ω)dB(s)

+
∫ t

tk

∫
Y
γ(s, x(s−), u, ω)Ñ(ds, du).

(2.3)

Moreover, x(t) satisfies the impulsive conditions at each t = tk, k ∈ N with
probability one.

Remark 2.2. Now let us clarify the derivation procedure of Definition 1. Firstly,
noticing that the stochastic differential equation with jumps and impulsive pertur-
bation (2.1) becomes the following stochastic differential equation with jumps:

dx(t) = f(t, x(t), ω)dt+ g(t, x(t), ω)dB(t) +
∫

Y
γ(t, x(t−), u, ω)Ñ(dt, du)
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on interval [0, t1] and each interval (tk, tk+1] ∈ R+, k ∈ N. In the light of the
classical definition of a solution of stochastic differential equation with jumps (see
[32, page 76]), condition (i), Equations (2.2) and (2.3) should be satisfied. Second,
since there exists impulsive perturbation in (2.1), then the condition (ii) and (iii)
should be satisfied. According to the two facts above, the Definition 1 is proposed.

Theorem 2.3. Under assumptions (A1)–(A2), for any initial value x(0) = x0 > 0,
there is a unique solution x(t) to (1.2) a.s., which is global and represented by

x(t) =

∏
0<tk<t

(1 + hk)φ(t)
1
x0

+
∫ t
0

∏
0<tk<s

(1 + hk)a(s)φ(s)ds
,

where

φ(t) = exp
(∫ t

0

[
r(ζ)− 1

2
σ2(ζ) +

∫
Y

(ln(1 + γ(u))− γ(u))λ(du)
]
dζ

+
∫ t

0

σ(ζ)dB(ζ) +
∫ t

0

∫
Y

ln(1 + γ(u))Ñ(dζ, du)
)
.

Proof. Consider the stochastic differential equation with jumps

dy(t) = y(t)
[
r(t)−

∏
0<tk<t

(1 + hk)a(t)y(t)
]

+ σ(t)y(t)dB(t)

+ y(t−)
∫

Y
γ(u)Ñ(dt, du)

(2.4)

with initial value y(0) = x0. Then (2.4) has the explicit solution [6, Lemma 4.2]

y(t) =
φ(t)

1
x0

+
∫ t
0

∏
0<tk<s

(1 + hk)a(s)φ(s)ds
,

where

φ(t) = exp
(∫ t

0

[
r(ζ)− 1

2
σ2(ζ) +

∫
Y

(ln(1 + γ(u))− γ(u))λ(du)
]
dζ

+
∫ t

0

σ(ζ)dB(ζ) +
∫ t

0

∫
Y

ln(1 + γ(u))Ñ(dζ, du)
)
.

Now let
x(t) =

∏
0<tk<t

(1 + hk)y(t).

We show that x(t) is the solution (1.2). On the interval [0, t1) and each interval
(tk, tk+1) ∈ R+, k ∈ N, we obtain

dx(t) = d
[ ∏

0<tk<t

(1 + hk)y(t)
]

=
∏

0<tk<t

(1 + hk)dy(t)

=
∏

0<tk<t

(1 + hk)y(t)
[
r(t)−

∏
0<tk<t

(1 + hk)a(t)y(t)
]

+
∏

0<tk<t

(1 + hk)σ(t)y(t)dB(t) +
∏

0<tk<t

(1 + hk)y(t−)
∫

Y
γ(u)Ñ(dt, du)
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=
∏

0<tk<t

(1 + hk)y(t)
[
r(t)−

∏
0<tk<t

(1 + hk)a(t)y(t)
]

+
∏

0<tk<t

(1 + hk)σ(t)y(t)dB(t) +
∏

0<tk<t−

(1 + hk)y(t−)
∫

Y
γ(u)Ñ(dt, du)

= x(t)(r(t)− a(t)x(t))dt+ σ(t)x(t)dB(t) + x(t−)
∫

Y
γ(u)Ñ(dt, du).

Moreover, for every k ∈ N and tk ∈ [0,∞),

x(t+k ) = lim
t→t+k

∏
0<tj<t

(1 + hj)y(t) =
∏

0<tj≤tk

(1 + hj)y(t+k )

= (1 + hk)
∏

0<tj<tk

(1 + hj)y(tk) = (1 + hk)x(tk).

In addition,

x(t−k ) = lim
t→t−k

∏
0<tj<t

(1 + hj)y(t) =
∏

0<tj<tk

(1 + hj)y(t−k )

=
∏

0<tj<tk

(1 + hj)y(tk) = x(tk).

Now let us prove the uniqueness of the solution. For t ∈ [0, t1], equation (1.2)
becomes the classical equation

dx(t) = x(t)(r(t)− a(t)x(t))dt+ σ(t)x(t)dB(t) + x(t−)
∫

Y
γ(u)Ñ(dt, du), (2.5)

for t ∈ (0, t1). Since the coefficients of (2.5) are locally Lipschitz continuous, by the
theory of stochastic differential equation with jumps [2, 8], the solution of (2.5) is
unique. For t ∈ (tk, tk+1], k ∈ N, equation (1.2) becomes

dx(t) = x(t)(r(t)− a(t)x(t))dt+ σ(t)x(t)dB(t) + x(t−)
∫

Y
γ(u)Ñ(dt, du) (2.6)

for t ∈ (tk, tk+1]. Note that the coefficients of (2.6) are also locally Lipschitz
continuous; then the solution of (2.6) is also unique. Therefore, the solution of
model (1.2) is unique. �

3. Persistence and extinction for model (1.2)

For later applications, we introduce the following lemmas.

Lemma 3.1. Let M(t), t ≥ 0 be a local martingale at time 0 and define

ρM (t) =
∫ t

0

d〈M〉(s)
(1 + s)2

, t ≥ 0,

where 〈M〉(t) = 〈M,M〉(t) is Meyer’s angle bracket process. Then limt→∞
M(t)
t = 0

a.s. provided that limt→∞ ρM (t) <∞ a.s. [13].

Theorem 3.2. Let assumptions (A1)–(A3) hold. Suppose that x(t) is a solution
of (1.2), then

lim sup
t→∞

t−1 lnx(t) ≤ lim sup
t→∞

t−1
[ ∑

0<tk<t

ln(1 + hk) +
∫ t

0

(r(s)− 0.5σ2(s))ds
]
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−
∫

Y
(γ(u)− ln(1 + γ(u)))λ(du) = g∗, a.s.,

where

g(t) = t−1
[ ∑

0<tk<t

ln(1+hk)+
∫ t

0

(r(s)−0.5σ2(s))ds
]
−
∫

Y
(γ(u)−ln(1+γ(u)))λ(du).

In particular, if g∗ < 0, then limt→∞ x(t) = 0 a.s.

Proof. By Itô’s formula [9], we derive from (2.4) that

d ln y(t) =
[
r(t)− σ2(t)

2
−

∏
0<tk<t

(1 + hk)a(t)y(t) +
∫

Y
(ln(1 + γ(u))

− γ(u))λ(du)
]
dt+ σ(t)dB(t) +

∫
Y

ln(1 + γ(u))Ñ(dt, du)

=
[
r(t)− σ2(t)

2
− a(t)x(t) +

∫
Y

(ln(1 + γ(u))− γ(u))λ(du)
]
dt

+ σ(t)dB(t) +
∫

Y
ln(1 + γ(u))Ñ(dt, du).

Integrating both sides from 0 to t, we have

ln y(t)− ln y(0) =
∫ t

0

[
r(s)− 0.5σ2(s)− a(s)x(s)

]
ds+ t

∫
Y
(ln(1 + γ(u))

− γ(u))λ(du) +M1(t) +M2(t)
(3.1)

where

M1(t) =
∫ t

0

σ(s)dB(s), M2(t) =
∫ t

0

∫
Y

ln(1 + γ(u))Ñ(ds, du).

The quadratic variation of M1(t) is 〈M1(t),M1(t)〉 =
∫ t
0
σ2(s)ds ≤ σ̂2t. By the

strong law of large numbers for martingales leads to

lim
t→∞

M1(t)
t

= 0, a.s. (3.2)

Under assumption (A2), 〈M2〉(t) =
∫ t
0

∫
Y(ln(1 + γ(u)))2λ(du)ds ≤ ct. We derive∫ t

0

1
(1 + s)2

ds =
t

t+ 1
<∞.

By Lemma 3.1, we then obtain

lim
t→∞

M2(t)
t

= 0, a.s. (3.3)

On the other hand, it follows from (3.1) that∑
0<tk<t

ln(1 + hk) + ln y(t)− ln y(0)

=
∑

0<tk<t

ln(1 + hk) +
∫ t

0

[
r(s)− 0.5σ2(s)− a(s)x(s)

]
ds

+ t

∫
Y

(ln(1 + γ(u))− γ(u))λ(du) +M1(t) +M2(t).
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Thus

lnx(t)− lnx(0) =
∑

0<tk<t

ln(1 + hk) +
∫ t

0

[
r(s)− 0.5σ2(s)− a(s)x(s)

]
ds

− t
∫

Y
(γ(u)− ln(1 + γ(u)))λ(du) +M1(t) +M2(t).

(3.4)

Using (3.2) and (3.3), we immediately obtain the desired assertion. �

Theorem 3.3. Under assumptions (A1)–(A3), if g∗ = 0, then the population model
(1.2) is nonpersistence in the mean a.s.

Proof. In view of g∗ = 0, there exists a constant T such that for all ε > 0,

t−1
[ ∑

0<tk<t

ln(1 + bk) +
∫ t

0

b(s)ds
]
−
∫

Y
[γ(u)− ln(1 + γ(u))]λ(du)

+
M1(t)
t

+
M2(t)
t

< ε, t > T.

Substituting this inequality into (3.4) yields

lnx(t) ≤ lnx(0) +
∑

0<tk<t

ln(1 + hk) +
∫ t

0

(b(s)− a(s)x(s))ds

−
∫ t

0

∫
Y

[γ(u)− ln(1 + γ(u))]λ(du)ds+M1(t) +M2(t)

< εt−
∫ t

0

a(s)x(s)ds

for all t > T . The rest of proof is similar to [20, Theorem 3] and hence is omitted.
�

Theorem 3.4. Under the assumptions (A1)–(A3), if g∗ > 0, then the population
x(t) modeled by (1.2) is weak persistence a.s.

Proof. If this assertion is not true, let F = {lim supt→∞ x(t) = 0} and suppose
P(F ) > 0. In the light of (3.4),

t−1
[

lnx(t)− lnx(0)
]

= t−1
[ ∑

0<tk<t

ln(1 + bk) +
∫ t

0

(b(s)− a(s)x(s))ds

−
∫ t

0

∫
Y

[γ(u)− ln(1 + γ(u))]λ(du)ds
]

+
M1(t)
t

+
M2(t)
t

.

(3.5)

On the other hand, for for all ω ∈ F , we have limt→∞ x(t, ω) = 0. Therefore,
substituting (3.2) and (3.3) into (3.5), one can deduce the contradiction

0 ≥ lim sup
t→∞

[t−1 lnx(t, ω)] = g∗ > 0.

�

Remark 3.5. Theorems 3.2–3.4 have a direct biological explanation. It is obvious
to see that the extinction and persistence of population x(t) modeled by (1.2) largely
rely on g∗. Under the assumption (A1)–(A3), if g∗ > 0, the population x(t) will
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be weakly persistent; Under the assumption (A1)–(A3), if g∗ < 0, the population
x(t) will go to extinction. That is to say, under the assumption (A1)–(A3), g∗ is
the threshold between weak persistence and extinction for the population x(t).

When it comes to the study of population system, the role of stochastic perma-
nence indicating the eternal existence of the population, can never be ignorant with
its theoretical and practical significance. And its importance has catched the eyes
of scientists all over the world. So now let us show that x(t) modeled by (1.2) is
stochastic permanent in some cases. We define the assumption

(A4) There are two positive constants m and M such that m ≤
∏

0<tk<t
(1 +

hk) ≤M for all t > 0.

Remark 3.6. Assumption (A4) is easy to be satisfied. For example, if hk =

e
(−1)k+1

k − 1, then e0.5 <
∏

0<tk<t
(1 + hk) < e for all t > 0. Thus 1 ≤

∏
0<tk<t

(1 +
hk) ≤ e for all t > 0.

Theorem 3.7. Under assumptions (A1), (A2), (A4). If(
r(t)− 0.5σ2(t)

)
∗ −

∫
Y
γ(u)λ(du) > 0

and γ(u) ≥ 0, then the population x(t) represented by (1.2) will be stochastic per-
manence.

Proof. First, we claim that for arbitrary ε > 0, there is constant β > 0 such that
lim inft→∞ P{x(t) ≥ β} ≥ 1− ε.

Define V1(y) = 1/y for y > 0. Applying Itô’s formula to (2.4) we can obtain that

dV1(y) = −V1(y)
[
r(t)−

∏
0<tk<t

(1 + hk)a(t)y(t)
]
dt

+ V1(y)
∫

Y

( 1
1 + γ(u)

− 1 + γ(u)
)
λ(du)dt+ V1(y)σ2(t)dt

− V1(y)σ(t)dw(t) + V1(y)
∫

Y

( 1
1 + γ(u)

− 1
)
Ñ(dt, du).

Since
(
r(t)−0.5σ2(t)

)
∗−
∫

Y γ(u)λ(du) > 0, we can choose a sufficient small constant
0 < κ < 1 such that r(t)− 0.5σ2(t)−

∫
Y γ(u)λ(du)− 0.5κσ2(t) > 0.

Define V2(y) = (1 + V1(y))κ. Using Itô’s formula again leads to

dV2

= κ(1 + V1(y))κ−1dV1 + 0.5κ(κ− 1)(1 + V1(y))κ−2V 2
1 (y)σ2(t)dt

+
∫

Y

[(
1 + V1(y) + V1(y)

( 1
(1 + γ(u))

− 1
))κ
− (1 + V1(y))κ − κ(1 + V1(y))κ−1

× V1(y)
( 1

1 + γ(u)
− 1
)]
λ(du)dt− κ(1 + V1(y))κ−1V1(y)σ(t)dw(t)

+
∫

Y

[(
1 + V1(y) + V1(y)

( 1
1 + γ(u)

− 1
))κ
− (1 + V1(y))κ

]
Ñ(dt, du)

≤ κ(1 + V1(y))κ−2
{
− (1 + V1(y))V1(y)

[
r(t)−Ma(t)y(t)

]
+ (1 + V1(y))V1(y)

×
∫

Y

( 1
1 + γ(u)

− 1 + γ(u)
)
λ(du) + (1 + V1(y))V1(y)σ2(t) + 0.5(κ− 1)V 2

1 (y)σ2(t)
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− (1 + V1(y))V1(y)
∫

Y

( 1
1 + γ(u)

− 1
)
λ(du)

}
dt− κ(1 + V1(y))κ−1V1(y)σ(t)dw(t)

+
∫

Y

[(
1 + V1(y) + V1(y)

( 1
1 + γ(u)

− 1
))κ
− (1 + V1(y))κ

]
Ñ(dt, du)

= κ(1 + V1(y))κ−2
{
− V 2

1 (y)
[
r(t)− 0.5σ2(t)−

∫
Y
γ(u)λ(du)− 0.5κσ2(t)

]
+ V1(y)

[
Ma(t)− r(t) + σ2(t) +

∫
Y
γ(u)λ(du)

]
+Ma(t)

}
dt

+
∫

Y

[(
1 + V1(y) + V1(y)

( 1
1 + γ(u)

− 1
))κ
− (1 + V1(y))κ

]
Ñ(dt, du)

− κ(1 + V1(y))κ−1V1(y)σ(t)dw(t)

for sufficiently large t ≥ T . The first inequity follows from
∫

Y

[(
1 + V1(x) +

V1(x)
(

1
(1+γ(u))2 − 1

))κ
− (1 + V1(x))κ

]
λ(du) ≤ 0 for γ(u) ≥ 0. Now, let η > 0 be

sufficiently small satisfy

0 < η/κ < r(t)− 0.5σ2(t)−
∫

Y
γ(u)λ(du)− 0.5κσ2(t).

Define V3(y) = eηtV2(y). By Itô’s formula

dV3(y(t))

= ηeηtV2(y) + eηtdV2(y)

≤ κeηt(1 + V1(y(t)))κ−2
{
η(1 + V1(y))2/κ− V 2

1 (y)
[
r(t)− 0.5σ2(t)

−
∫

Y
γ(u)λ(du)− 0.5κσ2(t)

]
+ V1(y)

[
Ma(t)− r(t) + σ2(t)

+
∫

Y
γ(u)λ(du)

]
+Ma(t)

}
dt− eηtκ(1 + V1(y))κ−1V1(y)σ(t)dw(t)

+ eηt
∫

Y

[(
1 + V1(y) + V1(y)

( 1
1 + γ(u)

− 1
))κ
− (1 + V1(y))κ

]
Ñ(dt, du)

≤ κeηt(1 + V1(y(t)))κ−2
{
− V 2

1 (y)
[(
r(t)− 0.5σ2(t)

)
∗

−
∫

Y
γ(u)λ(du)− η

κ
− 0.5κσ2(t)

]
+ V1(y)

[2η
κ

+Mâ− ř + σ̂2

+
∫

Y
γ(u)λ(du)

]
+Mâ+

η

κ

}
dt+ eηt

∫
Y

[(
1 + V1(y)

+ V1(y)
( 1

1 + γ(u)
− 1
))κ
− (1 + V1(y))κ

]
Ñ(dt, du)

= eηtH(y)dt− eηtκ(1 + V1(y))κ−1V1(y)σ(t)dw(t) + eηt
∫

Y

[(
1 + V1(y)

+ V1(y)
( 1

1 + γ(u)
− 1
))κ
− (1 + V1(y))κ

]
Ñ(dt, du)

for t ≥ T . Note that H(y) is upper bounded in R+, namely H = supy∈R+
H(y) <

∞. Consequently,

dV3(y(t))
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= Heηtdt− eηtκ(1 + V1(y))κ−1V1(y)σ(t)dw(t)

+ eηt
∫

Y

[(
1 + V1(y) + V1(y)

( 1
1 + γ(u)

− 1
))κ
− (1 + V1(y))κ

]
Ñ(dt, du)

for sufficiently large t. Integrating both sides of the above inequality and then
taking eypectations gives

E[V3(y(t))] = E[eηt(1 + V1(y(t)))κ] ≤ eηT (1 + V1(y(T )))κ +
H

η

(
eηt − eηT

)
.

That is to say

lim sup
t→∞

E[V κ1 (y(t))] ≤ lim sup
t→∞

E[(1 + V1(y(t)))κ] <
H

η
.

In other words, we have already shown that

lim sup
t→∞

E
[ 1
yκ(t)

]
≤ H

η
.

Then

lim sup
t→∞

E[1/xκ(t)] = lim sup
t→∞

[ ∏
0<tk<t

(1 + hk)
]−κ

E[1/yκ(t)] ≤ m−κH
η

= H1.

So for ε > 0, we set β = ε1/κ/H
1/κ
1 , by Chebyshev’s inequality, one can derive that

P{x(t) < β} = P
{ 1
xκ(t)

>
1
βκ

}
≤ E[1/xκ(t)]

1/βκ
.

This is to say
lim sup
t→∞

{x(t) < β} ≤ βκH1 = ε.

Consequently
lim inf
t→∞

{x(t) ≥ β} ≥ 1− ε.

Next, we prove that for arbitrary ε > 0, there are constants α > 0 such that
lim inft→∞ P{x(t) ≤ α} ≥ 1− ε.

Let 0 < p < 1, and compute

dyp(t)

= pyp−1(t)
[
y(t)

(
r(t)−

∏
0<tk<t

(1 + hk)a(t)y(t)
)
dt+ σ(t)y(t)dB(t)

]
+

1
2
p(p− 1)σ2(t)yp(t)dt+

∫
Y

[(1 + γ(u))p − 1− pγ(u)]xp(t)λ(du)dt

+
∫

Y
[(1 + γ(u))p − 1]Ñ(dt, du)xp(t)

≤
(
− pma(t)yp+1(t) + pr(t)yp(t) +

1
2
p(p− 1)σ2(t)yp(t)

)
dt+ pσ(t)yp(t)dB(t)

+
∫

Y
[(1 + γ(u))p − 1− pγ(u)]xp(t)λ(du)dt+

∫
Y
[(1 + γ(u))p − 1]Ñ(dt, du)xp(t).

Using the inequality xq ≤ 1 + q(x− 1), x ≥ 0, 0 ≤ q ≤ 1, we have
∫

Y[(1 + γ(u))p −
1− pγ(u)]λ(du) < 0. And there exists K > 0 such that −pma(t)yp+1(t) +

(
pr(t) +
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1
2p(p− 1)σ2(t)

)
yp(t) ≤ K. Then,

dyp(t) ≤ Kdt+ pσ(t)yp(t)dB(t) +
∫

Y
[(1 + γ(u))p − 1]Ñ(dt, du)xp(t).

Therefore

E(etxp(t)) ≤ xp0 +
∫ t

0

esds = xp0 +K(et − 1).

This immediately implies that lim supt→∞E(yp(t)) ≤ K. Consequently,

lim sup
t→∞

E(xp(t)) = lim sup
t→∞

[ ∏
0<tk<t

(1 + hk)
]p
E(xp(t)) ≤MpK = α.

Then the desired assertion follows from the Chebyshev inequality. This completes
the proof. �

Remark 3.8. Generally speaking, as the biology has implied, Theorem 3.2 reveals
that the population probably will go to an end in the worst cases, while Theorem
3.3 shows that the living chances are considerably rare. From Theorem 3.4 we
can easily find that the population size is limited to zero with the time permitted,
however, the opportunity of the survival of it still exists. Theorem 3.7 means that
if the time is sufficiently large, the population size will be neither too small nor too
large with large probability. That is to say, the population will stably exist, which
is the best result. In other words, the survival conditions of Theorem 3.7 are better
than Theorems 3.2–3.4. This can well explain why the conditions are gradually
stronger from Theorem 3.2 to Theorem 3.7.

Remark 3.9. When the jump coefficient γ(u) degenerates to zero, our results in
Theorems 2.3 and 3.2 coincide with [17, Theorems 1 and 2]. Therefore, our results
generalize the work of [17].

Remark 3.10. In view of

g∗ = lim sup
t→∞

t−1
[ ∑

0<tk<t

ln(1 + hk) +
∫ t

0

(r(s)− 0.5σ2(s))ds
]

−
∫

Y
(γ(u)− ln(1 + γ(u)))λ(du)

in Theorems 3.2–3.7, we can find that the impulse does not affect the persistence and
extinction if the impulsive perturbations satisfy assumption (A4). If the impulsive
perturbations do not satisfy assumption (A4), it can effect the population: the
positive impulses hk are advantageous for the population and the negative impulses
hk not favorable to the population.

4. Examples and numerical simulations

In this section, we shall use the Euler scheme [31] to illustrate the analytical
findings.

In Figure 1 (a), (b) (c), we choose r(t) = 0.28 + 0.05 sin t, a(t) = 0.2 + 0.01 cos t,
σ2(t) = 0.3, Y = (0,∞), λ(Y) = 1, γ(u) = 0.63, x0 = 0.3 and step size ∆t = 0.001
and tk = 100k for k ∈ N. The only difference in Figure 1 (a) (b) and (c) is that
the representations of hk are different. In Figure 1(a), we choose hk = 0, then
g∗ = −0.01 < 0. From Theorem 3.2, the population x(t) will go to extinction.
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Figure 1. The horizontal axis and the vertical axis in this and
following figures represent the time t and the populations size x(t)
(step size ∆t = 0.001).

In Figure 1(b), we choose tk = 10k and hk = e0.1 − 1, then g∗ = 0. In view of
Theorem 3.3, population x(t) will be nonpersistence in the mean. In Figure 1(c),
we consider tk = 10k and hk = e0.2 − 1, then g∗ = 0.01 > 0. By Theorem 3.4,
population x(t) will be weak persistence. By the numerical simulations above, we
can find that the impulsive perturbation can change the properties of the population
models significantly.

In Figure 1(d), we consider r(t) = 0.43 + 0.06 sin t, a(t) = 0.2 + 0.01 cos t, γ(u) =
0.24, σ2(t) = 0.3, Y = (0,∞), λ(Y) = 1, x0 = 0.3, step size ∆t = 0.001, tk = 10k

and hk = e
(−1)k+1

k −1, then g∗ = 0.04 > 0. Using Theorem 3.7, the population x(t)
will be stochastic permanence.

Conclusions and future directions. In this article, we considered a stochastic
logistic model with Lévy noise and impulsive perturbation. From the conclusions
we know that the impulsive perturbation can have an impact on the population
in some degree. Generally speaking, the impulsive perturbation is small when
compared with Lévy jumps. Yet it may represent human factor to protect the
population even if it suffer sudden environmental shocks that can be modelled by
Lévy noise. When the population will be extinct, we should take measure, i.e.
positive impulsive perturbation, to avoid the case as far as possible. In contrast,
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we may go into action, i.e. negative impulsive perturbation, to take precautions
against population explosion ahead of schedule.

Some interesting and significant topics deserve our further engagement. One may
put forward a more realistic and sophisticated model to integrate the colored noise
into the model [11, 12, 30]. Another significant problem is that one should incorpo-
rate Lévy noise and impulsive perturbation into multidimensional stochastic model
with time delay or without time delay [14, 21, 22, 23, 35], and such investigations
are to be done in future.
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