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EXISTENCE OF GLOBAL SOLUTIONS TO A MUTUALISTIC
MODEL WITH DOUBLE FRONTS

MEI LI, LIN LIN

Abstract. We study a system of semilinear parabolic equations with two free
boundaries describing the spreading fronts of the invasive species in a mutu-

alistic ecological model. We establish the existence and uniqueness of a local

classical solution and then study the asymptotic behavior of the free bound-
ary problem. The results indicate that two free boundaries tend monotonically

to finite values at the same time, or to infinite simultaneously. Also the free
boundary problem admits a global slow solution with unbounded free bound-

aries if the geometric average of the interaction coefficients is less than 1, while

if it is bigger than 1 there exist the grow-up solution and global fast solution
with bounded free boundaries.

1. Introduction

Free boundary problems associated with the ecological models have attracted
considerable research attention in the past because of their relevance in applications.
For example, Lin [12] introduced the free boundary in a predator-prey model. Du
and Lou [6] considered a two free boundaries problem with a general nonlinear
term. Wang and Zhao [18, 21] studied the Lotka-Volterra type prey-predator model.
While Lotka-Volterra type competition models had been discussed by Du and Lin
[5], and Guo and Wu [9]. Some free boundary problems describing tumor growth
had been considered by Tao and Xu [17, 19].

For the mutualistic model, Kim and Lin [10] studied the free boundary problem

ut − d1uxx = u(a1 − b1u+ c1v), t > 0, 0 < x < h(t),

vt − d2vxx = v(a2 + b2u− c2v), t > 0, 0 < x <∞,
u(t, x) = 0, t ≥ 0, h(t) < x <∞,

u = 0, h′(t) = −µ∂u
∂x
, t > 0, x = h(t),

∂u

∂x
(t, 0) =

∂v

∂x
(t, 0) = 0, t > 0,

h(0) = b, (0 < b <∞),

u(0, x) = u0(x) ≥ 0, 0 ≤ x ≤ b,
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v(0, x) = v0(x) ≥ 0, 0 ≤ x ≤ ∞, (1.1)

and found blowup and global solutions.
The condition on the free boundary is h′(t) = −µux(t, h(t)) called the one-

phase Stefan condition, and it was given by Josef Stefan in his papers published in
1989. Ecologically, it means that the amount of the species flowing across the free
boundary is increasing with respect to the moving length [12].

As for the one-phase Stefan problem for the heat equation with a superlinear
reaction term

ut − uxx = u1+p, t > 0, 0 < x < h(t),

h′(t) = −∂u
∂x
, t > 0, x = h(t),

∂u

∂x
(t, 0) = u(0, h(t)) = 0, t > 0,

h(0) = b, (0 < b <∞),

u(0, x) = u0(x) ≥ 0, 0 ≤ x ≤ b,

(1.2)

it was shown in [7, 8] that all global solutions are bounded and decay uniformly to
0 as t → ∞ if the initial data is small, while if it is big, the solution will blow up
in a finite time. Moreover they showed that there exist global solutions with slow
decay and unbounded free boundary.

Considering two species mutualistic model proposed by May [13] in 1976, and
the model is described by the following coupled ODE system:

u̇(t) = r1u(1− u

K1 + α1v
),

v̇(t) = r2v(1− v

K2 + α2u
),

(1.3)

where ri,Ki, αi, (i = 1, 2) are positive constants. We deduce that, if α1α2 > 1, the
solution would grow up, which means that it becomes infinite as the time goes to in-
finity, while if α1α2 < 1 there is an unique positive equilibrium (K1+α1K2

1−α1α2
, K2+α2K1

1−α1α2
).

Linearization and spectrum analysis shows that the unique positive equilibrium is
locally asymptotically stable, and it is globally asymptotically stable in the positive
quadrant by constructing the Lyapunov function.

Motivated by the former work, we study the following mutualistic model with
double fronts,

∂u

∂t
= a

∂2u

∂x2
+ r1u(1− u

K1 + α1v
), t > 0, g(t) < x < h(t),

∂v

∂t
= b

∂2v

∂x2
+ r2v(1− v

K2 + α2u
), t > 0, −∞ < x <∞,

u(t, x) = 0, t > 0, x ≤ g(t) or x ≥ h(t),

g(0) = −h0, g′(t) = −µ∂u
∂x

(t, g(t)), t > 0,

h(0) = h0, h′(t) = −µ∂u
∂x

(t, h(t)), t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), −∞ < x <∞,

(1.4)

where x = g(t) and x = h(t) are the moving left and right boundaries to be
determined, and h0 and µ are positive constants. Throughout this paper the initial



EJDE-2015/249 MUTUALISTIC MODELS WITH DOUBLE FRONTS 3

functions u0 and v0 are nonnegative and satisfy

u0 ∈ C2([−h0, h0]), u0(±h0) = 0, u0(x) > 0, x ∈ (−h0, h0),

v0 ∈ C2(−∞,∞) ∩ L∞(−∞,∞), v0(x) = 0, x ∈ (−∞,−h0] ∪ [h0,∞).
(1.5)

The paper is organized as follows. In the next section, existence and uniqueness
of local solutions for two free boundaries problem (1.4) is established by using
contraction mapping theorem. Results relating to global slow solution for α1α2 < 1
are presented in Section 3. In Section 4, the grow-up solution and global fast
solution for α1α2 > 1 are established.

We end this section by recalling two definitions which will be used in next sec-
tions.

Definition 1.1 ([7, 8]). A solution (u, v; g, h) of (1.4) is said to be classical if u ∈
C([0, Tmax)×[g(t), h(t)])∩C1,2((0, Tmax)×(g(t), h(t)), v ∈ C([0, Tmax)×(−∞,∞))∩
C1,2((0, Tmax)×(−∞,∞))∩C([0, Tmax)×L∞(−∞,∞)) and h, g ∈ C1[0, Tmax) with
Tmax ≤ +∞ and satisfy (1.4), where Tmax denotes the maximal existing time of
solution.

Definition 1.2 ([1, 7, 8]). A solution (u, v; g, h) of (1.4) is said to be global if
Tmax = +∞. If Tmax =∞ and limt→Tmax(‖u(t, x)‖L∞[g(t),h(t)]+‖v(t, x)‖L∞(−∞,+∞))
→ +∞, we say that the solution grows up. If Tmax =∞ and h∞ := limt→∞ h(t) <
∞, g∞ := limt→∞ g(t) > −∞, the solution is called global fast solution since that
the solution decays uniformly to 0 at an exponential rate, while If Tmax = ∞ and
h∞ = ∞, g∞ = −∞, it is called global slow solution, whose decay rate is at most
polynomial.

2. Existence and uniqueness

In this section, we first present the following local existence and uniqueness result
by the contraction mapping theorem and then give the property of the double fronts.

Theorem 2.1. For any given (u0, v0) satisfying (1.5), and any α ∈ (0, 1), there
exists a T > 0 such that problem (1.4) admits a unique solution

(u, v; g, h) ∈ C1+α,(1+α)/2(DT )× C1+α,(1+α)/2(D∞T )× [C1+α/2([0, T ])]2,

moreover,
‖u‖C1+α,(1+α)/2(DT ) + ‖v‖C1+α,(1+α)/2(DT )

+ ‖g‖C1+α/2([0,T ]) + ‖h‖C1+α/2([0,T ]) ≤ K,
(2.1)

where DT = {(t, x) ∈ R2 : t ∈ [0, T ], x ∈ [g(t), h(t)]}, D∞T = {(t, x) : t ∈
[0, T ], x ∈ R}, K and T only depend on h0, α, ‖u0‖C2([−h0,h0]), ‖v0‖C2([−h0,h0]) and
‖v0‖L∞(−∞,∞).

Proof. As in [20], we first straighten the double free boundary fronts by making the
following change of variable:

x =
h(t)− g(t)

2h0
y +

h(t) + g(t)
2

.

Now, a straightforward computation yields

∂y

∂x
=

2h0

h(t)− g(t)
,
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∂y

∂t
= −2h0

x(h′(t)− g′(t)) + h(t)g′(t)− h′(t)g(t)
(h(t)− g(t))2

.

If we set

u(t, x) = u(t,
h(t)− g(t)

2h0
y +

h(t) + g(t)
2

) := w(t, y),

v(t, x) = v(t,
h(t)− g(t)

2h0
y +

h(t) + g(t)
2

) := z(t, y),

then

ut = wt − 2h0
x[h′(t)− g′(t)] + h(t)g′(t)− h′(t)g(t)

[h(t)− g(t)]2
wy = wt −Awy,

vt = zt − 2h0
x[h′(t)− g′(t)] + h(t)g′(t)− h′(t)g(t)

[h(t)− g(t)]2
zy = zt −Azy,

uxx = Bwyy, vxx = Bzyy,

where

A = A(h, g, y) =
y[h′(t)− g′(t)] + h0[h′(t) + g′(t)]

h(t)− g(t)
,

B = B(h, g) =
4h2

0

[h(t)− g(t)]2
.

Problem (1.4) can be reduced to

wt = Awy + aBwyy + r1w(1− w

K1 + α1z
), t > 0, −h0 < y < h0,

zt = Azy + bBwyy + r2z(1−
z

K2 + α2w
), t > 0, −∞ < y <∞,

w = 0, h′(t) = − 2h0µ

h(t)− g(t)
∂w

∂y
, t > 0, y ≥ h0,

w = 0, g′(t) = − 2h0µ

h(t)− g(t)
∂w

∂y
, t > 0, y ≤ −h0,

h(0) = h0, g(0) = −h0,

w(0, y) = w0(y) := u0(y), z(0, y) = z0(y) := v0(y), −∞ ≤ y ≤ ∞.

(2.2)

Now the free boundaries x = h(t) and x = g(t) become the fixed lines y = h0 and
y = −h0 respectively, and the equations become more complex, since the coefficients
in the first and second equations of (2.2) contain unknown functions h(t), g(t) and
their derivatives.

The rest of the proof is by the contraction mapping argument as in [4, 20] with
suitable modifications, and we omit the details here. �

To discuss further on (1.4), we need some preliminary theorems which will be
used in the sequel. Next we present the monotonicity of the double fronts.

Theorem 2.2. The two free boundaries for problem (1.4) are strictly monotone,
namely, for any solution on [0, T ], we have

h′(t) > 0 and g′(t) < 0 for 0 ≤ t ≤ T.

Proof. Using the Hopf Lemma to the system of (1.4), we immediately deduce that

ux(t, h(t)) < 0, ux(t, g(t)) > 0 for 0 ≤ t ≤ T.
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Then, combining the above two inequalities with the Stefan conditions in (1.4), the
result can be obtained. �

The above theorem indicates that h(t) and g(t) are strictly monotone, and
therefore there exists h∞,−g∞ ∈ (0,+∞] such that limt→+∞ h(t) = h∞ and
limt→+∞ g(t) = g∞. Thus, we have four possible cases: (I) h∞ = ∞ = −g∞, (II)
h∞ <∞, g∞ > −∞, (III) h∞ <∞, g∞ = −∞ and (IV) h∞ =∞, g∞ > −∞. The
following theorem shows that the last two cases are unlikely to occur. It indicates
that both h∞ and g∞ are finite or infinite simultaneously.

Theorem 2.3. Let (u, v; g, h) be a solution of (1.4) in [0, Tmax)× [g(t), h(t)]. Then
g(t) and h(t) satisfy

−2h0 < g(t) + h(t) < 2h0, t ∈ [0, Tmax).

Proof. It follows from continuity that g(t) + h(t) < 2h0 for small t > 0. Define

T := sup{s : g(t) + h(t) < 2h0, t ∈ [0, s)}.

We can deduce that T = Tmax in the following proof by contradiction. Suppose
that T < Tmax, Then we have

g(t) + h(t) < 2h0, t ∈ [0, T ), g(T ) + h(T ) = 2h0.

Hence
g′(T ) + h′(T ) ≥ 0. (2.3)

To obtain a contradiction, we define the function F(t, x) := u(t, x)−u(t,−x+ 2h0)
on the region

Ω′ = {(t, x) : 0 ≤ t ≤ T, h0 ≤ x ≤ h(t)}.
A straightforward computation yields

Ft = Fxx + c(t, x)F , 0 < t ≤ T, h0 < x < h(t),

with some c(t, x) ∈ L∞(Ω′) and

F(t, h0) = 0, F(t, h(t)) < 0, 0 < t < T.

Moreover,

F(T, h(T )) = u(T, h(T ))− u(T,−h(T ) + 2h0) = u(T, h(T ))− u(T, g(T )) = 0.

Then

F(t, x) < 0, (t, x) ∈ (0, T ]× (h0, h(t)),

Fx(T, h(T )) < 0,

by applying the strong maximum principle and the Hopf Lemma. However

Fx(T, h(T )) = ux(T, h(T )) + ux(T, g(T )) = −[g′(T ) + h′(T )]/µ,

namely
g′(T ) + h′(T ) > 0,

which contradicts (2.1). Therefore g(t) +h(t) < 2h0 for all 0 < t < Tmax. Similarly
we can prove g(t) + h(t) > −2h0 for all 0 < t < Tmax. �
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Theorem 2.1 implies that there exists a T such that the solution exists in time
interval [0, T ], and the solution can be further extended to [0, Tmax) with Tmax ≤
+∞ by Zorn’s lemma. The maximal exist time of the solution Tmax depends on a
prior estimate with respect to ‖u‖L∞ , ‖v‖L∞ and g′(t), h′(t). Next we show that
if ‖u‖L∞ < ∞, then the solution is global. For this purpose we first provide the
following lemma.

Lemma 2.4. Suppose that M := ‖u‖L∞([0,T ]×[g(t),h(t)]) <∞. Then the solution of
the free boundary problem (1.4) satisfies

0 ≤ v ≤M2(M) for 0 ≤ t ≤ T, −∞ ≤ x <∞,
0 < −g′(t), h′(t) ≤M3(M) for 0 ≤ t ≤ T,

where M2,M3 are independent of T .

Proof. Because of M := ‖u‖L∞([0,T ]×[g(t),h(t)]) <∞, we obtain

vt − bvxx ≤ r2v(1− v

K2 + α2M̄
)

for 0 < t ≤ T , −∞ < x <∞, then we deduce the estimate for v by the Phragman-
Lindelof principle. Set

Ω = {(t, x) : 0 < t ≤ T, g(t) < x < g(t) +
1
M
}

and define an auxiliary function

w(t, x) = M [2M(x− g(t))−M2(x− g(t))2].

Next, we choose M such that w(t, x) is the supersolution of u(t, x) in Ω. Directly
computations show that

wt = −2MMg′(t)
[
1−M(x− g(t))

]
≥ 0,

−wxx = 2MM2,

r1u(1− u

K1 + α1v
) ≤ r1M.

If M2 ≥ r1/(2a), we have

wt − awxx ≥ 2aMM2 ≥ r1M ≥ r1u(1− u

K1 + α1v
).

On the other hand,

w(t, g(t) +
1
M

) = M ≥ u(t, g(t) +
1
M

),

w(t, g(t)) = 0 = u(t, g(t)).

Recalling that u0(−h0) = 0 and u′0(−h0) = −g1/µ gives that there exists 0 < δ < h0

such that u0(x) ≤ 3
4M and |u′0(x)| ≤ |g1/µ|+1 for x ∈ [−h0,−h0 +δ], we then have

w(0, x) ≥ u0(x) in [−h0,−h0 + 1
M ] if M ≥ max{ 1

δ ,
|g1|/µ+1
M1

}. Using the comparison
principle yields u(t, x) ≤ w(t, x) in Ω. Noticing that u(t, g(t)) = w(t, g(t)) = 0, we
have

ux(t, g(t)) ≤ wx(t, g(t)) = 2MM.

Note that the free boundary condition in (1.4) deduces to

0 < −g′(t) ≤ 2µMM := M3, 0 < t ≤ T,
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where M3 is independent of T . Analogously, we can define

w(t, x) = M [2M(h(t)− x)−M2(h(t)− x)2]

over the region

Ω′ = {(t, x) : 0 < t ≤ T, h(t)− 1
M

< x < h(t)},

and derive that 0 < h′(t) ≤M3, 0 < t ≤ T . �

Theorem 2.5. Problem (1.4) admits a unique global solution.

Proof. It follows from the uniqueness that there is a number Tmax such that [0, Tmax)
is the maximal time interval in which the solution exists. Next we show that
Tmax = ∞. Arguing indirectly, we assume that Tmax < ∞. It is easy to see that
(ler1t, ler2t) is the upper solution of the (1.4), where

l = max{ max
[−h0,h0]

u(x, 0), ‖u(x, 0)‖L∞(−∞,∞)}.

We now fix M > Tmax. Then u(x, t) ≤ ler1M in [0, Tmax)× [g(t), h(t)]. By Lemma
2.4, we can find M2,M3 independent of T such that

0 ≤ v ≤M2 for 0 ≤ t < Tmax, −∞ ≤ x <∞,
0 < −g′(t), h′(t) ≤M3 for 0 ≤ t < Tmax.

It then follows from the proof of Theorem 2.1 that there exists a τ > 0 depending
only on M , M2 and M3 such that the solution (1.4) with initial time Tmax − τ/2
can be extended uniquely to the time Tmax − τ/2 + τ . But this contradicts the
assumption. The proof is complete. �

3. Global bounded solution

To obtain the existence of a global solution, we first derive a priori estimate for
the solution of (1.4).

Lemma 3.1. If α1α2 < 1, then the solution of the free boundary problem (1.4)
satisfies

0 < u(t, x) ≤ C1 for 0 ≤ t ≤ T, g(t) < x < h(t),

0 ≤ v(t, x) ≤ C2 for 0 ≤ t ≤ T, −∞ < x <∞,

where Ci is independent of T for i = 1, 2.

Proof. Firstly we have that u > 0 in [g(t), h(t)]×[0, T ] and v ≥ 0 in (−∞,∞)×[0, T ]
provided that solution exists.

Since the solution is classical in [0, T ], there exists a K̃(T ) such that u(t, x) ≤
α1K̃ and v(t, x) ≤ K̃. Next we give the proof for u(t, x) ≤ C1 and v(t, x) ≤ C2,
where

C1 := m
K1 +K2α1

1− α1α2
> max

[−h0,h0]
u0(x),

C2 := m
K1α2 +K2

1− α1α2
> ‖v0‖L∞(−∞,∞)

for some m > 1.
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Because the interval (−∞,∞) is unbounded, maximum principle does not apply.
Next we prove that for any l > h0,

u(t, x) ≤ C1 + α1
K̃[x2 + 2 max(a, b)t]

l2
,

v(t, x) ≤ C2 +
K̃[x2 + 2 max(a, b)t]

l2

for 0 ≤ t ≤ T , −l ≤ x ≤ l. Setting

u(t, x) = C1 + α1
K̃[x2 + 2 max(a, b)t]

l2
,

v(t, x) = C2 +
K̃[x2 + 2 max(a, b)t]

l2
,

then (u, v) satisfies

ut − auxx ≥ r1u(1− u

K1 + α1v
), 0 < t ≤ T, −l < x < l,

vt − bvxx ≥ r2v(1− v

K2 + α2u
), 0 < t ≤ T, ;−l < x < l,

u ≥ C1 + α1K̃ > u, v ≥ C2 + K̃ > v, 0 < t ≤ T, x = ±l,
u(0, x) ≥ C1 > u0(x), −l ≤ x ≤ l
v(0, x) ≥ C2 > v0(x), −l ≤ x ≤ l.

It follows that u ≤ u and v ≤ v by using the maximum principle on [0, T ]× [−l, l].
Now for any fixed (t0, x0) ∈ [0, T ] × (−∞,∞), letting l sufficiently large so that
(t0, x0) ∈ [0, T ]× [−l, l], we deduce from the above proof that

u(t0, x0) ≤ u(t0, x0) = C1 + α1
K̃[x2

0 + 2 max(a, b)t0]
l2

,

v(t0, x0) ≤ v(t0, x0) = C2 +
K̃[x2

0 + 2 max(a, b)t0]
l2

.

Taking l→∞ gives the desired estimates. �

Combing Theorem 2.5 with Lemma 3.1 yields the following result.

Theorem 3.2. If parameters α1, α2 in double free boundaries problem (1.4) satisfy
α1α2 < 1, then (1.4) admits a unique global bounded solution.

Next we discuss the long-time behavior of the free boundary problem (1.4). We
first present the slow solution.

Theorem 3.3. If α1α2 < 1 and h0 >
π
2

√
a/r1, the free boundaries of the problem

(1.4) satisfy h∞ =∞ and g∞ = −∞.

Proof. Combing Lemma 2.4 with Theorem 3.2, we know that the solution is global,
x = g(t) is monotonic decreasing and x = h(t) is monotonic increasing. Assuming
that g∞ > −∞ by contradiction, then we have limt→+∞ g′(t) = 0.

On the other hand, the condition 1 > a/r1( π
2h0

)2 implies that 1 > λ1, where λ1

denotes the first eigenvalue of the problem

−(a/r1)φ′′ = λφ in (−h0, h0), φ(±h0) = 0.
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Therefore, for all small δ > 0, the first eigenvalue λδ1 of the problem

−aφ′′ + δφ′ = λr1φ in (−h0, h0), φ(±h0) = 0

satisfies λδ1 < 1. Fix such a δ > 0 and consider the problem

Lδψ = ψ − ψ2

K1
in (−h0, h0), ψ(±h0) = 0, (3.1)

where Lδψ = −(aψ′′ − δψ′)/r1. It is well known [2, Proposition 3.3] that (3.1)
admits a unique positive solution ψ = ψδ. By the moving plane method one easily
sees that ψ(x) is symmetric about x = 0 with ψ′(x) > 0 for x ∈ [−h0, 0). Moreover
using the comparison principle, we have ψ < K1 in [−h0, h0]. We now set

F(t, x) = ψ
(−h0

g(t)
x
)
,

and directly compute

Ft − aFxx =
h0x

g2(t)
g′(t)ψ′ − a h2

0

g2(t)
ψ′′ =

h2
0

g2(t)
[−aψ′′ + xg′(t)

h0
ψ′].

Note that g′(t) → 0 as t → +∞, we can choose T0 > 0 such that g′(t) > δ h0
g∞

for

t ≥ T0, then, we obtain xg′(t)
−h0

≥ −δ for t ≥ T0 and x ∈ [g(t), 0], which leads to

Ft − aFxx ≤
h2

0

g2(t)
(−aψ′′ + δψ′) =

h2
0

g2(t)
r1(ψ − ψ2

K1
).

Because of 0 ≤ ψ < K1 and −h0
g(t) ≤ 1, we obtain

Ft − aFxx ≤ r1(ψ − ψ2

K1
) = r1(F − F

2

K1
) for t ≥ T0, x ∈ [g(t), 0].

Now we choose δ ∈ (0, 1) sufficiently small so that δF(T0, x) ≤ u(T0, x). Then
u(t, x) := δF(t, x) satisfies

ut − auxx ≤ r1(u− u2

K1
), t ≥ T0, x ∈ [g(t), 0],

u(t, g(t)) = 0, ux(t, 0) = 0, t ≥ T0,

u(T0, x) ≤ u(T0, x), g(T0) ≤ x ≤ 0.

So we can use the comparison principle to conclude that

u(t, x) ≤ u(t, x) for t ≥ T0, x ∈ [g(t), 0].

It follows that

ux(t, g(t)) ≥ ux(t, g(t)) = δ
h0

g(t)
ψ′(h0)→ δ

h0

g∞
ψ′(h0) > 0,

which means that g′(t) ≤ −µδ h0
g∞
ψ′(h0) < 0. This is a contradiction to the fact

that g′(t)→ 0 as t→∞. This contradiction implies that g∞ = −∞. Likewise, we
can set

F(t, x) = ψ
( h0

h(t)
x
)
, x ∈ [0, h(t)]

to prove that h∞ = +∞. �
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4. Global fast solution and grow up solution

In this section, we discuss the asymptotic behavior of the solution for the case
α1α2 > 1, which is more complicated than that for the case α1α2 < 1. At first, we
give the grow-up result.

Theorem 4.1. Assume that α1α2 > 1, then the solution of (1.4) with any non-
trivial nonnegative initial data grows up when h0 is sufficiently large.

Proof. We first show that the solution cannot blow up in any finite time. In fact,
it has a upper solution (u(t), v(t)) satisfies

ut = r1u, vt = r2v, t > 0,

u(0) = max
[−h0,h0]

u(x, 0) ≥ 0,

v(0) = max
[−h0,h0]

v(x, 0) ≥ 0

and the upper solution cannot blow up in finite time.
To prove the solution of (1.4) grows up, it suffices to compare the free boundary

problem with the corresponding problem in the fixed domain:

ut − auxx = r1u(1− u

K1 + α1v
), t > 0, −h0 < x < h0,

vt − bvxx = r2v(1− v

K2 + α2u
), t > 0, −h0 < x < h0,

u(t,−h0) = v(t,−h0) = 0, t > 0,

u(t, h0) = v(t, h0) = 0, t > 0,

u(0, x) = u0(x) ≥ 0, −h0 ≤ x ≤ h0,

v(0, x) = v0(x) ≥ 0, −h0 ≤ x ≤ h0.

(4.1)

On the other hand, we want to find a lower solution of (4.1) that increases
exponentially. Let (û, v̂) = (δ1w, δ2w), where δi(i = 1, 2) is some positive constant.
Then (û, v̂) is a lower solution of (4.1) if (δ1w, δ2w) satisfies the relations

wt − awxx ≤ r1w(1− δ1w

K1 + α1δ2w
), t > 0, −h0 < x < h0,

wt − bwxx ≤ r2w(1− δ2w

K2 + α2δ1w
), t > 0, −h0 < x < h0,

w(t,−h0) = w(t,−h0) = 0, t > 0,

δ1w(0, x) ≤ u0(x), −h0 ≤ x ≤ h0,

δ2w(0, x) ≤ v0(x), −h0 ≤ x ≤ h0.

(4.2)

Then (4.2) holds if

wt − awxx ≤
r1(α1δ2 − δ1)w

α1δ2
, t > 0, −h0 < x < h0,

wt − bwxx ≤
r2(α2δ1 − δ2)w

α2δ1
, t > 0, −h0 < x < h0,

w(t,−h0) = w(t,−h0) = 0, t > 0,

δ1w(0, x) ≤ u0(x), −h0 ≤ x ≤ h0,

δ1w(0, x) ≤ v0(x), −h0 ≤ x ≤ h0.

(4.3)
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Recall the assumption in the theorem, let δi > 0 such that

1
α2

<
δ1
δ2
< α1

and set

D = max{1
a
,

1
b
}, d∗ = min

{r1(α1δ2 − δ1)
α1δ2a

,
r2(α2δ1 − δ2)

α2δ1b

}
.

Then d∗ > 0 and thus (4.3) holds if

Dwt − wxx ≤ d∗w, t > 0, −h0 < x < h0,

w(t,−h0) = w(t, h0) = 0, t > 0,

w0(x) ≤ min
{u0(x)

δ1
,
v0(x)
δ2

}
, −h0 ≤ x ≤ h0.

(4.4)

Let w(x, t) = δeεt cos( π
2h0

x). Direct calculations show that if h0 >
π
2

1√
d∗

, then we
can choose small δ and ε such that wt ≥ 0 and (4.4) holds. Therefore the lower
solution (û, v̂) increases exponentially, so does the solution of (1.4). �

Next we introduce a comparison principle for double free boundaries x = h(t)
and x = g(t), which can be proved similarly as [4, Lemma 3.5].

Lemma 4.2. Suppose that T ∈ (0,∞), h, g ∈ C1([0, T ]), u ∈ C(D
∗
1,T )∩C1,2(D∗1,T )

and v ∈ C(D
∗
2,T ) ∩ C1,2(D∗2,T ) with D∗1,T = (0, T ] × (g(t), h(t)), D∗2,T = (0, T ] ×

(−∞,+∞), and

ut − auxx ≥ r1u(1− u

K1 + α1v
), t > 0, g(t) < x < h(t),

vt − bvxx ≥ r2v(1− v

K2 + α2u
), t > 0, −∞ < x <∞,

u(t, x) = 0, t > 0, −∞ < x < g(t),

u(t, x) = 0, t > 0, h(t) < x <∞,

u = 0, h
′
(t) ≥ −µ∂u

∂x
, t > 0, x = h(t),

u = 0, g′(t) ≤ −µ∂u
∂x
, t > 0, x = g(t).

(4.5)

If −h0 ≥ g(0), h0 ≤ h(0), u0(x) ≤ u(0, x) in [−h0, h0] and v0(x) ≤ v(0, x) in
(−∞,+∞), then the solution (u, v; g, h) of the free boundary problem (1.4) satisfies

g(t) ≥ g(t), h(t) ≤ h(t) in (0, T ],

u(t, x) ≤ u(t, x) in [0, T ]× (g(t), h(t)),

v(t, x) ≤ v(t, x) in [0, T ]× (−∞,+∞).

Remark 4.3. The (u, v;h, g) in Lemma 4.2 is usually called an upper solution of
the problem (1.4). We can define a lower solution by reversing all the inequalities
in the obvious places. Moreover, one can easily prove an analogue of Lemma 4.2
for lower solutions.

In the following theorem, we show existence of a global fast solution.
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Theorem 4.4. If α1α2 > 1, then the free boundary problem (1.4) admits a global
fast solution provided that the initial data u0 and h0 are suitably small. Moreover,
there exist constant β = r1/2 and η = η(h0,K2, a, µ, α2) such that

‖u‖∞ ≤ ηe−βt, t ≥ 0.

Proof. As in [16], we have only to find a suitable supersolution. For t ≥ 0, define

σ(t) = 2h0(2− e−γt), λ(t) = −σ(t), F(y) = cos(
π

2
y), −1 ≤ y ≤ 1,

u(t, x) = ηe−βtF(x/σ(t)), t ≥ 0, λ(t) ≤ x ≤ σ(t),

v(t, x) = max{2K2, ‖v0(x)‖L∞(−∞,+∞)}, t ≥ 0, −∞ ≤ x ≤ ∞,

where γ, β and η > 0 to be determined later.
Straightforward calculations yield

ut − auxx − r1u(1− u

K1 + α1v
)

= ηe−βt[−βF − xσ′σ−2F ′ − aσ−2F ′′ − r1F(1− ηe−βtF
K1 + α1v

)]

≥ ηe−βtF [−β + (
π

2
)2

a

16h2
0

− r1]

for all t > 0 and λ(t) < x < σ(t) and

vt − bvxx − r2v(1− v

K2 + α2u
) = v(−r2 +

r2v

K2 + α2ηe−βtF
)

≥ 2r2K2(−1 +
2K2

K2 + α2η
)

for all t > 0 and −∞ < x < ∞. On the other hand, we can easily deduce σ′(t) =
2γh0e

−γt > 0, −ux(t, σ(t)) = π
2 ησ

−1(t)e−βt and −ux(t, λ(t)) = π
2 ηλ

−1(t)e−βt.
Now we set

h =
π

16

√
2a
r1
,

choosing

0 < h0 ≤ h, η = min{K2

α2
,
aπ

8µ
(
h0

2h
)2}, β = γ = (

π

2
)2

a

64h2
=
r1
2
.

It follows that

ut − auxx ≥ r1u(1− u

K1 + α1v
), t > 0, λ(t) < x < σ(t),

vt − bvxx ≥ r2v(1− v

K2 + α2u
), t > 0, −∞ < x <∞,

u = 0, σ′(t) > −µ∂u
∂x
, t > 0, x = σ(t),

u = 0, λ′(t) < −µ∂u
∂x
, t > 0, x = λ(t),

σ(0) = 2h0 > h0, λ(0) = −2h0 < −h0.

Using Lemma 4.2, we can get that h(t) < σ(t), g(t) > λ(t), and u(t, x) < u(t, x),
v(t, x) < v(t, x) for g(t) ≤ x ≤ h(t) provided (u, v) exists. Therefore (u, v) exists
globally and g∞ > −∞, h∞ <∞. �
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Remark 4.5. If α1α2 < 1, Theorem 3.3 shows that the solution is slow for any
initial data. If α1α2 > 1, Theorem 4.1 shows that the solution grows up for h0 is
sufficiently large. Theorem 4.4 implies that the global fast solution is possible if
the initial data and h0 is suitably small.
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