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INVERSE SPECTRAL AND INVERSE NODAL PROBLEMS FOR
ENERGY-DEPENDENT STURM-LIOUVILLE EQUATIONS WITH

δ-INTERACTION

MANAF DZH. MANAFOV, ABDULLAH KABLAN

In memory of M. G. Gasymov

Abstract. In this article, we study the inverse spectral and inverse nodal
problems for energy-dependent Sturm-Liouville equations with δ-interaction.

We obtain uniqueness, reconstruction and stability using the nodal set of eigen-

functions for the given problem.

1. Introduction

We consider the boundary value problem (BVP) generated by the differential
equation

− y′′ + q(x)y = λ2y, x ∈ (0,
π

2
) ∪ (

π

2
, π) (1.1)

with the boundary conditions

U(y) := y(0) = 0, V (y) := y′(π) = 0 (1.2)

and at the point x = π
2 satisfying

y(
π

2
+ 0) = y(

π

2
− 0) = y(

π

2
),

y′(
π

2
+ 0)− y′(π

2
− 0) = 2αλy(

π

2
)

(1.3)

where q(x) is a nonnegative real valued function in L2(0, π), α 6= ±1 is real number
and λ is spectral parameter. Without loss of generality we assume that∫ π

0

q(x)dx = 0. (1.4)

We denote the BVP (1.1), (1.2) and (1.3) by L = L(q, α).
Notice that, we can understand problem (1.1) and (1.3) as studying the equation

y′′ + (λ2 − 2λp(x)− q(x))y = 0, x ∈ (0, π) (1.5)

when p(x) = αδ(x− π
2 ), where δ(x) is the Dirac function (see [2]).
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We consider the inverse problems of recovering q(x) and α from the given spectral
and nodal characteristics. Such problems play an important role in mathematics
and have many applications in natural sciences (see, for example, monographs [7,
16, 19, 24]). Inverse nodal problems consist in constructing operators from the
given nodes (zeros) of eigenfunctions (see [5, 12, 15, 20, 27]). Discontinuous inverse
problems (in various formulations) have been considered in [3, 8, 14, 26, 28, 29, 30].

Sturm-Liouville spectral problems with potentials depending on the spectral pa-
rameter arise in various models quantum and classical mechanics. There λ2 is
related to the energy of the system, this explaining the term “energy-dependent”
in (1.5). The non-linear dependence of equation (1.5) on the spectral parame-
ter λ should be regarded as a spectral problem for a quadratic operator pencil.
The inverse spectral and nodal problems for energy-dependent Schrödinger oper-
ators with p(x) ∈ W 1

2 (0, 1) and q(x) ∈ L2[0, 1] and with Robin boundary condi-
tions was discussed in [4], [10]. Such problems for separated and nonseparated
boundary conditions were considered (see [1, 9, 32] and the references therein).
The inverse scattering problem for equation (1.5) with eigenparameter-dependent
boundary condition on the half line solved in [17].

In this article we obtain some results on inverse spectral and inverse nodal prob-
lems and establish connections between them.

2. Inverse spectral problems

In this section we study so-called incomplete inverse problem of recovering the
potential q(x) from a part of the spectrum BVP L. The technique employed is
similar to those used in [11, 25]. Similar problems for the Sturm-Liouville and
Dirac operators were formulated and studied in [22, 23].

Let y(x) and z(x) be continuously differentiable functions on the intervals (0, π/2)
and (π/2, π). Denote 〈y, z〉 := yz′− y′z. If y(x) and z(x) satisfy the matching con-
ditions (1.3), then

〈y, z〉x=π
2−0 = 〈y, z〉x=π

2 +0 (2.1)

i.e. the function 〈y, z〉 is continuous on (0, π).
Let ϕ(x, λ) be solution of equation (1.1) satisfying the initial conditions ϕ(0, λ) =

0, ϕ′(0, λ) = 1 and the matching condition (1.3). Then U(ϕ) = 0. Denote

∆(λ) := −V (ϕ) = −ϕ′(π, λ). (2.2)

By (2.1) and the Liouville’s formula (see [6, p.83]), ∆(λ) does not depend on x.
The function ∆(λ) is called characteristic function on L.

Lemma 2.1. The eigenvalues of the BVP L are real, nonzero and simple.

Proof. Suppose that λ is an eigenvalue BVP L and that y(x, λ) is a corresponding
eigenfunction such that

∫ π
0
|y(x, λ)|2dx = 1. Multiplying both sides of (1.1) by

y(x, λ) and integrate the result with respect to x from 0 to π:

−
∫ π

0

y′′(x, λ)y(x, λ)dx+
∫ π

0

q(x)|y(x, λ)|2dx = λ2

∫ π

0

|y(x, λ)|2dx (2.3)

Using the formula of integration by parts and the conditions (1.2) and (1.3) we
obtain ∫ π

0

y′′(x, λ)y(x, λ)dx = −2αλ|y(0, λ)|2 −
∫ π

0

|y′(x, λ)|2dx.
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It follows from this and (2.3) that

λ2 +B(λ)λ+ C(λ) = 0, (2.4)

where

B(λ) = −2α.|y(0, λ)|2,

C(λ) = −
∫ π

0

q(x)|y(x, λ)|2dx−
∫ π

0

|y′(x, λ)|2dx.

Thus the eigenvalue λ of the BVP L is a root of the quadratic equation (2.4).
Therefore, B2(λ) − 4C(λ) > 0. Consequently, the equation (2.4) has only real
roots.

Let us show that λ0 is a simple eigenvalue. Assume that this is not true. Suppose
that y1(x) and y2(x) are linearly independent eigenfunctions corresponding to the
eigenvalue λ0. Then for a given value of λ0, each solution y0(x) of (1.5) will be
given as linear combination of solutions y1(x) and y2(x). Moreover it will satisfy
boundary conditions (1.2) and conditions (1.3) at the point x = π/2. However it is
impossible. �

Lemma 2.2. The BVP L has a countable set of eigenvalues {λn}n≥1. Moreover,
as n→∞,

λn := n− θ

π
+

1
2(πn− θ)

(w0 + (−1)n−1w1) + o(
1
n

), (2.5)

where

tan θ =
1
α
, w0 =

∫ π

0

q(t)dt, w1 =
α√

1 + α2

(∫ π/2

0

q(t)dt−
∫ π

π/2

q(t)dt
)
. (2.6)

Proof. Let τ := Imλ. For |λ| → ∞ uniformly in x one has (see [31, Chapter 1])

ϕ(x, λ) =
sinλx
λ
− cosλx

2λ2

∫ x

0

q(t)dt+ o
( 1
λ2

exp(|τ |x)
)
, x <

π

2
, (2.7)

ϕ(x, λ)

=
1
λ

(√
1 + α2 cos(λx+ θ) + α cosλ(π − x)

)
+
√

1 + α2
sin(λx+ θ)

2λ2

∫ x

0

q(t)dt

+ α
sinλ(π − x)

2λ2

(∫ π/2

0

q(t)dt−
∫ x

π/2

q(t)dt
)

+ o
( 1
λ2

exp(|τ |x)
)
, x >

π

2
(2.8)

ϕ′(x, λ) = cosλx+
sinλx

2λ

∫ x

0

q(t)dt+ o
( 1
λ

exp(|τ |x)
)
, x <

π

2
(2.9)

ϕ′(x, λ)

= −
√

1 + α2 sin(λx+ θ) + α sinλ(π − x) +
√

1 + α2
cos(λx+ θ)

2λ

∫ x

0

q(t)dt

− αcosλ(π − x)
2λ

(∫ π/2

0

q(t)dt−
∫ x

π/2

q(t)dt
)

+ o
( 1
λ

exp(|τ |x)
)
, x >

π

2
(2.10)
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It follows from (2.10) that as |λ| → ∞

∆(λ) =
√

1 + α2 sin(λπ + θ)−
√

1 + α2
cos(λπ + θ)

2λ

∫ π

0

q(t)dt

+
α

2λ

(∫ π/2

0

q(t)dt−
∫ π

π/2

q(t)dt
)

+ o
( 1
λ

exp(|τ |x)
)
.

(2.11)

Using (2.11) and Rouché’s theorem, by the well-known method (see [7]) one has
that as n→∞,

λn := n− θ

π
+

1
2(πn− θ)

(w0 + (−1)n−1w1) + o(
1
n

).

�

Together with L we consider a BVP L̃ = L̃(q̃, α) of the same form but with
different coefficient q̃. The following theorem has been proved in [13] for the Sturm-
Liouville equation. We show it also holds for (1.1)-(1.3).

Theorem 2.3. If for any n ∈ N ∪ {0},

λn = λ̃n, 〈yn, ỹn〉x=π
2−0 = 0,

then q(x) = q̃(x) almost everywhere (a.e) on (0, π).

Proof. Since

−y′′(x, λ) + q(x)y(x, λ) = λ2y(x, λ), −ỹ′′(x, λ) + q̃(x)ỹ(x, λ) = λ2ỹ(x, λ),

y(0, λ) = 0, y′(0, λ) = 1, ỹ(0, λ) = 0, ỹ′(0, λ) = 1,

it follows from (2.1) that∫ π/2

0

r(x)y(x, λ)ỹ(x, λ)dx = 〈y, ỹ〉x=π
2−0 (2.12)

where r(x) = q(x)− q̃(x). Since 〈yn, ỹn〉x=π
2−0 = 0 for n ∈ N ∪ {0}, it follows from

(2.12) that ∫ π/2

0

r(x)y(x, λn)ỹ(x, λn)dx = 0, n ∈ N ∪ {0}. (2.13)

For x ≤ π/2 the following representation holds (see [16, 19]);

y(x, λ) =
sinλx
λ

+
∫ x

0

K(x, t)
sinλx
λ

dt,

where K(x, t) is a continuous function which does not depend on λ. Hence

2λ2y(x, λ)ỹ(x, λ) = 1− cos 2λx−
∫ x

0

V (x, t) cos 2λtdt, (2.14)

where V (x, t) is a continuous function which does not depend on λ. Substituting
(2.14) into (2.13) and taking the relation (1.4) into account, we calculate∫ π/2

0

(
r(x) +

∫ π/2

x

V (t, x)r(x)dt
)

cos 2λnxdx = 0, n ∈ N ∪ {0},

which implies from the completeness of the function cosine, that

r(x) +
∫ π/2

x

V (t, x)r(x)dt = 0 a.e. on [0,
π

2
].
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But this equation is a homogeneous Volterra integral equation and has only the
zero solution, it follows that r(x) = 0 a.e. on [0, π2 ]. To prove that q(x) = q̃(x) a.e.
on [π/2, π] we will consider the supplementary problem L̂;

−y′′(x, λ) + q1(x)y(x, λ) = λ2y(x, λ), q1(x) = q(π − x), 0 < x <
π

2
,

U(y) := y(0, λ) = 0,

y(
π

2
+ 0, λ) = y(

π

2
− 0, λ), y′(

π

2
+ 0, λ)− y′(π

2
− 0) = 2αλy(

π

2
− 0, λ).

It follows from (2.1) that 〈yn, ỹn〉x=π
2 +0 = 0. A direct calculation implies that

ỹn(x) := yn(π − x) is the solution to the supplementary problem L̂, the L̂ and
ỹn(π2 − 0) = yn(π2 + 0). Thus for the supplementary problem L̂ the assumption
conditions in Theorem 2.3 are still satisfied. If we repeat the above arguments then
yields r(π − x) = 0 and 0 < x < π/2, that is q(x) = q̃(x) a.e. on [π/2, π]. �

3. Inverse nodal problems

In this section, we obtain uniqueness theorems and a procedure of recovering the
potential q(x) on the whole interval (0, π) from a dense subset of nodal points.

The eigenfunctions of the BVP L have the form yn(x) = ϕ(x, λn). We note that
yn(x) are real-valued functions. Substituting (2.5) into (2.7) and (2.8) we obtain
the following asymptotic formulae for n→∞ uniformly in x:

λnyn(x) = sin(n− θ

π
)x+

1
2(πn− θ)

(
− π

∫ x

0

q(t)dt+ (w0 + (−1)n−1w1)x
)

× cos(n− θ

π
)x+ o(

1
n

), x <
π

2
(3.1)

λnyn(x)

= cos((n− θ

π
)x+ θ)[

√
1 + α2 + (−1)nα]

+
1

2(πn− θ)

[
π
√

1 + α2

∫ x

0

q(t)dt+ (−1)n−1απ
(∫ π/2

0

q(t)dt−
∫ x

π/2

q(t)dt
)

− (
√

1 + α2x+ (−1)n−1α(π − x))(w0 + (−1)n−1w1)
]

× sin((n− θ

π
)x+ θ) + o(

1
n

), x >
π

2
.

(3.2)

For the BVP L an analog of Sturm’s oscillation theorem is true. More precisely,
the eigenfunction yn(x) has exactly (n−1) (simple) zeros inside the interval (0, π) :
0 < x1

n < x2
n < · · · < xn−1

n < π. The set XL := {xjn}n≥2, j=1,n−1 is called
the set of nodal points of the BVP L. Denote Xk

L := {xj2m−k}m≥1,j=1,2m−k−1,
k = 0, 1. Clearly, X0

L ∪ X1
L = XL. Denote µ0

n := 0, µnn := 1, µjn := j
πn−θπ

2,

γjn := µjn − π2+2θπ
2(πn−θ) , j = 1, n− 1.

Inverse nodal problems consist in recovering the problem q(x) from the given set
XL of nodal points or from a certain part.

Taking (3.1)-(3.2) into account, we obtain the following asymptotic formulae for
nodal points as n→∞ uniformly in j:
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for xjn ∈ (0, π2 ):

xjn = µjn +
π

2(πn− θ)2

(
π

µjn∫
0

q(t)dt− (w0 + (−1)nw1)µjn
)

+ o(
1
n2

), (3.3)

for xjn ∈ (π2 , π):

xjn = γjn +
π

2(πn− θ)2

[
π

∫ γjn

0

q(t)dt− ((w0 + (−1)n−1w1)γjn + dk)
]

+ o(
1
n2

), (3.4)

where k = 0 when n is odd and k = 1 when n is even in dk, and

dk = (
√

1 + α2+(−1)n−1α)
[
2(−1)n−1απ

∫ π/2

0

q(t)dt+(−1)nαπ(w0+(−1)n−1w1)
]
.

(3.5)
Using these formulae we arrive at the following assertion.

Theorem 3.1. Fix k ∈ {0, 1} and x ∈ [0, π]. Let {xjn} ⊂ Xk
L be chosen such that

limn→∞ xjn = x. Then there exists a finite limit

gk(x) := lim
n→∞

2(πn− θ)
π

[
(πn− θ)xjn −

{
jπ, if xjn ∈ (0, π2 )
(j + 1

2 )π + θ, if xjn ∈ (π2 , π)

]
, (3.6)

and

gk(x) =
∫ x

0

q(t)dt− w0 + (−1)k−1w1

π
x, x ≤ π

2
, (3.7)

gk(x) =
∫ x

0

q(t)dt− w0 + (−1)k−1w1

π
x+ dk, x ≥ π

2

where d0 and d1 are defined by (3.5).

Let us now formulate a uniqueness theorem and provide a constructive procedure
for the solution of the inverse nodal problem.

Theorem 3.2. Fix k = 0 ∨ 1. Let X ⊂ Xk
L be a subset of nodal points which is

dense on (0, π). Let X = X̃. Then q(x) = q̃(x) a.e. on (0, π), α = α̃. Thus the
specification of X uniquely determines the potential q(x) on (0, π) and the number
α. The function q(x) and the number α can be constructed via the formulae

q(x) = g′k(x) +
1
π

(gk(π)− gk(0)), (3.8)

α =
[(2gk(π) + 4gk(π2 )− 6gk(0)

π(g′0(x)− g′1(x))

)2

− 1
]−2

(3.9)

where gk(x) is calculated by (3.7).

Proof. Formulae (3.8), (3.9) follow from (3.7), (1.4) and (2.6). Note that by (3.7),
we have

g′k(x) = q(x)− w0 + (−1)kw1

π
, x ∈ (0,

π

2
) ∪ (

π

2
, π), (3.10)

hence

gk(π)− gk(0) =
∫ π

0

q(x)dx− (w0 + (−1)n−1w1), w1 =
π

2
[g′0(x)− g′1(x)] . (3.11)
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Then (3.8) can be derived directly from (3.10) and (3.11). Similarly, we can derive
(3.9). Note that if X = X̃, then (3.6) yields qk(x) ≡ q̃k(x), x ∈ [0, π]. By (3.8)
(3.9), we obtain qk(x) = q̃k(x) a.e. on (0, π), α = α̃. �

4. Stability of inverse problem for operator L

Finally, we also solve the stability problem. Stability is about a continuity be-
tween two metric spaces. To show this continuity, we use a homeomorphism between
these two spaces. These type stability problems were studied in [15, 18, 21, 30].

Definition 4.1. (i) Let N′ = N\{1}. We denote

Ω :=
{
q ∈ L1(0, π) :

∫ π

0

q(x)dx = 0
}
,

Σ := the collection of all double sequences X, where

X :=
{
xjn : j = 1, n− 1;n ∈ N′

}
such that 0 < x1

n < x2
n < · · · < xk−1

n < xkn <
π
2 < xk+1

n < · · · < xn−1
n < π for each

n.
We call Ω the space of discontinuous Sturm-Liouville operators and Σ the space

of all admissible sequences. Hence, when X is the nodal set associated with (q, α)
and X is close to X in Σ, then (q, α) is close to (q, α).

(ii) Let X ∈ Σ and define x0
n = 0, xnn = 1, Ljn = xj+1

n − xjn and Ijn = (xjn, x
j+1
n )

for j = 0, n− 1. Note that, L0
n = x1

n and Ln−1
n = π−xn−1

n . We say X is quasinodal
to some q ∈ Ω if X is an admissible sequence and satisfies the conditions:

(I) As n→∞ the limit of

(πn− θ)
[
(πn− θ)xjn −

{
jπ, if xjn ∈ (0, π2 )
(j + 1

2 )π + θ, if xjn ∈ (π2 , π)

]
exists in R for all j = 1, n− 1;

(II) X has the following asymptotic uniformity for j as n→∞,

xjn =

{
µjn +O( 1

n2 ), if xjn ∈ (0, π2 )

γjn +O( 1
n2 ), if xjn ∈ (π2 , π)

for j = 1, n− 1.

Definition 4.2. Suppose that X, X ∈ Σ with Lnk and L
n

k as their respective grid
lengths. Let

Sn(X,X) = (πn− θ)2
n−1∑
k=1

|Lnk − L
n

k |

and d0(X,X) = lim supn→∞ Sn(X,X) and dΣ(X,X) = lim supn→∞
Sn(X,X)

1+Sn(X,X)
.

Since the function f(x) = x
1+x is monotonic, we have

dΣ(X,X) =
d0(X,X)

1 + d0(X,X)
∈ [0, π],

admitting that if d0(X,X) =∞, then dΣ(X,X) = 1. Conversely,

d0(X,X) =
dΣ(X,X)

1− dΣ(X,X)
.
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After the following theorem, we can say that inverse nodal problem for operator
L is stable.

Theorem 4.3. The matric spaces (Ω, ‖ · ‖1) and (Σ/ ∼, dΣ) are homeomorphic to
each other. Here, ∼ is the equivalence relation induced by dΣ. Furthermore

‖q − q‖1 =
2dΣ(X,X)

1− dΣ(X,X)
,

where dΣ(X,X) < 1.

Proof. According to Theorem 3.2, using the definition of norm on L1 for the po-
tential functions, we obtain

‖q − q‖1 ≤ 2(n− θ

π
)3

∫ π

0

|Ljn − L
j

n|dx+ o(1)

≤ 2(n− θ

π
)3

π∫
0

|Ljn − L
j

n|dx+ 2(n− θ

π
)3

∫ π

0

|Ljn − L
j

n|dx+ o(1)
(4.1)

Here, the integrals in the second and first terms can be written as∫ π

0

|Ljn − L
j

n|dx = o(
1
n3

)

and ∫ π

0

|Ljn − L
j

n|dx =
1

(πn− θ)

n−1∑
k=1

|Lnk − L
n

k |,

respectively. If we consider these equalities in (4.1), we obtain

‖q − q‖1 ≤ 2(πn− θ)2
n−1∑
k=1

|Lnk − L
n

k |+ o(1) = 2Sn(X,X) + o(1). (4.2)

Similarly, we can easily obtain

‖q − q‖1 ≥ 2Sn(X,X) + o(1) (4.3)

The proof is complete after by taking limits in (4.2) and (4.3) as n→∞. �
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