Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 26, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

INVERSE SPECTRAL AND INVERSE NODAL PROBLEMS FOR ENERGY-DEPENDENT STURM-LIOUVILLE EQUATIONS WITH $\delta\text{-INTERACTION}$

MANAF DZH. MANAFOV, ABDULLAH KABLAN

In memory of M. G. Gasymov

ABSTRACT. In this article, we study the inverse spectral and inverse nodal problems for energy-dependent Sturm-Liouville equations with δ -interaction. We obtain uniqueness, reconstruction and stability using the nodal set of eigenfunctions for the given problem.

1. INTRODUCTION

We consider the boundary value problem (BVP) generated by the differential equation

$$-y'' + q(x)y = \lambda^2 y, \quad x \in (0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi)$$
(1.1)

with the boundary conditions

$$U(y) := y(0) = 0, \quad V(y) := y'(\pi) = 0$$
(1.2)

and at the point $x = \frac{\pi}{2}$ satisfying

$$y(\frac{\pi}{2}+0) = y(\frac{\pi}{2}-0) = y(\frac{\pi}{2}),$$

$$y'(\frac{\pi}{2}+0) - y'(\frac{\pi}{2}-0) = 2\alpha\lambda y(\frac{\pi}{2})$$
(1.3)

where q(x) is a nonnegative real valued function in $L_2(0,\pi)$, $\alpha \neq \pm 1$ is real number and λ is spectral parameter. Without loss of generality we assume that

$$\int_0^{\pi} q(x)dx = 0.$$
 (1.4)

We denote the BVP (1.1), (1.2) and (1.3) by $L = L(q, \alpha)$.

Notice that, we can understand problem (1.1) and (1.3) as studying the equation

$$y'' + (\lambda^2 - 2\lambda p(x) - q(x))y = 0, \quad x \in (0, \pi)$$
(1.5)

when $p(x) = \alpha \delta(x - \frac{\pi}{2})$, where $\delta(x)$ is the Dirac function (see [2]).

²⁰⁰⁰ Mathematics Subject Classification. 34A55, 34B24, 34L05, 47E05.

Key words and phrases. Energy-dependent Sturm-Liouville equations;

inverse spectral and inverse nodal problems; point δ -interaction.

^{©2015} Texas State University - San Marcos.

Submitted March 19, 2014. Published January 28, 2015.

We consider the inverse problems of recovering q(x) and α from the given spectral and nodal characteristics. Such problems play an important role in mathematics and have many applications in natural sciences (see, for example, monographs [7, 16, 19, 24]). Inverse nodal problems consist in constructing operators from the given nodes (zeros) of eigenfunctions (see [5, 12, 15, 20, 27]). Discontinuous inverse problems (in various formulations) have been considered in [3, 8, 14, 26, 28, 29, 30].

Sturm-Liouville spectral problems with potentials depending on the spectral parameter arise in various models quantum and classical mechanics. There λ^2 is related to the energy of the system, this explaining the term "energy-dependent" in (1.5). The non-linear dependence of equation (1.5) on the spectral parameter λ should be regarded as a spectral problem for a quadratic operator pencil. The inverse spectral and nodal problems for energy-dependent Schrödinger operators with $p(x) \in W_2^1(0,1)$ and $q(x) \in L_2[0,1]$ and with Robin boundary conditions was discussed in [4], [10]. Such problems for separated and nonseparated boundary conditions were considered (see [1, 9, 32] and the references therein). The inverse scattering problem for equation (1.5) with eigenparameter-dependent boundary condition on the half line solved in [17].

In this article we obtain some results on inverse spectral and inverse nodal problems and establish connections between them.

2. Inverse spectral problems

In this section we study so-called incomplete inverse problem of recovering the potential q(x) from a part of the spectrum BVP *L*. The technique employed is similar to those used in [11, 25]. Similar problems for the Sturm-Liouville and Dirac operators were formulated and studied in [22, 23].

Let y(x) and z(x) be continuously differentiable functions on the intervals $(0, \pi/2)$ and $(\pi/2, \pi)$. Denote $\langle y, z \rangle := yz' - y'z$. If y(x) and z(x) satisfy the matching conditions (1.3), then

$$\langle y, z \rangle_{x=\frac{\pi}{2}-0} = \langle y, z \rangle_{x=\frac{\pi}{2}+0} \tag{2.1}$$

i.e. the function $\langle y, z \rangle$ is continuous on $(0, \pi)$.

Let $\varphi(x, \lambda)$ be solution of equation (1.1) satisfying the initial conditions $\varphi(0, \lambda) = 0$, $\varphi'(0, \lambda) = 1$ and the matching condition (1.3). Then $U(\varphi) = 0$. Denote

$$\Delta(\lambda) := -V(\varphi) = -\varphi'(\pi, \lambda).$$
(2.2)

By (2.1) and the Liouville's formula (see [6, p.83]), $\Delta(\lambda)$ does not depend on x. The function $\Delta(\lambda)$ is called characteristic function on L.

Lemma 2.1. The eigenvalues of the BVP L are real, nonzero and simple.

Proof. Suppose that λ is an eigenvalue BVP L and that $y(x, \lambda)$ is a corresponding eigenfunction such that $\int_0^{\pi} |y(x, \lambda)|^2 dx = 1$. Multiplying both sides of (1.1) by $\overline{y(x, \lambda)}$ and integrate the result with respect to x from 0 to π :

$$-\int_0^{\pi} y''(x,\lambda)\overline{y(x,\lambda)}dx + \int_0^{\pi} q(x)|y(x,\lambda)|^2 dx = \lambda^2 \int_0^{\pi} |y(x,\lambda)|^2 dx \qquad (2.3)$$

Using the formula of integration by parts and the conditions (1.2) and (1.3) we obtain

$$\int_0^{\pi} y''(x,\lambda)\overline{y(x,\lambda)}dx = -2\alpha\lambda|y(0,\lambda)|^2 - \int_0^{\pi} |y'(x,\lambda)|^2 dx.$$

 $\mathbf{2}$

$$\lambda^2 + B(\lambda)\lambda + C(\lambda) = 0, \qquad (2.4)$$

where

$$B(\lambda) = -2\alpha |y(0,\lambda)|^2,$$

$$C(\lambda) = -\int_0^{\pi} q(x)|y(x,\lambda)|^2 dx - \int_0^{\pi} |y'(x,\lambda)|^2 dx.$$

Thus the eigenvalue λ of the BVP L is a root of the quadratic equation (2.4). Therefore, $B^2(\lambda) - 4C(\lambda) > 0$. Consequently, the equation (2.4) has only real roots.

Let us show that λ_0 is a simple eigenvalue. Assume that this is not true. Suppose that $y_1(x)$ and $y_2(x)$ are linearly independent eigenfunctions corresponding to the eigenvalue λ_0 . Then for a given value of λ_0 , each solution $y_0(x)$ of (1.5) will be given as linear combination of solutions $y_1(x)$ and $y_2(x)$. Moreover it will satisfy boundary conditions (1.2) and conditions (1.3) at the point $x = \pi/2$. However it is impossible.

Lemma 2.2. The BVP L has a countable set of eigenvalues $\{\lambda_n\}_{n\geq 1}$. Moreover, as $n \to \infty$,

$$\lambda_n := n - \frac{\theta}{\pi} + \frac{1}{2(\pi n - \theta)} (w_0 + (-1)^{n-1} w_1) + o(\frac{1}{n}), \qquad (2.5)$$

where

$$\tan \theta = \frac{1}{\alpha}, \quad w_0 = \int_0^{\pi} q(t)dt, \quad w_1 = \frac{\alpha}{\sqrt{1+\alpha^2}} \Big(\int_0^{\pi/2} q(t)dt - \int_{\pi/2}^{\pi} q(t)dt\Big).$$
(2.6)

Proof. Let $\tau := \text{Im } \lambda$. For $|\lambda| \to \infty$ uniformly in x one has (see [31, Chapter 1])

$$\varphi(x,\lambda) = \frac{\sin\lambda x}{\lambda} - \frac{\cos\lambda x}{2\lambda^2} \int_0^x q(t)dt + o\left(\frac{1}{\lambda^2}\exp(|\tau|x)\right), \quad x < \frac{\pi}{2}, \tag{2.7}$$
$$\varphi(x,\lambda)$$

$$= \frac{1}{\lambda} \Big(\sqrt{1+\alpha^2} \cos(\lambda x+\theta) + \alpha \cos\lambda(\pi-x) \Big) + \sqrt{1+\alpha^2} \frac{\sin(\lambda x+\theta)}{2\lambda^2} \int_0^x q(t) dt \\ + \alpha \frac{\sin\lambda(\pi-x)}{2\lambda^2} \Big(\int_0^{\pi/2} q(t) dt - \int_{\pi/2}^x q(t) dt \Big) + o\Big(\frac{1}{\lambda^2} \exp(|\tau|x)\Big), \quad x > \frac{\pi}{2}$$
(2.8)

$$\varphi'(x,\lambda) = \cos\lambda x + \frac{\sin\lambda x}{2\lambda} \int_0^x q(t)dt + o\left(\frac{1}{\lambda}\exp(|\tau|x)\right), \quad x < \frac{\pi}{2}$$
(2.9)
$$\varphi'(x,\lambda)$$

$$= -\sqrt{1+\alpha^2}\sin(\lambda x+\theta) + \alpha\sin\lambda(\pi-x) + \sqrt{1+\alpha^2}\frac{\cos(\lambda x+\theta)}{2\lambda}\int_0^x q(t)dt$$
$$-\alpha\frac{\cos\lambda(\pi-x)}{2\lambda}\Big(\int_0^{\pi/2}q(t)dt - \int_{\pi/2}^x q(t)dt\Big) + o\Big(\frac{1}{\lambda}\exp(|\tau|x)\Big), \quad x > \frac{\pi}{2}$$
(2.10)

It follows from (2.10) that as $|\lambda| \to \infty$

$$\Delta(\lambda) = \sqrt{1 + \alpha^2} \sin(\lambda \pi + \theta) - \sqrt{1 + \alpha^2} \frac{\cos(\lambda \pi + \theta)}{2\lambda} \int_0^{\pi} q(t) dt + \frac{\alpha}{2\lambda} \Big(\int_0^{\pi/2} q(t) dt - \int_{\pi/2}^{\pi} q(t) dt \Big) + o\Big(\frac{1}{\lambda} \exp(|\tau|x)\Big).$$
(2.11)

Using (2.11) and Rouché's theorem, by the well-known method (see [7]) one has that as $n \to \infty$,

$$\lambda_n := n - \frac{\theta}{\pi} + \frac{1}{2(\pi n - \theta)} (w_0 + (-1)^{n-1} w_1) + o(\frac{1}{n}).$$

Together with L we consider a BVP $\tilde{L} = \tilde{L}(\tilde{q}, \alpha)$ of the same form but with different coefficient \tilde{q} . The following theorem has been proved in [13] for the Sturm-Liouville equation. We show it also holds for (1.1)-(1.3).

Theorem 2.3. If for any $n \in \mathbb{N} \cup \{0\}$,

$$\lambda_n = \tilde{\lambda}_n, \quad \langle y_n, \tilde{y}_n \rangle_{x = \frac{\pi}{2} - 0} = 0,$$

then $q(x) = \tilde{q}(x)$ almost everywhere (a.e) on $(0, \pi)$.

Proof. Since

$$\begin{aligned} -y''(x,\lambda) + q(x)y(x,\lambda) &= \lambda^2 y(x,\lambda), \quad -\tilde{y}''(x,\lambda) + \tilde{q}(x)\tilde{y}(x,\lambda) = \lambda^2 \tilde{y}(x,\lambda), \\ y(0,\lambda) &= 0, \quad y'(0,\lambda) = 1, \quad \tilde{y}(0,\lambda) = 0, \quad \tilde{y}'(0,\lambda) = 1, \end{aligned}$$

it follows from (2.1) that

$$\int_0^{\pi/2} r(x)y(x,\lambda)\tilde{y}(x,\lambda)dx = \langle y,\tilde{y}\rangle_{x=\frac{\pi}{2}-0}$$
(2.12)

where $r(x) = q(x) - \tilde{q}(x)$. Since $\langle y_n, \tilde{y}_n \rangle_{x=\frac{\pi}{2}-0} = 0$ for $n \in \mathbb{N} \cup \{0\}$, it follows from (2.12) that

$$\int_{0}^{\pi/2} r(x)y(x,\lambda_n)\tilde{y}(x,\lambda_n)dx = 0, \quad n \in \mathbb{N} \cup \{0\}.$$
(2.13)

For $x \leq \pi/2$ the following representation holds (see [16, 19]);

$$y(x,\lambda) = \frac{\sin \lambda x}{\lambda} + \int_0^x K(x,t) \frac{\sin \lambda x}{\lambda} dt,$$

where K(x,t) is a continuous function which does not depend on λ . Hence

$$2\lambda^2 y(x,\lambda)\tilde{y}(x,\lambda) = 1 - \cos 2\lambda x - \int_0^x V(x,t) \cos 2\lambda t dt, \qquad (2.14)$$

where V(x,t) is a continuous function which does not depend on λ . Substituting (2.14) into (2.13) and taking the relation (1.4) into account, we calculate

$$\int_{0}^{\pi/2} \left(r(x) + \int_{x}^{\pi/2} V(t,x) r(x) dt \right) \cos 2\lambda_n x dx = 0, \quad n \in \mathbb{N} \cup \{0\},$$

which implies from the completeness of the function cosine, that

$$r(x) + \int_{x}^{\pi/2} V(t,x)r(x)dt = 0$$
 a.e. on $[0, \frac{\pi}{2}]$.

Ę

But this equation is a homogeneous Volterra integral equation and has only the zero solution, it follows that r(x) = 0 a.e. on $[0, \frac{\pi}{2}]$. To prove that $q(x) = \tilde{q}(x)$ a.e. on $[\pi/2, \pi]$ we will consider the supplementary problem \hat{L} ;

$$-y''(x,\lambda) + q_1(x)y(x,\lambda) = \lambda^2 y(x,\lambda), \quad q_1(x) = q(\pi - x), \quad 0 < x < \frac{\pi}{2},$$
$$U(y) := y(0,\lambda) = 0,$$
$$y(\frac{\pi}{2} + 0,\lambda) = y(\frac{\pi}{2} - 0,\lambda), \quad y'(\frac{\pi}{2} + 0,\lambda) - y'(\frac{\pi}{2} - 0) = 2\alpha\lambda y(\frac{\pi}{2} - 0,\lambda).$$

It follows from (2.1) that $\langle y_n, \tilde{y}_n \rangle_{x=\frac{\pi}{2}+0} = 0$. A direct calculation implies that $\tilde{y}_n(x) := y_n(\pi - x)$ is the solution to the supplementary problem \hat{L} , the \hat{L} and $\tilde{y}_n(\frac{\pi}{2}-0) = y_n(\frac{\pi}{2}+0)$. Thus for the supplementary problem \hat{L} the assumption conditions in Theorem 2.3 are still satisfied. If we repeat the above arguments then yields $r(\pi - x) = 0$ and $0 < x < \pi/2$, that is $q(x) = \tilde{q}(x)$ a.e. on $[\pi/2, \pi]$.

3. Inverse nodal problems

In this section, we obtain uniqueness theorems and a procedure of recovering the potential q(x) on the whole interval $(0, \pi)$ from a dense subset of nodal points.

The eigenfunctions of the BVP L have the form $y_n(x) = \varphi(x, \lambda_n)$. We note that $y_n(x)$ are real-valued functions. Substituting (2.5) into (2.7) and (2.8) we obtain the following asymptotic formulae for $n \to \infty$ uniformly in x:

$$\lambda_n y_n(x) = \sin(n - \frac{\theta}{\pi})x + \frac{1}{2(\pi n - \theta)} \Big(-\pi \int_0^x q(t)dt + (w_0 + (-1)^{n-1}w_1)x \Big) \\ \times \cos(n - \frac{\theta}{\pi})x + o(\frac{1}{n}), \quad x < \frac{\pi}{2}$$
(3.1)

 $\lambda_n y_n(x)$

$$= \cos((n - \frac{\theta}{\pi})x + \theta)[\sqrt{1 + \alpha^2} + (-1)^n \alpha] \\ + \frac{1}{2(\pi n - \theta)} \Big[\pi \sqrt{1 + \alpha^2} \int_0^x q(t)dt + (-1)^{n-1} \alpha \pi \Big(\int_0^{\pi/2} q(t)dt - \int_{\pi/2}^x q(t)dt \Big) \\ - (\sqrt{1 + \alpha^2}x + (-1)^{n-1} \alpha(\pi - x))(w_0 + (-1)^{n-1}w_1) \Big] \\ \times \sin((n - \frac{\theta}{\pi})x + \theta) + o(\frac{1}{n}), \quad x > \frac{\pi}{2}.$$
(3.2)

For the BVP *L* an analog of Sturm's oscillation theorem is true. More precisely, the eigenfunction $y_n(x)$ has exactly (n-1) (simple) zeros inside the interval $(0,\pi)$: $0 < x_n^1 < x_n^2 < \cdots < x_n^{n-1} < \pi$. The set $X_L := \{x_n^j\}_{n \ge 2, j = \overline{1, n-1}}$ is called the set of nodal points of the BVP *L*. Denote $X_L^k := \{x_{2m-k}^j\}_{m \ge 1, j=1, 2m-k-1}$, k = 0, 1. Clearly, $X_L^0 \cup X_L^1 = X_L$. Denote $\mu_n^0 := 0, \ \mu_n^n := 1, \ \mu_n^j := \frac{j}{\pi n - \theta} \pi^2$, $\gamma_n^j := \mu_n^j - \frac{\pi^2 + 2\theta\pi}{2(\pi n - \theta)}, \ j = \overline{1, n-1}$.

Inverse nodal problems consist in recovering the problem q(x) from the given set X_L of nodal points or from a certain part.

Taking (3.1)-(3.2) into account, we obtain the following asymptotic formulae for nodal points as $n \to \infty$ uniformly in j:

for $x_n^j \in (0, \frac{\pi}{2})$:

$$x_n^j = \mu_n^j + \frac{\pi}{2(\pi n - \theta)^2} \left(\pi \int_0^{\mu_n^j} q(t) dt - (w_0 + (-1)^n w_1) \mu_n^j \right) + o(\frac{1}{n^2}),$$
(3.3)

for $x_n^j \in (\frac{\pi}{2}, \pi)$:

$$x_n^j = \gamma_n^j + \frac{\pi}{2(\pi n - \theta)^2} \left[\pi \int_0^{\gamma_n^j} q(t) dt - ((w_0 + (-1)^{n-1} w_1) \gamma_n^j + d_k) \right] + o(\frac{1}{n^2}), \quad (3.4)$$

where k = 0 when n is odd and k = 1 when n is even in d_k , and

$$d_k = \left(\sqrt{1+\alpha^2} + (-1)^{n-1}\alpha\right) \left[2(-1)^{n-1}\alpha\pi \int_0^{\pi/2} q(t)dt + (-1)^n\alpha\pi(w_0 + (-1)^{n-1}w_1) \right].$$
(3.5)

Using these formulae we arrive at the following assertion.

Theorem 3.1. Fix $k \in \{0,1\}$ and $x \in [0,\pi]$. Let $\{x_n^j\} \subset X_L^k$ be chosen such that $\lim_{n\to\infty} x_n^j = x$. Then there exists a finite limit

$$g_k(x) := \lim_{n \to \infty} \frac{2(\pi n - \theta)}{\pi} \Big[(\pi n - \theta) x_n^j - \begin{cases} j\pi, & \text{if } x_n^j \in (0, \frac{\pi}{2}) \\ (j + \frac{1}{2})\pi + \theta, & \text{if } x_n^j \in (\frac{\pi}{2}, \pi) \end{cases} \Big], \quad (3.6)$$

and

$$g_k(x) = \int_0^x q(t)dt - \frac{w_0 + (-1)^{k-1}w_1}{\pi}x, \quad x \le \frac{\pi}{2},$$

$$g_k(x) = \int_0^x q(t)dt - \frac{w_0 + (-1)^{k-1}w_1}{\pi}x + d_k, \quad x \ge \frac{\pi}{2}$$
(3.7)

where d_0 and d_1 are defined by (3.5).

Let us now formulate a uniqueness theorem and provide a constructive procedure for the solution of the inverse nodal problem.

Theorem 3.2. Fix $k = 0 \vee 1$. Let $X \subset X_L^k$ be a subset of nodal points which is dense on $(0,\pi)$. Let $X = \tilde{X}$. Then $q(x) = \tilde{q}(x)$ a.e. on $(0,\pi)$, $\alpha = \tilde{\alpha}$. Thus the specification of X uniquely determines the potential q(x) on $(0,\pi)$ and the number α . The function q(x) and the number α can be constructed via the formulae

$$q(x) = g'_k(x) + \frac{1}{\pi}(g_k(\pi) - g_k(0)), \qquad (3.8)$$

$$\alpha = \left[\left(\frac{2g_k(\pi) + 4g_k(\frac{\pi}{2}) - 6g_k(0)}{\pi(g'_0(x) - g'_1(x))} \right)^2 - 1 \right]^{-2}$$
(3.9)

where $g_k(x)$ is calculated by (3.7).

Proof. Formulae (3.8), (3.9) follow from (3.7), (1.4) and (2.6). Note that by (3.7), we have

$$g'_k(x) = q(x) - \frac{w_0 + (-1)^k w_1}{\pi}, \quad x \in (0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi), \tag{3.10}$$

hence

$$g_k(\pi) - g_k(0) = \int_0^{\pi} q(x)dx - (w_0 + (-1)^{n-1}w_1), \quad w_1 = \frac{\pi}{2} \left[g'_0(x) - g'_1(x) \right].$$
(3.11)

Then (3.8) can be derived directly from (3.10) and (3.11). Similarly, we can derive (3.9). Note that if $X = \tilde{X}$, then (3.6) yields $q_k(x) \equiv \tilde{q}_k(x)$, $x \in [0, \pi]$. By (3.8) (3.9), we obtain $q_k(x) = \tilde{q}_k(x)$ a.e. on $(0, \pi)$, $\alpha = \tilde{\alpha}$.

4. Stability of inverse problem for operator L

Finally, we also solve the stability problem. Stability is about a continuity between two metric spaces. To show this continuity, we use a homeomorphism between these two spaces. These type stability problems were studied in [15, 18, 21, 30].

Definition 4.1. (i) Let $\mathbb{N}' = \mathbb{N} \setminus \{1\}$. We denote

$$\Omega := \left\{ q \in L_1(0,\pi) : \int_0^\pi q(x) dx = 0 \right\},\$$

 $\Sigma :=$ the collection of all double sequences X, where

$$X := \left\{ x_n^j : j = \overline{1, n-1}; n \in \mathbb{N}' \right\}$$

such that $0 < x_n^1 < x_n^2 < \dots < x_n^{k-1} < x_n^k < \frac{\pi}{2} < x_n^{k+1} < \dots < x_n^{n-1} < \pi$ for each n.

We call Ω the space of discontinuous Sturm-Liouville operators and Σ the space of all admissible sequences. Hence, when \overline{X} is the nodal set associated with (\overline{q}, α) and \overline{X} is close to X in Σ , then (\overline{q}, α) is close to (q, α) .

(ii) Let $X \in \Sigma$ and define $x_n^0 = 0$, $x_n^n = 1$, $L_n^j = x_n^{j+1} - x_n^j$ and $I_n^j = (x_n^j, x_n^{j+1})$ for $j = \overline{0, n-1}$. Note that, $L_n^0 = x_n^1$ and $L_n^{n-1} = \pi - x_n^{n-1}$. We say X is quasinodal to some $q \in \Omega$ if X is an admissible sequence and satisfies the conditions:

(I) As $n \to \infty$ the limit of

$$(\pi n - \theta) \Big[(\pi n - \theta) x_n^j - \begin{cases} j\pi, & \text{if } x_n^j \in (0, \frac{\pi}{2}) \\ (j + \frac{1}{2})\pi + \theta, & \text{if } x_n^j \in (\frac{\pi}{2}, \pi) \end{cases} \Big]$$

exists in \mathbb{R} for all $j = \overline{1, n-1}$;

(II) X has the following asymptotic uniformity for j as $n \to \infty$,

$$x_n^j = \begin{cases} \mu_n^j + O(\frac{1}{n^2}), & \text{if } x_n^j \in (0, \frac{\pi}{2}) \\ \gamma_n^j + O(\frac{1}{n^2}), & \text{if } x_n^j \in (\frac{\pi}{2}, \pi) \end{cases}$$

for $j = \overline{1, n-1}$.

Definition 4.2. Suppose that $X, \overline{X} \in \Sigma$ with L_k^n and \overline{L}_k^n as their respective grid lengths. Let

$$S_n(X,\overline{X}) = (\pi n - \theta)^2 \sum_{k=1}^{n-1} |L_k^n - \overline{L}_k^n|$$

and $d_0(X,\overline{X}) = \limsup_{n \to \infty} S_n(X,\overline{X})$ and $d_{\Sigma}(X,\overline{X}) = \limsup_{n \to \infty} \frac{S_n(X,\overline{X})}{1+S_n(X,\overline{X})}$.

Since the function $f(x) = \frac{x}{1+x}$ is monotonic, we have

$$d_{\Sigma}(X,\overline{X}) = \frac{d_0(X,X)}{1 + d_0(X,\overline{X})} \in [0,\pi],$$

admitting that if $d_0(X, \overline{X}) = \infty$, then $d_{\Sigma}(X, \overline{X}) = 1$. Conversely,

$$d_0(X,\overline{X}) = \frac{d_{\Sigma}(X,X)}{1 - d_{\Sigma}(X,\overline{X})}.$$

After the following theorem, we can say that inverse nodal problem for operator L is stable.

Theorem 4.3. The matric spaces $(\Omega, \|\cdot\|_1)$ and $(\Sigma/\sim, d_{\Sigma})$ are homeomorphic to each other. Here, \sim is the equivalence relation induced by d_{Σ} . Furthermore

$$\|q - \overline{q}\|_1 = \frac{2d_{\Sigma}(X, \overline{X})}{1 - d_{\Sigma}(X, \overline{X})},$$

where $d_{\Sigma}(X, \overline{X}) < 1$.

Proof. According to Theorem 3.2, using the definition of norm on L_1 for the potential functions, we obtain

$$\begin{aligned} \|q - \overline{q}\|_{1} &\leq 2(n - \frac{\theta}{\pi})^{3} \int_{0}^{\pi} |L_{n}^{j} - \overline{L}_{n}^{\overline{j}}| dx + o(1) \\ &\leq 2(n - \frac{\theta}{\pi})^{3} \int_{0}^{\pi} |L_{n}^{j} - \overline{L}_{n}^{j}| dx + 2(n - \frac{\theta}{\pi})^{3} \int_{0}^{\pi} |\overline{L}_{n}^{j} - \overline{L}_{n}^{\overline{j}}| dx + o(1) \end{aligned}$$

$$(4.1)$$

Here, the integrals in the second and first terms can be written as

$$\int_0^\pi |\overline{L}_n^j - \overline{L}_n^{\overline{j}}| dx = o(\frac{1}{n^3})$$

and

$$\int_0^{\pi} |L_n^j - \overline{L}_n^j| dx = \frac{1}{(\pi n - \theta)} \sum_{k=1}^{n-1} |L_k^n - \overline{L}_k^n|,$$

respectively. If we consider these equalities in (4.1), we obtain

$$\|q - \overline{q}\|_{1} \le 2(\pi n - \theta)^{2} \sum_{k=1}^{n-1} |L_{k}^{n} - \overline{L}_{k}^{n}| + o(1) = 2S_{n}(X, \overline{X}) + o(1).$$
(4.2)

Similarly, we can easily obtain

$$\|q - \overline{q}\|_1 \ge 2S_n(X, \overline{X}) + o(1) \tag{4.3}$$

The proof is complete after by taking limits in (4.2) and (4.3) as $n \to \infty$.

References

- Akhtyamov, A. M.; Sadovnichii, V. A.; Sultanaev, Y. T.; Inverse problem for an operator pencil with nonseparated boundary conditions. *Eurasian Mathematical Journal*, 1:2 (2010), 5-16.
- [2] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H.; (with an appendix by Exner, P.) Solvable Models in Quantum Mechanics (second edition), AMS Chelsea Publ., (2005).
- [3] Amirov, R. K.; On Sturm-Liouville operators with discontinuity conditions inside an interval. Journal of Mathematical Analysis and Applications, 317:1 (2006), 163-176.
- [4] Buterin, S. A.; Shieh, C. T.; Incomplete inverse spectral and nodal problems for differential pencils. *Results in Mathematics*, 62:1-2 (2012), 167-179.
- [5] Cheng, Y. H.; Law, C. K.; Tsay, J.; Remarks on a new inverse nodal problem. Journal of Mathematical Analysis and Applications, 248:1 (2000), 145-155.
- [6] Coddington, E. A.; Levinson, N.; Theory of Ordinary Differential Equations. McGraw-Hill, New York, (1955).
- [7] Freiling, G.; Yurko, V. A.; Inverse Sturm-Liouville Problems and Their Applications. New York, NOVA Science Publishers, (2001).
- [8] Freiling, G.; Yurko, V. A.; Inverse spectral problems for singular non-selfadjoint differential operators with discontinuities in an interior point. *Inverse Problems*, 18 (2002), 757-773.

- [9] Guseinov, I. M.; Nabiyev, I. M.; The inverse spectral problem for pencils of differential operators. Math. Sb., 198:11 (2007), 47-66; English transl., Sb. Math., 198:11 (2007), 1579-1598.
- [10] Gasymov, M. G.; Guseinov, G. Sh.; Determination of a diffusion operator from spectral data. Dokl. Akad. Nauk Azerb. SSR, 37:2 (1981), 19-23, (Russian).
- [11] Hochstadt, H.; Lieberman, B.; An inverse Sturm-Liouville problem with mixed given data, SIAM Journal on Applied Mathematics, 34:4 (1978), 676-680.
- [12] Hald, O. H.; McLaughlin, J. R.; Solutions of inverse nodal problems. *Inverse Problems*, 5 (1989), 307-347.
- [13] Horvath M.; Inverse spectral problems and closed exponential systems. Ann. of Math., 162 (2005), 885-918.
- [14] Hryniv, R. O.; Mykytyuk, Ya. V.; Inverse spectral problems for Sturm-Liouville operators with singular potentials. *Inverse Problems*, 19 (2003), 665-684.
- [15] Law, C. K.; Yang, C. F.; Reconstructing the potential function and its derivatives using nodal data. *Inverse Problems*, 14:2 (1998), 299-312.
- [16] Levitan, B, M.; Inverse Sturm-Liouville Problems. Nauka, Moscow (1984), English transl., VNU Science Press, Utrecht, (1987).
- [17] Manafov, M. D.; Kablan, A.; Inverse scattering problems for enegy-dependent Sturm-Liouville equations with point delta-interaction and eigenparameter-dependent boundary condition. *Electronic Journal of Differential Equations*, 237 (2013), 1-9.
- [18] Marchenko, V. A.; Maslov, K. V.; Stability of the problem of recovering the Sturm-Liouville operator from the spectral function. *Mat. Sb.* 81(123):4 (1970), 525-551; English transl., Math. of the USSR Sb. 10:4 (1970), 475-502.
- [19] Marchenko, V.A.; Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, (1977), English Transl.: Birkhöuser, (1986).
- [20] McLaughlin, J. R.; Inverse spectral theory using nodal points as data a uniqueness result. Journal of Differential Equations, 73:2 (1988), 354-362.
- [21] McLaughlin, J. R.; Stability theorems for two inverse spectral problems. *Inverse Problems*, 4(1988), 529-540.
- [22] Mochizuki, K., Trooshin, I.; Inverse problem for interior spectral data of the Sturm-Liouville operator. Journal of Inverse and Ill-Posed Problems, 9:4 (2001), 425-433.
- [23] Mochizuki, K., Trooshin, I.; Inverse problem for interior spectral data of the Dirac operator on a finite interval. *Publications of the Research Institute for Mathematical Sciences*, 38:2 (2002), 387-395.
- [24] Poschel, J.; Inverse Spectral Theory, Academic Press., New York, (1987).
- [25] Ramm, A. G.; Property C for ODE and applications to inverse problems. Operator Theory and Its Applications, Winnipeg, MB, (1998), Amer. Math. Soc., Fields Institute Communications, 25 (2000), 15-75.
- [26] Savchuk, A. M.; A mapping method in inverse Sturm-Liouville problems with singular potentials. Proceedings of the Steklov Institute of Mathematics, 261:1 (2008), 237-242.
- [27] Shen, C. L.; Chieh, C. T.; An inverse nodal problem for vectorial Sturm-Liouville equation. *Inverse Problems*, 14 (2000), 349-356.
- [28] Shepelsky, D. G.; The inverse problem of reconstruction of the medium's conductivity in a class of discontinuous and increasing functions. Spectral Operator Theory and Related Topics, Adv. Soviet Math., 19, Amer. Math. Soc., Providence, RI (1994), 209-232.
- [29] Shieh, C. T.; Yurko, V. A.; Inverse nodal and inverse spectral problems for discontinuous boundary value problems. *Journal of Mathematical Analysis and Applications*, 347:1 (2008), 266-272.
- [30] Yang, C. F.; Inverse nodal problems of discontinuous Sturm-Liouville operator. Journal of Differential Equations, 254:4 (2013), 1992-2014.
- [31] Yurko V. A.; Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-Posed Problems Series. VSP, Utrecht, (2002).
- [32] Yurko, V. A.; An inverse problem for pencils of differential operators. *Mat. Sb.*, 191:10 (2000), 137–160; English transl., Sb. Math., 191:10 (2000), 1561-1586.

Manaf Dzh. Manafov

Faculty of Arts and Sciences, Department of Mathematics, Adiyaman University, Adiyaman 02040, Turkey

 $E\text{-}mail\ address: \texttt{mmanafov@adiyaman.edu.tr}$

Abdullah Kablan

FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS, GAZIANTEP UNIVERSITY, GAZIANTEP 27310, TURKEY

E-mail address: kablan@gantep.edu.tr