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A SYSTEM OF SCHRÖDINGER EQUATIONS AND THE
OSCILLATOR REPRESENTATION

MARKUS HUNZIKER, MARK R. SEPANSKI, RONALD J. STANKE

Abstract. We construct a copy of the oscillator representation of the meta-
plectic group Mp(n) in the space of solutions to a system of Schrödinger type

equations on Rn × Sym(n, R) that has very simple intertwining maps to the

realizations given by Kashiwara and Vergne.

1. Introduction

Generalizing results from [23, 24] and using techniques similar to those found in
[16], this paper uses Lie symmetry analysis to study the system of partial differential
equations

4s∂tiif(x, t) + ∂2
xif(x, t) = 0, 1 ≤ i ≤ n,

2s∂tijf(x, t) + ∂xi∂xjf(x, t) = 0, 1 ≤ i < j ≤ n,
(1.1)

with s ∈ iR×. Here x = (xi) and t = (tij) are the standard coordinates on Rn and
the space of real symmetric matrices Sym(n,R), respectively. A brief statement of
some of the main results contained in this paper, without proofs, can be found in
[15].

A standard application of Lie’s prolongation method shows that the infinitesimal
symmetries of Equation (1.1) are the Jacobi Lie algebra g = sp(n,R)nh2n+1, where
sp(n,R) is the symplectic Lie algebra on R2n and h2n+1 is the (2n+ 1)-dimensional
Heisenberg Lie algebra, plus an infinite dimensional Lie algebra reflecting the fact
that Equation (1.1) is linear. It follows that the space of all complex-valued func-
tions f ∈ C∞(Rn × Sym(n,R)) satisfying (1.1) carries a representation of g.

While the g-action on C∞(Rn × Sym(n,R)) does not exponentiate to a global
action of the Jacobi group GJ = Sp(n,R)nH2n+1 or any cover group, we construct
canonical g-invariant subspaces I ′(q, r, s) ⊆ C∞(Rn × Sym(n,R)) such that the g-
action on I ′(q, r, s) does exponentiate to a global action of the group G = Mp(n) n
H2n+1, where Mp(n) is the metaplectic group, i.e., the double cover of Sp(n,R).
We then show that the space of solutions to (1.1) in I ′(q, r, s) gives a realization
of the oscillator representation (or its dual, depending on the sign of σ where
s = iσ) of Mp(n). In addition, we construct very simple intertwining maps to
two realizations of the oscillator representation given by Kashiwara and Vergne in
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[18]. One intertwining map is given by evaluation at t = 0 (followed by a Fourier
transform) and the other is given by either evaluation at x = 0 or application of a
gradient and then evaluation at x = 0.

For a thorough development of the history of the oscillator representation, ω,
often called the metaplectic or Segal-Shale-Weil representation, we refer the reader
to [4]. In this subsection, we content ourselves by reproducing some of the highlights
as we gave them in [15]:

From classical number theory, the invariance properties of Jacobi theta functions
[9] are found by lifting such functions to GJ . This lift, in turn, utilizes the oscillator
representation [5]. A complete treatment of theta functions appears in [17] and
many more results demonstrating the interplay between ω and aspects of number
theory can be found in [19, 20, 29].

The quantization procedure in theoretical physics associates classical geometric
systems to quantum mechanical systems and is very well studied [1, 12, 26, 27, 28,
30]. For example, the oscillator representation arises in quantum mechanics when
one quantizes a single particle structure [22]. The representation ω is constructed
and then used to establish results about the inducibility of a field automorphism
by a unitary operator in all quantizations [25]. Another application of ω appears in
quantum optics. In [2], the tensor product of ω with discrete series representations
of SU(1, 1) admits squeezed coherent states. The broader role that ω plays in
physics can be found in [7, 11].

In representation theory, the oscillator representation is used to construct other
important representations. For instance, the representations of GJ (n = 1) with
nontrivial central character are realized as products of representations of Mp(1) and
the oscillator representation [5]. In the well-known article [18], the k-fold tensor
product ⊗kω is decomposed into irreducible unitary representations. First conjec-
tured by Kashiwara and Vergne and later proved by Enright and Parthasarathy [8],
all irreducible unitary highest weight representations for which the Verma module
N(λ + ρ) is reducible (i.e., λ is a reduction point) are found in ⊗kω for some k.
In a similar vein, it is shown in [13] that every genuine discrete series representa-
tion of Mp(n) appears in (⊗kω) ⊗ (⊗mω∗), for some k and m. Finally, if F is a
finite field, irreducible representations of GL(2, F ) can be constructed by using the
Weil representation [6], the restriction of ω to SL(2, F ). For F a non-Archimedean
local field, the same is true of many supercuspidal irreducible representations of
GL(2, F ).

Given the manifold applications of ω, it may be helpful to identify some canonical
realizations. A standard realization of ω arises via the Stone-von Neumann theorem
as an intertwining operator between equivalent irreducible unitary representations
of H2n+1 on L2(Rn) ([10] and, in more generality, [29]). A second realization is
the Fock model, where ω is realized as an integral operator on a reproducing kernel
space. Motivated by Lie’s prolongation method ([21]), we induce from a subgroup
of G and use a system of Schrödinger type equations to find a subspace on which
the action irreducible. In [3], a reproducing space of holomorphic functions on
Sp(n,R)/U(n) × U(n) is shown to satisfy analogous differential equations (if one
replaces real with complex differentiation), but no unitary action on that space is
provided.

Now we turn to a more careful description of the results contained in this paper.
For a certain analogue of a parabolic subalgebra P of G (see §2.2), we begin with
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the induced representations

I(q, r, s) = IndG
P
χq,r,s

(see §2.3) where χq,r,s : P → C index certain characters of P with q ∈ Z (determined
only up to mod 4 when n is odd and up to mod 2 when n is even) and r, s ∈
C. Looking at the analogue to the noncompact picture provides a realization of
I(q, r, s), denoted

I ′(q, r, s) ⊆ C∞(Rn × Sym(n,R))

(see §4). We then look for solutions to Equation (1.1) inside I ′(q, r, s). With
appropriate parity and initial decay conditions, those solutions are denoted by D′±
(see Definition 5.3).

We show that this space of solutions to Equation (1.1) is invariant under G
precisely when r = −1/2 (Theorem 5.1). Moreover, when s is nonzero and purely
imaginary and with appropriate choice of q, the resulting representation is isomor-
phic to the oscillator representation or its dual, depending on the sign of σ. In the
case of the oscillator representation, this realization provides a kind of interpolation
between two famous realizations given by Kashiwara and Vergne in [18]. As noted
above, the intertwining maps are simply evaluation at t = 0 (followed by a Fourier
transform) and either evaluation at x = 0 or the application of a gradient and then
evaluation at x = 0.

To be a bit more precise, Kashiwara and Vergne give an embedding of the tensor
product of the oscillator representation into a subspace of sections of vector bundles
over the Siegel upper half-space, Hn, and also into a subspace of certain principal
series representations. For instance, in the very special case of the even part of
the oscillator representation realized on the even Schwartz functions, S+(Rn), they
construct the maps

I ′+ ⊆ C∞(Sym(n,R)) ←− F1←− ←− S+(Rn)
↖
BV

↙
F0

O(Hn)

where S(Rn) denotes the set of Schwartz functions on Rn, I ′+ denotes the image of
S+(Rn) under the map F1 = BV ◦F0 (with C∞(Sym(n,R)) being the noncompact
picture of a certain principal series representation of the metaplectic group Mp(n)),
and the maps are given by

(F0ψ)(Z) =
∫

Rn
ψ(ξ)e

i
2 ξZξ

T

dξ,

(BV Ψ)(t) = lim
Y→0+

Ψ(t+ iY ),

(F1ψ)(t) =
∫

Rn
ψ(ξ)e

i
2 ξtξ

T

dξ

where Rn is identified with M1×n(R), ψ ∈ S+(Rn), Z ∈ Hn, t ∈ Sym(n,R), Ψ ∈
Im(F0) ⊆ O(Hn), and limY→0+ denotes the limit as Y → 0 with Y ∈ Sym(n,R)
and Y > 0.

Turning to our realization, with the parameter choice of r = −1/2 and s = −2π2i,
we have a commutative diagram
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D′+
G
↙

E
↘

I ′+ ←− H←− ←− S+(Rn)

where

D′+ ⊆ C∞(Rn × Sym(n,R))

is the set of smooth solutions, f , satisfying the system of partial differential equa-
tions

i∂ti,jf =
1

4π2
∂xi∂xjf (for i 6= j)

i∂tiif =
1

8π2
∂2
xif

(1.2)

with f(·, t) ∈ S+(Rn) for each t ∈ Sym(n,R) and

I ′+ ⊆ C∞(Sym(n,R))

is a subspace of the noncompact picture of a certain principal series representa-
tion, see §2.3, that essentially consists of the set of Fourier transforms of Schwartz
functions pulled back as measures on

{
−yT y : y ∈ Rn

}
⊆ Sym(n,R) (see Corollary

7.4). The maps E and G are given by the particularly simple maps

(Ef)(x) = f̂(x, 0)

(with the Fourier transform given by f̂(ξ) =
∫

Rn f(x)e−2πiξxT dx) and

(Gf)(t) = f(0, t).

There is an explicit integral formula for E−1 given by

(E−1ψ)(x, t) =
∫

Rn
f(ξ)e

i
2 ξtξ

T

e2πiξx
T

dξ

which gives rise to a formula for H = F1. An inverse for G can be given by
viewing elements of I ′+ as tempered distributions on Sym(n,R), applying a Fourier
transform, and taking a limit using approximations to a δ-function (see the proof
of Theorem 7.2).

The highest weight vector in D′+ is given by the function f+ ∈ C∞(Rn ×
Sym(n,R)) defined as

f+(x, t) = det(In − it)−1/2e−2π2x(In−it)−1xT

(Theorem 8.1). The corresponding vector in I ′+ is

f+(0, t) = det(In − it)−1/2

and in S+(Rn) is

f̂+(ξ, 0) = (2π)−
n
2 e−

1
2‖ξ‖

2
.

Note that the choice of, say, s = 2π2i gives rise to the dual representation and
Schrödinger-like partial differential operators with lowest weight representations.
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The above commutative diagram fits on top of the Kashiwara-Vergne picture to
give the following commutative diagram.

D′+
G
↙

E
↘

I ′+ ←− H=F1←− ←− S+(Rn)
↖
BV

↙
F0

O(Hn)

There is a similar picture for the odd part of the oscillator representation that fits
in with the Kashiwara-Vergne realization in an analogous way. There our diagram
looks like

D′−
Gn
↙

E
↘

I ′− ←− Hn←− ←− S−(Rn)

S−(Rn) denotes the odd Schwartz functions,

D′− ⊆ C∞(Rn × Sym(n,R))

is the set of smooth solutions, f , satisfying the system of partial differential equa-
tions from Equation 1.2 with f(·, t) ∈ S−(Rn) for each t ∈ Sym(n,R) and

I ′− ⊆ C∞(Sym(n,R),Rn)

is a subspace of the noncompact picture of a certain principal series representation,
see §2.3 and Corollary 7.4. Here the maps are given by the same E ,

(Ef)(x) = f̂(x, 0),

and the related gradient to G,

(Gnf)(t) = ∇Rnf(0, t).

In this case,

(Hnf)(t) = ∇
(∫

Rn
f(ξ)e

i
2 ξtξ

T

e2πiξx
T

dξ
)
|x=0

= 2πi
(∫

Rn
ξ1f(ξ)e

i
2 ξtξ

T

dξ, . . . ,

∫
Rn
ξnf(ξ)e

i
2 ξtξ

T

dξ
)

and G−1
n can be recovered from certain Fourier transforms (Theorem 7.2).

The highest K-finite vectors of D′− consist of the functions fa given by

fa(x, t) = det(In − it)−1/2
(
x(In − it)−1aT

)
e−2π2x(In−it)−1xT

where a ∈ Cn (Theorem 6.3). The corresponding vector in I ′− is

∇fa(0, t) = det(In − it)−
1
2
(
a(In − it)−1

)
.

and in S+(Rn) is

f̂a(ξ, 0) = (2π)−
n
2 +1i(ξaT )e−

1
2‖ξ‖

2
.
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2. Notation

2.1. A Double Cover of the Jacobi Group. With respect to the standard

symplectic form Jn+1 =
(

0 −In+1

In+1 0

)
, let

g = sp(n+ 1,R) ∩
{( ∗

01×(2n+2)

)}
∼= sp(n,R) n h2n+1

where h2n+1 is the 2n+ 1 dimensional real Heisenberg Lie algebra. This is the Lie
algebra to the Jacobi group

GJ = Sp(n+ 1,R) ∩
{( ∗ ∗

01×(2n+1) 1

)}
∼= Sp(n,R) nH2n+1

where H2n+1 is the 2n+1 dimensional real Heisenberg Lie group. Of course, written
in n× 1× n× 1 block form, Sp(n,R) is embedded in GJ as

{
A 0 B 0
0 1 0 0
C 0 D 0
0 0 0 1

 : CTA = ATC, DTB = BTD, ATD − CTB = In

}

and H2n+1 is embedded as 

In 0 0 xT

y 1 x z
0 0 In −yT
0 0 0 1


 .

We write Hn for the Siegel upper half-space

Hn = {Z = X + iY : X,Y ∈ Sym(n,R) with Y > 0 (positive definite)} .
The Siegel upper half-space carries a transitive action by Sp(n,R) by linear frac-
tional transformations,

g · Z = (AZ +B)(CZ +D)−1.

Note that the stabilizer of iIn in Sp(n,R) is the maximal compact subgroup, U(n),

embedded in Sp(n,R) by A+ iB ∈ U(n)→
(
A B
−B A

)
.

The main object of study is the double cover of GJ ,

G = Mp(n) nH2n+1.

Here the action of Mp(n) on H2n+1 factors through its projection to Sp(n,R) and
we realize the metaplectic group as

Mp(n) =
{(
g =

(
A B
C D

)
, ε
)

: g ∈ Sp(n,R) with smooth ε : Hn → C

satisfying ε(Z)2 = det(CZ +D)
}
.

The group law on Mp(n) is given by

(g1, ε1) · (g2, ε2) = (g1g2, Z → ε1(g2 · Z)ε2(Z)).
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Note that the identity element is (In, Z → 1) and (g, ε)−1 = (g−1, Z → ε(g−1 ·
Z)−1). To be explicit, the group law on Mp(n) nH2n+1 is given by

((g1, ε1), h1) · ((g2, ε2), h2) = ((g1, ε1) · (g2, ε2), g−1
2 h1g2h2).

2.2. Parabolic Subgroup. Consider the subalgebra of g given, written in n×1×
n× 1 block form, by

p =
{

a 0 0 0
y 0 0 z
c 0 −aT −yT
0 0 0 0

 : cT = c

}
.

Then p is the semidirect product of the maximal parabolic subalgebra

psp =
{(a 0

c −aT
)

: cT = c
}

of sp(n,R) and a copy of Rn+1 given by

w =
{

0 0 0 0
y 0 0 z
0 0 0 −yT
0 0 0 0

}.
The Langlands decomposition for psp is psp = man where

a =
{(λIn 0

0 −λIn

)
: λ ∈ R

}
m =

{(a 0
0 −aT

)
: a ∈ sl(n,R)

}
n =

{(0 0
c 0

)
: cT = c

}
.

Before turning to the group, first note that the Lie algebra of the maximal
compact subgroup of Sp(n,R) is

k =
{(

a b
−b a

)
: bT = b, aT = −a

}
∼= u(n)

and the corresponding maximal compact in Mp(n) is

K =
{

(kA,B =
(
A B
−B A

)
, ε) : A+ iB ∈ U(n), ε2(Z) = det(−BZ +A)

}
.

We turn now to the group. Writing A = exp a, we see

A =
{
at =

((
etIn 0

0 e−tIn

)
, Z → e−

n
2 t

)}
and N = exp n is

N =
{
nC =

((
In 0
C In

)
, εC

)
: CT = C

}
where εC is the unique smooth function

εC : Hn → C
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satisfying εC(Z)2 = det(CZ + In) determined by the condition that εC(Z) =√
det(CZ + In) for sufficiently small Z ∈ Hn (where

√
· denotes the principal square

root).
Now it is easy to check that the centralizer of A in K is{((

A 0
0 A

)
, Z → c

)
: A ∈ O(n,R), c2 = detA

}
which has the structure of SO(n) × Z4 when n is odd and SO(n) o Z4 when n is
even. The subgroup M is then defined to be the group generated by this centralizer
and exp m so (using the subscript 0 to denote the connected component)

M0 =
{((A 0

0 A−1,T

)
, Z → 1

)
: A ∈ SL(n,R)

}
,

M =
{
mA,c =

((
A 0
0 A−1,T

)
, Z → c

)
:

A ∈ GL(n,R), detA ∈ {±1}, c2 = detA−1
}
.

Thus the component group, M/M0, is isomorphic to Z4. Finally, writing W =
exp w, we see

W =
{
wy,z =


In 0 0 0
y 1 0 z
0 0 In −yT
0 0 0 1

}.
We let P be given by

P = MAN nW.

2.3. Induced Representations. For q ∈ Z (determined only up to mod 4 or
mod 2 depending on n), r ∈ C, and s ∈ C, we define a character

χq,r,s : P → C

by
χq,r,s(mA,catnCwy,z) = cqerntesz.

Note that for n = 1, the choice of q in [23] is the negative of the choice here. We
study the induced representation

I(q, r, s) = IndG
P
χq,r,s

=
{

smooth φ : G→ C : φ(gp) = χq,r,s(p)−1φ(g) for g ∈ G, p ∈ P
}

with action group action (g · φ)(g′) = φ(g−1g′).
We will also have occasion to use two related induced representations of Mp(n).

To this end, define a character and an n-dimensional representation of MAN

χq,r : MAN → C,

πq,r : MAN → GL(n,C)

by

χq,r(mA,catnC) = cqernt,

πq,r(mA,catnC) · v = cqerntvA−1
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for v ∈ Cn given as a row vector. The associated induced representations are

I(q, r) = IndMp(n)

MAN
χq,r

=
{
C∞ φ : G→ C : φ(gp) = χq,r(p)−1φ(g) for g ∈Mp(n), p ∈MAN

}
In(q, r) = IndMp(n)

MAN
πq,r

=
{
C∞ φ : G→ Cn : φ(gp) = πq,r(p)−1 · φ(g) for g ∈Mp(n), p ∈MAN

}
with action group action (g · φ)(g′) = φ(g−1g′).

3. Boundary Values of ε

Recall elements of Mp(n) are given by pairs (g, ε) with g =
(
A B
C D

)
∈ Sp(n,R)

and smooth ε : Hn → C satisfying ε(Z)2 = det(CZ + D). If we are in the special
case of detD 6= 0, then det(CZ + D) = sgn(detD)|detD|det(D−1CZ + In). In
particular, for all sufficiently small Z,

ε(Z) = ip|detD| 12
√

det(D−1CZ + In)

= ip|detD|1/2εD−1C(Z)

where
√
· denotes the principal square root and p = p(ε) is one of the two choices

(determined precisely by ε) of p ∈ Z4 for which (−1)p = sgn(detD). Note that the
identity

ε = ip|detD|1/2εD−1C

then holds for all Z since the functions are analytic.
We need to extend the definition of ε from Hn to Sym(n,R) almost everywhere.

For this, let ε : Sym(n,R)→ C be given by

ε(X) = lim
Y→0+

ε(X + iY )

(here Y → 0+ denotes Y → 0 with Y > 0) which will be defined when det(CX +
D) 6= 0. To see this limit exists when det(CX + D) 6= 0, observe that, for Z with
sufficiently small Im(Z), we can write ε(Z) = il

√
sgn(det(CX +D)) det(CZ +D)

where
√
· denotes the principal square root and l = l(ε,X) is one of the two choices

(determined precisely by ε and X) of l ∈ Z4 for which (−1)l = sgn(det(CX +D)).
In particular, we see ε(X) exists and is given by

ε(X) = il
√
|det(CX +D)|. (3.1)

In the special case where X = 0 and detD 6= 0, there is a useful formula for
recovering the p in the formula ε = ip|detD|1/2εD−1C . Namely,

ip =
ε(0)

|detD|1/2
.

Finally, define an almost everywhere action of Sp(n,R) on Sym(n,R) given by

g ·X = (AX +B)(CX +D)−1

for X ∈ Sym(n,R) when det(CX +D) 6= 0 so that g ·X = limY→0+ g · (X + iY ).
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4. Noncompact Pictures

Let

x =
{

0 0 0 xT

0 0 x 0
0 0 0 0
0 0 0 0

}
so that X = exp x is given by

X =
{
ex =


In 0 0 xT

0 1 x 0
0 0 In 0
0 0 0 1

} ∼= Rn

and let

n =
{(0 b

0 0

)
: bT = b

}
so that N = exp n is given by

N =
{
nB =

((In B
0 In

)
, Z → 1

)
: BT = B

}
.

Restriction to XN ∼= Rn×Sym(n,R) gives what would be called the noncompact
realization of the induced representation if we were in the semisimple category and
which we denote by

I ′(q, r, s)

=
{
f : Rn × Sym(n,R)→ C : f(x,B) = φ(exnB) for some φ ∈ I(q, r, s)

}
.

We make I ′(q, r, s) into a G-module so that the restriction map φ → f is an
intertwining map. When necessary, we will coordinatize Sym(n,R) as R

n(n+1)
2 by

writing

B =


t11 t12 · · · t1n
t12 t22 · · · t2n
...

...
. . .

...
t1n t2n · · · tnn

 .

Theorem 4.1. For f ∈ I ′(q, r, s), the action of g =
((A B

C D

)
, ε
)
∈Mp(n) on f

is given by

((g, ε) · f)(x, t) = ilq|det(A− tC)|re−sxC(A−tC)−1xT

× f(x(−CT t+AT )−1, (A− tC)−1(tD −B))

when det(A− tC) 6= 0 and l ∈ Z4 satisfies ε(g−1 · t) = il|det(A− tC)|−1/2.

The action of h =


In 0 0 yT0
x0 1 y0 z0
0 0 In −xT0
0 0 0 1

 ∈ H2n+1 on f is given by

(h · f)(x, t) = es(2xx
T
0 +z0−x0tx

T
0 −y0x

T
0 ) f(x− y0 − x0t, t).
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Proof. When detD 6= 0, write ε(Z) = ip|detD|1/2
√

det(D−1CZ + In) for all suffi-
ciently small Z and recall that ip = ε(0)|detD|−1/2. It is straightforward to verify
that

(g, ε) = nBD−1 m
| detD|−

1
nD−1,T ,ip

a
ln(| detD|−

1
n )
nD−1C (4.1)

and

(g, ε) ex = nBD−1 exD−1 (
(
D−1,T 0
C D

)
, ε)w−xD−1C,−xD−1CxT . (4.2)

Suppose f ∈ I ′(q, r, x) corresponds to ϕ ∈ I(q, r, s). Then

((g, ε) · f)(x, t) = φ(g−1exnt)

= φ((
(
DT DT t−BT
−CT −CT t+AT

)
, Z → ε(g−1 · (Z + t))−1)ex).

Using Equations 4.2 and 4.1 when det(A− tC) 6= 0, it follows that

((g, ε) · f)(x, t)

=
( ε(g−1 · t)−1

|det(−tC +A)|1/2
)−q(

|det(−tC +A)|− 1
n

)−rn
× ·e−sx(−C

T t+AT )−1CT xT φ(n(DT t−BT )(−CT t+AT )−1 , ex(−CT t+AT )−1).

Finally, it is easy to see that C(g−1 · t) +D = (AT −CT t)−1. Looking at Equation
3.1, there is an l ∈ Z4 so that ε(g−1 · t) = il|det(AT − CT t)|−1/2 and the result
follows. The calculation for H2n+1 is similar and omitted. �

A straightforward calculation yields:

Corollary 4.2. Let f ∈ I ′(q, r, s). The element h = (x0, y0, z0) ∈ h2n+1 acts on f
by

h · f(x, t) = s(2x0x
T + z0)f(x, t)−

n∑
i=1

(x0t+ y0)i∂xif(x, t).

The element aλ ∈ a, λ ∈ R, acts on f by

(aλ · f)(x, t) = nrλf(x, t)− λ
n∑
i=1

xi∂xif(x, t)− 2λ
∑
i≤j

ti,j∂ti,jf(x, t).

The element nc ∈ n, cT = c, acts on f by

(nc · f)(x, t) = −rTr(tc)f(x, t)− sxcxT f(x, t) +
n∑
i=1

(xct)i∂xif(x, t)

+
∑
i≤j

(tct)i,j∂ti,jf(x, t).

If ka,b ∈ k, bT = b, aT = −a, then ka,0 acts on f by

(ka,0 · f)(x, t) =
n∑
i=1

(xa)i∂xif(x, t) +
∑
i≤j

(ta− at)i,j∂ti,jf(x, t)

and k0,b acts by

(k0,b · f)(x, t) = rTr(tb)f(x, t) + sxbxT f(x, t)
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−
n∑
i=1

(xbt)i∂xif(x, t)−
∑
i≤j

(Tr(tb)t+ b)i,j∂ti,jf(x, t).

In a similar fashion, we also have the noncompact realizations of I(q, r) and
In(q, r) given by restriction to N ∼= Sym(n,R). We denote these realizations by

I ′(q, r) =
{
f : Sym(n,R)→ C : f(B) = φ(nB) for some φ ∈ I(q, r)

}
I ′n(q, r) =

{
f : Sym(n,R)→ Cn : f(B) = φ(nB) for some φ ∈ In(q, r)

}
.

Simple modifications of the proof Theorem 4.1 give the following result.

Corollary 4.3. For f ∈ I ′(q, r), the action of
(
g =

(
A B
C D

)
, ε
)
∈Mp(n) on f is

given by
((g, ε) · f)(t) = ilq|det(A− tC)|r f((A− tC)−1(tD −B))

when det(A− tC) 6= 0 and l ∈ Z4 satisfies ε(g−1 · t) = il|det(A− tC)|−1/2.

For fn ∈ I ′n(q, r), the action of
(
g =

(
A B
C D

)
, ε
)
∈Mp(n) on fn is given by

(
(g, ε) · f

)
(t) = ilq|det(A− tC)|r− 1

n fn((A− tC)−1(tD −B))(−tC +A)−1.

We also see that:

Corollary 4.4. There is an Mp(n)-intertwining map

G : I ′(q, r, s)→ I ′(q, r)

given by the mapping f → f(0, ·).
The corresponding map from I(q, r, s)→ I(q, r) is given by φ→ φ|Mp(n).
There is also an Mp(n)-intertwining map

Gn : I ′(q, r, s)→ I ′n(q, r − 1
n

)

given by mapping f → ∇f(0, ·).
The corresponding map from I(q, r, s)→ In(q, r− 1

n ) is given by φ→ ∇(φ(·ex))|x=0.

Proof. The first statement is obvious since

((g, ε) · f)(0, t) = ilq|det(A− tC)|r f(0, (A− tC)−1(tD −B)).

It also follows trivially from the definitions that the map f → f(0, ·) on I ′(q, r, s)→
I ′(q, r) corresponds to the map φ→ φ|Mp(n) on I(q, r, s)→ I(q, r).

For the second statement, observe that( ∂

∂xi
((g, ε) · f)

)
(0, t)

= ilq|det(A− tC)|r
∑
j

(
(−CT t+AT )−1

)
ij

∂f

∂xj
(0, (A− tC)−1(tD −B)).

Thus

∇
(
(g, ε) · f

)
(0, ·)

= ilq|det(A− tC)|r∇f(0, (A− tC)−1(tD −B))(−CT t+AT )−1,T
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and the map intertwines. Finally, we claim that the map given by f → ∇f(0, ·) on
I ′(q, r, s)→ I ′n(q, r − 1

n ) is induced by the map ϕ→ ∇(ϕ(·ex))|x=0 on I(q, r, s)→
In(q, r − 1

n ). To check this, note that it is easy to verify that

(g, ε)ex = exD−1 (g, ε)w−xD−1C,−xD−1CxT

when D is invertible.
Then, for γ ∈Mp(n) and p ∈MAN written as p = mA,catnC ,

∇(φ(γpex))|x=0 = ∇(φ(γmA,catnCex))|x=0

= ∇(φ(γeetxATmA,catnCw−xATA−1C,−xATA−1CxT ))|x=0

= ∇(c−qe−rntesxA
TA−1CxT φ(γeetxAT ))|x=0

= c−qe−rnt∇(φ(γex))|x=0 e
tA

= c−qe−(r− 1
n )nt∇(φ(γex))|x=0A

= πq,r− 1
n

(p)−1 · ∇(φ(γex))|x=0.

Thus ∇(φ(·ex))|x=0 ∈ In(q, r − 1/n). Moreover, noting that nBex = exnB , we
have ∇(φ(eCex))|x=0 = ∇f(0, C) so that ∇(φ(·ex))|x=0 ∈ In(q, r) corresponds to
∇f(0, ·) ∈ I ′n(q, r). �

5. An Invariant Subspace

Theorem 5.1. For r = −1/2, the set of functions f ∈ I ′(q, r, s) satisfying the
system of partial differential equations (from Equation (1.1))

2s∂ti,jf + ∂xi∂xjf = 0, i 6= j

4s∂tiif + ∂2
xif = 0

is G-invariant.

Proof. Temporarily writeD =
{

2s∂ti,j + ∂xi∂xj , 4s∂tii + ∂2
xi : 1 ≤ i 6= j ≤ n

}
. First

observe that the differential operators in D commute with the Heisenberg group
action. This is clear for (0, y, z) ∈ H2n+1 since D consists of constant coefficient
differential operators and ((0, y, z).f)(x, t) = esz f(x−y, t) by Theorem 4.1. Check-
ing commutivity for (x, 0, 0) ∈ H2n+1 is a straightforward application of the chain
rule and is omitted. The invariance of D under Mp(n) follows by a Lie algebra
calculation showing that [X,Di] lies in the C∞(Rn × Sym(n,R))-span of D for any
X ∈ g and Di ∈ D. As the details are straightforward and all similar, we give the
particulars only for the element X = En+1,1 ∈ sp(n,R) as representative of the
most interesting case. By Corollary 4.2,

En+1,1 · f = −rt11f − sx2
1f +

n∑
i=1

x1t1,i∂xif +
∑
i≤j

t1,it1,j∂ti,jf.

Then

[−rt11 − sx2
1 +

n∑
i=1

x1t1,i∂xi +
∑
i≤j

ti,1t1,j∂ti,j , 4s∂t11 + ∂2
x1

]

= −4s(−r + x1∂x1 + 2t1,1∂t1,1 +
n∑
j=2

t1,j∂t1,j )− (−2s− 4sx1∂x1 + 2
n∑
i=1

t1,i∂x1∂xi)



14 M. HUNZIKER, M. R. SEPANSKI, R. J. STANKE EJDE-2015/260

= 2s(1 + 2r)− 2t1,1(4s∂t1,1 + ∂2
x1

)− 2
n∑
j=2

t1,j(2s∂t1,j + ∂x1∂xj ).

The result follows. �

It is helpful to be able to write down explicit formulas for solutions to Equation
(1.1).

Theorem 5.2. Let s 6= 0 be purely imaginary. If f ∈ C2(Rn × Sym(n,R)) satis-
fying f(·, 0), f̂(·, 0) ∈ L1(Rn) and the system of partial differential equations from
Equation (1.1), then

f(x, t) =
∫

Rn
f̂(ξ, 0)e

π2
s ξtξ

T

e2πiξx
T

dξ.

Proof. By standard Fourier techniques, when f(·, 0) is a tempered distribution,
there is a unique solution to the Cauchy problem in the space of C(Sym(n,R),S ′(Rn))–
i.e., f(x, t) is continuous in t and takes values in the set of tempered distributions
on Rn. In fact, if

∫
Rn(1 + ‖x‖2)f(x, 0) dx <∞, the solution is classical in the sense

that it has continuous derivatives with respect to each ti,j and continuous second
order derivatives with respect to each xi. Alternately, if f(·, 0) ∈ L2(Rn), then
f ∈ C(Sym(n,R), L2(Rn)) with ‖f(·, t)‖L2(Rn) = ‖f(·, 0)‖L2(Rn).

The calculation goes as follows: take the Fourier transform with respect to x of
the partial differential equations from Equation (1.1) to get

(2s∂ti,j − 4π2ξiξj)f̂ = 0, i 6= j

(4s∂tii − 4π2ξ2i )f̂ = 0.

Thus

f̂(ξ, t) = f̂(ξ, 0)e
π2
s (

Pn
i=1 ξ

2
i tii+2

P
i<j ξiξjti,j) = f̂(ξ, 0)e

π2
s ξtξ

T

. (5.1)

Therefore,

f(x, t) =
∫

Rn
f̂(ξ, 0)e

π2
s ξtξ

T

e2πiξx
T

dξ.

�

Definition 5.3. Let s 6= 0 be purely imaginary and r = −1/2. Define

D′ ⊆ I ′(q, r, s) ⊆ C∞(Rn × Sym(n,R))

to be the space of functions f ∈ I ′(q, r, s) that satisfy the system of partial differ-
ential equations from Equation (1.1) with f(·, 0) ∈ S(Rn). Write D′+ and D′− for
the functions in D′ that are even (respectively, odd) in x for each t ∈ Sym(n,R).

Remark 5.4. For the rest of the paper, we will assume r = −1/2 and that s is
nonzero and purely imaginary. We write s = iσ with σ ∈ R×. We will also write

εσ = sgn(σ)

so that σ = εσ|σ|.

Theorem 5.5. The space D′ is G-invariant.
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Proof. Since σ is purely imaginary, the invariance of D′ under H2n+1 follows from
the action given in Theorem 4.1. Let (g, ε) ∈Mp(n) and f ∈ D′ and let h = (g, ε)·f .
By Theorem 5.1, it suffices to show h(·, 0) ∈ S(Rn). Fix t0 ∈ Sym(n,R) so that
det(A− t0C) 6= 0 and let t̃0 = (A− t0C)−1(t0D −B). Theorem 4.1 shows that

h(x, t0) = ilq|det(A− t0C)|re−sxC(A−t0C)−1xT f(x(−CT t0 +AT )−1, t̃0)

where ε(g−1 · t0) = il|det(A− t0C)|−1/2. Since Equation 5.1 shows

f(x, t̃0) = (f̂(·, 0)e
π2
s (·) et0(·)T )∨(x),

it follows that f(·, t̃0) ∈ S(Rn) and therefore that h(·, t0) ∈ S(Rn). Finally, since
h(x, 0) = (ĥ(·, t0)e−π

2/s(·)t0(·)T )∨(x), it follows that h(·, 0) ∈ S(Rn). �

Definition 5.6. Write J̃ ∈ Mp(n) for the element J̃ = (Jn, ε eJ) where ε2eJ(Z) =
detZ with ε eJ(Z) =

√
detZ for Z = (λ + iµ)In for λ, µ > 0 with arctan µ

λ < π
n .

The Cartan involution θ : Mp(n)→Mp(n) is the anti-involution θ(g, ε) = (gT , εT )
where

(gT , εT ) = J̃(g, ε)−1J̃−1.

Notice that

(gT , εT ) = J̃(g, ε)−1J̃−1

=
(
Jng

−1J−1
n , Z → ε eJ(g−1J−1

n · Z)ε(g−1J−1
n · Z)−1ε eJ(−Z−1)−1

)
= (gT , Z → ε(−(BTZ +DT )(ATZ + CT )−1)−1

× ε eJ
(
− (BTZ +DT )(ATZ + CT )−1

)
ε eJ(−Z−1)−1)

so that

εT (Z) = ε(−(BTZ +DT )(ATZ + CT )−1)−1

× ε eJ(−(BTZ +DT )(ATZ + CT )−1)ε eJ(−Z−1)−1.

Of course,

εT (Z)2 =
det(−(BTZ +DT )(ATZ + CT )−1)

det(−C(BTZ +DT )(ATZ + CT )−1 +D) det(−Z−1)

=
det(BTZ +DT )

det(C(BTZ +DT )−D(ATZ + CT )) det(−Z−1)

= det(BTZ +DT )

as required.

Theorem 5.7. When σ > 0 and q ≡ −1, we can define φ+, φ+,α ∈ I(q, r, s) with
α ∈ Cn by

φ+((g, ε)hx,y,z) =
eiσ(−z−xyT+x(gT ·iIn)xT )

εT (iIn)
,

φ+,α((g, ε)hx,y,z) =
(x(Bi+D)−1αT )eiσ(−z−xyT+x(gT ·iIn)xT )

εT (iIn)

(recall εT (Z)2 = det(ZB +D)). The corresponding elements f+, f+,α ∈ D′ are

f+(x, t) = εt(iIn)−1e−σx(In+it)−1xT
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f+,α(x, t) = εt(iIn)−1(x(In + it)−1αT )e−σx(In+it)−1xT

where, recall, εt(Z) is the analytic continuation to Z ∈ Hn of the function Z →√
det(In + tZ) for sufficiently small Z.
When σ < 0 and q ≡ 1, we can define φ−, φ−,α ∈ I(q, r, s) with α ∈ Cn by

φ−((g, ε)hx,y,z) =
eiσ(−z−xyT+x(gT ·(−iIn))xT )

εT (iIn)

φ−,α((g, ε)hx,y,z) =
(x(−Bi+D)−1αT )eiσ(−z−xyT+x(gT ·(−iIn))xT )

εT (iIn)
.

The corresponding elements f−, f−,α ∈ D′+ are

f−(x, t) = εt(iIn)
−1
eσx(In−it)

−1xT

f−,α(x, t) = εt(iIn)
−1

(x(In − it)−1αT )eσx(In−it)
−1xT .

Proof. To determine when φ+ ∈ I(q, r, s), first write p = mA0,c0at0nC0 = (p0, εp0)
so that

p0 =
(

et0A0 0
e−t0A−1,T

0 C0 e−t0A−1,T
0

)
,

εp0(Z) = c0e
−n2 t0εC0(Z).

Since εTp0(Z)2 = det(e−t0A−1
0 ) = e−nt0 detA−1

0 and c20 = detA−1
0 , it follows that

εTp0(Z) = ±c0e−
n
2 t0 . The exact answer can be determined by using the continuity

of the Cartan involution and its evaluation on the central elements, Z = (±In, c)
with c2 = (±1)−n:

εT (Z) = c−1ε eJ(−Z−1)ε eJ(−Z−1)−1 = c−1.

It follows that
εTp0(Z) = c−1

0 e−
n
2 t0 .

In particular, it we see that

((g, ε)p)T = (pT0 g
T , c−1

0 e−
n
2 t0εT ).

Turning to φ+, a straightforward calculation shows that

φ+((g, ε)hx,y,z pwy0,z0)

= φ+((g, ε)phe−t0xA−1,T
0 ,et0yA0+e−t0xA

−1,T
0 C0,z

wy0,z0)

= φ+((g, ε)phe−t0xA−1,T
0 ,et0yA0+e−t0xA

−1,T
0 C0+y0,z+z0−e−t0xA−1,T

0 yT0
)

= e−iσ(z+z0−e−t0xA−1,T
0 yT0 )e−iσe

−t0xA−1,T
0 (et0yA0+e

−t0xA−1,T
0 C0+y0)

T

× eiσ(e−t0xA−1,T
0 )(e2t0AT0 (gT ·iIn)A0+C0)(e

−t0A−1
0 xT )/[c−1

0 e−
n
2 t0εT (iIn)]

= c0e
n
2 t0e−iσz0φ+((g, ε)hx,y,z).

It follows that φ+ ∈ I(−1,−1/2, ισ).
Next observe that the ε for

nTt =
((In 0

t In

)
, Z → ε eJ(−(tZ + In)Z−1)ε eJ(−Z−1)−1

)
.
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Now for Z = ρeiθIn, det(−Z−1) = ρ−nein(π−θ) so that ε eJ(−Z−1) = ρ−
n
2 ei

n(π−θ)
2

for π−θ sufficiently positively small and ρ > 0. Therefore ε eJ(−Z−1) = ρ−
n
2 ei

n(π−θ)
2

for all 0 < θ < π. Similarly, det(−(tZ + In)Z−1) = det(tZ + In)ρ−nein(π−θ) so
that ε eJ(−(tZ + In)Z−1) =

√
det(tZ + In)ρ−

n
2 ei

n(π−θ)
2 for π − θ and ρ sufficiently

positively small. It follows that ε eJ(−(tZ + In)Z−1)ε eJ(−Z−1)−1 = εt(Z) for all
Z ∈ Hn. In particular, we see that nTt = nt.

Thus

φ+(nthx,0,0) =
eiσx

εσi
εσit+In

xT

εt(εσiIn)
= εt(εσiIn)−1e−σx(In+it)−1xT .

Finally, we must show f+ ∈ D+. As f+(·, 0) is clearly Schwartz when σ > 0, it
remains only to show that f+ satisfies the system given in Equation (1.1). For
the sake of brevity, we will only show 4s∂tiif+ + ∂2

xif+ = 0 and omit the similar
calculation that 2s∂ti,jf + ∂xi∂xjf = 0, i 6= j. For X ∈Mn(C), write X(i,j) for the
(i, j) minor of X. Then

∂ti,if+ = −i1
2

det(In + it)−1 det(In + it)(i,i)f+

+ iσx(In + it)−1Ei,i(In + it)−1xT f+

= −i1
2

((In + it)−1)i,if+ + iσx(In + it)−1Ei,i(In + it)−1xT f+

while

∂2
xif+ = ∂xi

(
− 2σei(In + it)−1xT f+

)
= −2σei(In + it)−1eTi f+ + 4σ2

(
ei(In + it)−1xT

)2
f+

= −2σ
(
(In + it)−1

)
i,i
f+ + 4σ2x(In + it)−1eTi ei(In + it)−1xT f+

= −2σ
(
(In + it)−1

)
i,i
f+ + 4σ2x(In + it)−1Ei,i(In + it)−1xT f+

which finishes the claim.
Turn now to the second part of the Theorem. Taking conjugates, it follows that

φ− = φ+ ∈ I(1,−1/2,−ισ), f−(·, 0) is Schwartz, and f− satisfies the system given
in Equation (1.1) (with σ replaced by −σ). Renaming σ, the result follows. The
calculations for φα are trivial modifications of the above argument. �

Corollary 5.8. For q = − sgnσ, D′± is nonzero.

6. Restriction to t = 0

By Theorem 5.2, the map from D′ to S(Rn) given by restriction to t = 0 is
injective. Following this map by the Fourier transform gives the following injective
map. Recall that D′± is nonzero when q = − sgnσ and we assume this is so for the
rest of the paper.

Definition 6.1. Let E : D′ → S(Rn) be given by

(Ef)(x) = f̂(x, 0).

We also write S = Im(E) and S+ and S− for the images of D′+ and D′−, respectively.
We make S into a G-module by requiring E to be an intertwining isomorphism

E : D′ → S.
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Theorem 6.2. For f ∈ S and (g, ε) ∈Mp(n), ((g, ε) · f)(x) is given by

(1) For mA,a =
((A 0

0 A−1,T

)
, Z → a

)
with a2 = detA−1 (so (a|detA|1/2)2 =

sgn(detA)),

(mA,a · f)(x) =
(
a|detA|1/2

)q|detA|1/2f(xA).

(2) For nB,ε =
((In B

0 In

)
, Z → ε

)
with ε2 = 1,

(nB,ε · f)(x) = εqe−
π2
s xBx

T

f(x).

(3) For nC =
((In 0

C In

)
, εC(Z)

)
,

(nC · f)(x) =
(
e−s(·)C(·)T f∨(·)

)∧(x) = ( ̂e−s(·)C(·)T ∗ f)(x).

(4) Let ω =
(

0 −In
In 0

)
and εω(Z) satisfy εω(Z)2 = det(Z) with εω((λ +

iµ)In) =
√

(λ+ iµ)n for λ, µ ∈ R+ with arctan(µλ ) < π
n . Then

((ω, εω) · f)(x) = e−εσ
iπn
4 |π

σ
|n/2f̂(

π

σ
x).

Proof. For f ∈ S and (g, ε) ∈Mp(n),(
(g, ε) · f

)
(x) = E((g, ε) · (E−1(f)))(x) = ((g, ε) · (E−1(f)))∧(x, 0).

Since
(E−1(f))(x, t) =

∫
Rn
f(ξ)e

π2
s ξtξ

T

e2πiξx
T

dξ,

we use Theorem 4.1 to calculate the new action.
In the first case, (mA,a · f)(x, t) = ilq|detA|r f(xA−1,T , A−1tA−1,T ) with il =

a|detA|1/2. Therefore

(mA,a · (E−1(f)))∨(x, 0) = ilq|detA|r (E−1(f))(xA−1,T , 0)

= ilq|detA|r f∨(xA−1,T )

so that
(mA,a · (E−1(f)))(x, 0) = ilq|detA|r+1 f(xA).

In the second case, (nB · f)(x, t) = εq f(x, t−B) so

(nB · (E−1(f)))∨(x, 0) = εq (E−1(f))(x,−B)

= εq
∫

Rn
f(ξ)e−

π2
s ξBξ

T

e2πiξx
T

dξ

so that
(nB · (E−1(f)))(x, 0) = εqe−

π2
s xBx

T

f(x).
For the third case,

(nC · f)(x, t) = ilq|det(In − tC)|re−sxC(In−tC)−1xT

× f(x(−Ct+ In)−1, (In − tC)−1t)

with il|det(In − tC)|− 1
2 =

√
det(In − tC)−1 for small t. Therefore

(nC · (E−1(f)))∨(x, 0) = e−sxCx
T

(E−1(f))(x, 0)
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= e−sxCx
T

∫
Rn
f(ξ)e2πiξx

T

dξ

so

(nC · (E−1(f)))(x, 0) = (e−s(·)C(·)T f∨(·))∧(x)

= ( ̂e−s(·)C(·)T ∗ f)(x).

Finally, when t is invertible,

((ω, εω) · f)(x, t) = ilq|det t|resxt
−1xT f(−xt−1,−t−1)

where εω(−t−1) = il|det t|−1/2. In the case of t = λIn with λ < 0,

εω(−t−1) = lim
µ→0+

εω((−λ−1 + iµ)In) =
√

(−λ−1 + iµ)n = |λ|−n/2

so that il = 1 and ((ω, εω) ·f)(x, λIn) = |λ|nresλ−1‖x‖2 f(−λ−1x,−λ−1In). We now
will calculate the action of (ω, εω) on S(Rn) using

((ω, εω) · f)(x) = ((ω, εω) · (E−1(f)))∧(x, 0)

= lim
λ→0−

((ω, εω) · (E−1(f)))∧(x, λIn).

Now

((ω, εω) · (E−1(f)))∨(x, λIn) = |λ|nresλ
−1‖x‖2 (E−1(f))(−λ−1x,−λ−1In).

We first rewrite (E−1(f))(w,−λ−1In) using the identity∫
Rn
e−2πiξxT e−πα‖ξ‖

2
dξ = α−n/2e−

π
α‖x‖

2

for Reα > 0. We get (taking α = ε+ π/(sλ)), using Dominated Convergence and
Fubini,

(E−1(f))(w,−λ−1In) =
∫

Rn
f(ξ)e−

π2
sλ ‖ξ‖

2
e2πiξw

T

dξ

=
∫

Rn

∫
Rn
f̂(y)e2πiξy

T

e−
π2
sλ ‖ξ‖

2
e2πiξw

T

dydξ

= lim
ε→0+

∫
Rn

∫
Rn
f̂(y)e−π(ε+π/sλ)‖ξ‖2e2πiξ(y+w)T dydξ

= lim
ε→0+

∫
Rn

∫
Rn
f̂(y)e−π(ε+π/sλ)‖ξ‖2e−2πiξ(−y−w)T dξdy

= lim
ε→0+

(ε+ π/sλ)−n/2
∫

Rn
f̂(y)e−

π
ε+π/sλ‖y+w‖

2

dy.

Now write s = iσ (and recall λ < 0) so that analytic continuation of α−n/2 on R+

gives

lim
ε→0+

(ε+ π/sλ)−n/2 =

{
| πsλ |

−n2 e−
iπn
4 , σ > 0

| πsλ |
−n2 e

iπn
4 , σ < 0.

Thus
(E−1(f))(w,−λ−1In) = | π

sλ
|−n2 e−εσ iπn4

∫
Rn
f̂(y)e−sλ‖y+w‖

2
dy.

Therefore,

((ω, εω) · (E−1(f)))∨(x, λIn)
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= |λ|nresλ
−1‖x‖2 (E−1(f))(−λ−1x,−λ−1In)

= |λ|nr| π
sλ
|−n2 e−εσ iπn4 esλ

−1‖x‖2
∫

Rn
f̂(y)e−sλ‖y−λ

−1x‖2 dy

= |π
s
|−n2 e−εσ iπn4 esλ

−1‖x‖2
∫

Rn
f̂(y)e−sλ‖y−λ

−1x‖2 dy

= |π
s
|−n2 e−εσ iπn4

∫
Rn
f̂(y)e−sλ‖y‖

2
e2syx

T

dy

= |π
σ
|−n2 e−εσ iπn4

∫
Rn
f̂(y)e−sλ‖y‖

2
e2πi

σ
π yx

T

dy

= |π
σ
|n/2e−εσ iπn4

∫
Rn
f̂(
π

σ
y)e−

iλπ2
σ ‖y‖

2
e2πiyx

T

dy

= |π
σ
|−n2 e−εσ iπn4

∫
Rn

̂f ◦M σ
π

(y)e−
iλπ2
σ ‖y‖

2
e2πiyx

T

dy

where Mσ/π is the multiplication map given by Mσ/π(x) = σx/π. As a result,

((ω, εω) · f)(x)

= lim
λ→0−

((ω, εω) · (E−1(f)))∧(x, λIn)

= lim
λ→0−

∫
Rn

((ω, εω) · (E−1(f)))(ξ, λIn)e−2πiξxT dξ

= e−εσ
iπn
4 |π

σ
|−n2 lim

λ→0−

∫
Rn

∫
Rn

̂f ◦M σ
π

(y)e−sλ‖y‖
2
e2syξ

T

e−2πiξxT dydξ

= e−εσ
iπn
4 |π

σ
|−n2 lim

λ→0−
̂f ◦M σ

π
(x)e−sλ‖x‖

2

= e−εσ
iπn
4 |π

σ
|−n2 ̂f ◦M σ

π
(x)

= e−εσ
iπn
4 |π

σ
|n/2f̂(

π

σ
x).

�

To match these formulas with the realization of the oscillator representation in,
say, Kashiwara and Vergne, consider the dilation operator defined by

(Tf)(x) = f(
|σ|1/2

π
√

2
x).

Making T into an intertwining map, Theorem 6.2 gives an equivalent action on
T (S) ⊆ S(Rn). Note, of course, that the map T can be modified by multiplying
by the scalar (|σ|1/2/(π

√
2))n/2 to make it a unitary map with respect to L2(Rn).

This modification will not change the theorem below.

Theorem 6.3. The action of Mp(n) on T (S) is given by

(mA,a · f)(x) = |detA|1/2 f(xA), for a > 0

(nB · f)(x) = eεσ
i
2xBx

T

f(x),

(nC · f)(x) = ( ̂e−εσ2iπ2(·)C(·)T ∗ f)(x)

((ω, εω) · f)(x) = e−εσ
iπn
4 (

1
2π

)n/2
∫

Rn
f(ξ)e−εσiξx

T

dξ.
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In particular, when s = iσ with σ < 0, this is a dense Mp(n)-invariant subspace in
the oscillator representation. When σ > 0, this representation is isomorphic to the
dual to the oscillator representation.

In either case, this action completes to a unitary representation on L2(Rn) and
decomposes as a direct sum of irreducible representation via the set of odd and even
function,

L2(Rn) = L2(Rn)+ ⊕ L2(Rn)−.

Proof. For a > 0,

(mA,a · f)(x) = (T (mA,a · T−1f))(x)

= (mA,a · T−1f)(
|σ|1/2

π
√

2
x)

= |detA|1/2(T−1f)(
|σ|1/2

π
√

2
xA)

= |detA|1/2 f(xA),

and

(nB · f)(x) = (T (nB · T−1f))(x)

= (nB · T−1f)(
|σ|1/2

π
√

2
x)

= e−
π2
iσ
|σ|
2π2 xBx

T

(T−1f)(
|σ|1/2

π
√

2
x)

= e(εσ) i2xBx
T

f(x),

and

(nC · f)(x) = (T (nC · T−1f))(x)

= (nC · T−1f)(
|σ|1/2

π
√

2
x)

= ( ̂e−s(·)C(·)T ∗ T−1f)(x)(
|σ|1/2

π
√

2
x)

= (
|σ|1/2

π
√

2
)n(T ̂e−s(·)C(·)T ∗ f)(x)

= ( ̂T−1e−s(·)C(·)T ∗ f)(x)

= (
̂

e−
2π2s
|σ| (·)C(·)T ∗ f)(x)

and

((ω, εω) · f)(x) = (T ((ω, εω) · T−1f))(x)

= ((ω, εω) · T−1f)(
|σ|1/2

π
√

2
x)

= e−εσ
iπn
4 |π

σ
|n/2 ̂f ◦M π

√
2

|σ|1/2
(
π

σ

|σ|1/2

π
√

2
x)

= e−εσ
iπn
4 |π

σ
|n/2| |σ|

1/2

π
√

2
|nf̂(

π

σ

|σ|
2π2

x)
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= e−εσ
iπn
4 (

1
2π

)n/2f̂(
εσ
2π
x)

= e−εσ
iπn
4 (

1
2π

)n/2
∫

Rn
f(ξ)e−εσiξx

T

dξ.

�

7. Restriction to x = 0

Recall from Corollary 4.4 that there is anMp(n)-intertwining map G : I ′(q, r, s)→
I ′(q, r) given by

(Gf)(t) = f(0, t)

and an intertwining map Gn : I ′(q, r, s)→ I ′n(q, r − 1
n ) given by

(Gnf)(t) = ∇f(0, t).

By the definitions and Theorem 5.2, restricting to D′ and pre-composing with E−1

gives Mp(n)-maps H : S → I ′(q, r) and Hn : S → I ′n(q, r − 1
n ) given by

(Hf)(t) =
∫

Rn
f(ξ)e

π2
s ξtξ

T

dξ

and

(Hnf)(t) = ∇
(∫

Rn
f(ξ)e

π2
s ξtξ

T

e2πiξx
T

dξ
)∣∣∣
x=0

= 2πi
(∫

Rn
ξ1f(ξ)e

π2
s ξtξ

T

dξ, . . . ,

∫
Rn
ξnf(ξ)e

π2
s ξtξ

T

dξ
)
.

Clearly S− ⊆ kerH and S+ ⊆ kerHn (equivalently, D′− ⊆ kerG and D′+ ⊆
kerGn). To show these are the entire kernels involves inverting H|S+ and Hn|S−
(equivalently, G|D′+ and Gn|D′−). Straightforward Fourier analysis requires a bit
more care due to the fact that the images usually do not have sufficient decay
properties to be L1 or L2 functions (unless n = 1, see [23]). In fact, if we could view
f ∈ D′ ⊆ I ′(q, r, s) as a tempered distribution f(x, ·) ∈ S ′(Sym(n,R) ∼= Rn(n+1)/2)
and writing F for the Fourier transform on S(Sym(n,R)) given by

(Ff)(τ) =
∫

Sym(n,R)

f(t)e−2πi tr(tτ) dt,

we would have

8πisτi,jFf + ∂xi∂xjFf = 0, i 6= j,

8πisτi,iFf + ∂2
xiFf = 0.

Looking at ∂2
xi∂

2
xjFf written in two ways for i 6= j, we would get

(τi,iτj,j − τ2
i,j)Ff = 0

so that Ff would be supported on {τ ∈ Sym(n,R) : τi,iτj,j = τ2
i,j all i 6= j}. This

is, of course a rank of at most one condition on Sym(n,R). As a result, it will be
useful to consider the cone defined by the function θ : Rn → Sym(n,R) given by

θ(y) =
π

2σ
yT y.
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Lemma 7.1. (1) For f ∈ D′ ⊆ I ′(q, r, s) and each x ∈ Rn, f(x, ·) may be viewed
as a tempered distribution on Sym(n,R) given by

〈f(x, ·), φ〉 =
∫

Sym(n,R)

f(x, t)φ(t) dt

for each φ ∈ S(Sym(n,R)). Its Fourier transform Ff(x, ·) ∈ S ′(Sym(n,R)) is
given by

〈Ff(x, ·), φ〉 =
∫

Rn
f̂(ξ, 0)(φ ◦ θ)(ξ)e2πiξx

T

dξ = (f(·, 0) ∗ (φ ◦ θ))(x)

and is supported on Im θ.
(2) For each 1 ≤ j ≤ n, ∂xjf(x, ·) may be viewed as a tempered distribution on

Sym(n,R) given by 〈
∂xjf(x, ·), φ

〉
=
∫

Sym(n,R)

∂xjf(x, t)φ(t) dt

for each φ ∈ S(Sym(n,R)). Its Fourier transform F(∂xjf)(x, ·) ∈ S ′(Sym(n,R)) is
given by 〈

F(∂xjf)(x, ·), φ
〉

= 2πi
∫

Rn
ξj f̂(ξ, 0)(φ ◦ θ)(ξ)e2πiξx

T

dξ

= 2πi((∂xjf)(·, 0) ∗ (φ ◦ θ))(x)

and is supported on Im θ.

Proof. First of all, since

|f(x, t)| ≤
∫

Rn
|f̂(ξ, 0)e

π2
s ξtξ

T

e2πiξx
T

| dξ = ‖f̂(·, 0)‖L1(Rn) <∞,

f(x, ·) is bounded. As it is also continuous, it is clearly locally integrable and there-
fore gives rise to an element of S ′(Sym(n,R)). To calculate its Fourier transform,
use Fubini to see that

〈Ff(x, ·), φ〉 = 〈f(x, ·),Fφ〉

=
∫

Sym(n,R)

f(x, t)Fφ(t) dt

=
∫

Sym(n,R)

∫
Rn
f̂(ξ, 0)e

π2
s ξtξ

T

e2πiξx
T

Fφ(t) dξdt

=
∫

Rn

∫
Sym(n,R)

f̂(ξ, 0)e2πiξx
T

Fφ(t)e
π2
s ξtξ

T

dtdξ

=
∫

Rn

∫
Sym(n,R)

f̂(ξ, 0)e2πiξx
T

Fφ(t)e2πi(−
π
2σ ) tr(tξT ξ) dtdξ

=
∫

Rn
f̂(ξ, 0)e2πiξx

T

F2φ(− π

2σ
ξT ξ) dξ

=
∫

Rn
f̂(ξ, 0)e2πiξx

T

φ(θ(ξ)) dξ.

Finally,

〈Ff(x, ·), φ〉 =
∫

Rn
f̂(ξ, 0)(φ ◦ θ)(ξ)e2πiξx

T

dξ
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= (f̂(·, 0)(φ ◦ θ)(·))∨(x)

= (f(·, 0) ∗ (φ ◦ θ))(x).

Turning to ∂xjf ,

|∂xjf(x, t)| ≤
∫

Rn
|2πiξj f̂(ξ, 0)e

π2
s ξtξ

T

e2πiξx
T

| dξ = 2π‖(·)j f̂(·, 0)‖L1(Rn) <∞

so that ∂xjf(x, ·) gives rise to an element of S ′(Sym(n,R)). The rest of the Lemma
is a simple modification of the above argument and is omitted. �

Theorem 7.2. H|S+ is injective and Hn|S− is injective. Equivalently, G|D′+ is
injective and Gn|D′− is injective.

Proof. We show how to construct the inverse maps. Let f ∈ S. By the definitions
and Lemma 7.1,

〈FHf, φ〉 = (f∨ ∗ (φ ◦ θ))(0)

for φ ∈ S(Sym(n,R)). Fix ψ ∈ S(Sym(n,R)) with
∫
Sym(n,R)

ψ(t) dt = 1 and let
ψε(t) = ε−n(n+1)/2ψ(ε−1t) for ε > 0 so that ψε → δ0 as an element of S ′(Sym(n,R))
as ε→ 0+. Then, for any x ∈ Rn, τθ(x)ψε → δθ(x) as ε→ 0+. As θ(y) = π

2σy
T y, it

is trivial to check that (τθ(x)ψε) ◦ θ → δx + δ−x as elements of S ′(Rn) as ε→ 0+. If
f ∈ S+, then

lim
ε→0+

〈
FHf, τθ(x)ψε

〉
= lim
ε→0+

(f∨ ∗ ((τθ(x)ψε) ◦ θ))(0) = f∨(x) + f∨(−x) = 2f∨(x).

In particular, f∨ ∈ S+ (and therefore f) can be recovered from Hf by taking
the Fourier transform and looking at approximations to translations of the delta
distribution.

Next, view the image of Hn as landing in ⊕nj=1S ′(Sym(n,R)). Evaluating via the
diagonal map (so viewing the image as landing in S ′(Sym(n,R),Rn)) and applying
the Fourier transform in each coordinate, it follows that

〈FHnf, φ〉 = 2πi((∂x1f
∨ ∗ (φ ◦ θ))(0), . . . , (∂xnf

∨ ∗ (φ ◦ θ))(0)).

As above, when f ∈ S−,

lim
ε→0+

〈
FHnf∨, τθ(x)ψε

〉
= 4πi(∂x1f

∨(x), . . . , ∂xnf
∨(x)).

In particular f∨ ∈ S(Rn)− (and therefore f∨) can also be recovered from Hnf by
taking the Fourier transform and looking at approximations to translations of the
delta distribution. �

Definition 7.3. Let I ′± be the image of D′± under G and Gn, respectively (alter-
nately, the image of S± under H and Hn, respectively).

From Corollary 4.4 and Theorem 7.2, we see I ′± is isomorphic to D′± (and S±)
as Mp(n)-representations. In particular, they complete to unitary highest (σ < 0)
or lowest (σ > 0) weight representations isomorphic to the oscillator representation
or its dual.

The next corollary identifies I ′± by viewing the Schwartz space as tempered dis-
tributions supported on Im θ, taking their Fourier transform, and implicitly identi-
fying the resulting tempered distribution with the smooth function it generates.
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Corollary 7.4. (1) Embed S ↪→ S ′(Sym(n,R)) via θ by mapping ψ → 〈ψ, ·〉 where

〈ψ, φ〉 =
∫

Rn
ψ(ξ)(φ ◦ θ)(ξ) dξ

for φ ∈ S(Sym(n,R)). Then I ′+ ⊆ I ′(q, r) is given explicitly by

I ′+ =
{
Fψ : ψ ∈ S ⊆ S

′
(Sym(n,R))

}
.

(2) Embed S ↪→ S ′(Sym(n,R),Rn) via θ by mapping ψ → 〈ψ, ·〉 where

〈ψ, φ〉 =
(∫

Rn
ξ1ψ(ξ)(φ ◦ θ)(ξ) dξ, . . . ,

∫
Rn
ξnψ(ξ)(φ ◦ θ)(ξ) dξ

)
for φ ∈ S(Sym(n,R)). Then I ′− ⊆ I ′n(q, r − 1

n ) is given explicitly by

I ′− =
{
Fψ : ψ ∈ S ⊆ S

′
(Sym(n,R),Rn)

}
.

Proof. Part (1) follows immediately from the formula 〈FHf, φ〉 =
∫

Rn f(ξ)(φ ◦
θ)(ξ) dξ and Lemma 7.1 and Theorem 7.2. Similarly, part (2) follows from the
formula 〈FHnf, φ〉 = (

∫
Rn ξ1ψ(ξ)(φ ◦ θ)(ξ) dξ, . . . ,

∫
Rn ξnψ(ξ)(φ ◦ θ)(ξ) dξ). �

8. K-finite Vectors

If M ∈Mn(C) and p is a complex valued polynomial on Rn, define p̃(x,M) by

p̃(x,M) = e|σ|xMxT p(∂x)
(
e−|σ|xMxT

)
with p(∂x) representing the constant coefficient differential operator obtained by
replacing xj by ∂xj . For p of the form xα, p̃ defines a generalization of the Hermite
polynomials.

Theorem 8.1. The highest (σ < 0) and lowest (σ > 0) K-finite vector of (D′+)K ,
up to a constant multiple, is given by the function f− and f+, respectively (see
Theorem 5.7).

The highest and lowest K-type vectors of (D′−)K consist of the functions f−,a
and f+,a, respectively, for a ∈ Cn.

In general, the K-finite vectors in D′ consists of the functions f−,p and f+,p
where

f−,p(x, t) = εt(iIn)
−1
p̃(x, (In − it)−1)eσx(In−it)

−1xT

f+,p(x, t) = εt(iIn)−1p̃(x, (In + it)−1)e−σx(In+it)−1xT

where p is a complex valued polynomial on Rn.

Proof. It is well known that the K-finite vectors in the oscillator representation
(see, e.g., [18] or [14]) are spanned by functions of the form p(x)e−‖x‖

2/2 with p a
polynomial on Rn. Pulling back this standard picture by Tf = M|σ|1/2/π

√
2f , we

see that the K-finite vectors in the image of E , S(Rn)K , are spanned by functions

of the form p(x)e−
π2
|σ|‖x‖

2

(a different p of the same degree). Pulling these functions
back to D′ involves solving a system of partial differential equations with initial

condition at t = 0 given by the inverse Fourier transform of p(x)e−
π2
|σ|‖x‖

2

, that
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is, functions of the form p̃(x)e−|σ|‖x‖
2

for some polynomial p̃ determined by p. By
Theorem 5.2, the solution of this system is given by

f(x, t) =
∫

Rn
p(ξ)e−

π2
|σ|‖ξ‖

2

e
π2
s ξtξ

T

e2πiξx
T

dξ

=
∫

Rn
p(ξ)e−

π2
|σ| ξ(1+iεσt)ξ

T

e2πiξx
T

dξ

=
(
p(·)e−

π2
|σ| (·)(1+iεσt)(·)

T
)∨

(x)

= p(−2πi∂x)
(
e−

π2
|σ| (·)(1+iεσt)(·)

T
)∨

(x).

As a result, the problem comes down to finding the function defined by

F (x, t) = (
π

|σ|
)n/2

(
e−

π2
|σ| (·)(1+iεσt)(·)

T
)∨

(x)

= (
π

|σ|
)
n
2

∫
Rn
e−

π2
|σ|‖ξ‖

2

e
π2
s ξtξ

T

e2πiξx
T

dξ.

We claim that this function is given exactly by F = fsgnσ from Theorem 5.7.
To verify this claim, note that, by definition, F is the unique solution to the sys-

tem given in Equation (1.1) satisfying the initial condition of F̂ (ξ, 0) = (π/|σ|)n/2e−
π2
|σ|‖ξ‖

2

or, equivalently, that F (x, 0) = e−|σ|‖x‖
2
. Obviously, our proposed solution, fsgnσ,

satisfies that initial condition. By the proof of Theorem 5.7, it also satisfies the
system of differential operators which finishes the claim.

Since the highest/lowest K-type space in the oscillator representation is spanned
by e−‖x‖

2/2 (for the even functions) and xie
−‖x‖2/2 (for the odd functions), the

above discussion shows that the corresponding functions (up to a multiple) in D′
are fsgnσ and ∂xifsgnσ. Since fsgnσ has been calculated, consider ∂xifsgnσ:

∂xif− = 2|σ|εt(iIn)
−1

(x(In − it)−1ei)eσx(In−it)
−1xT

∂xif+ = −2σεt(iIn)−1(x(In + it)−1ei)e−σx(In+it)−1xT .

Finally, the last statement follows from the fact that the element of D′ correspond-

ing to the function p(x)e−
π2
|σ|‖x‖

2

in the image of E is p(−2πi∂x)f+(x). �

Corollary 8.2. The highest (σ < 0) and lowest (σ > 0), respectively, K-finite
vector of (I ′+)K is spanned by the function fsgnσ given by

f−(0, t) = εt(iIn)
−1
, f+(0, t) = εt(iIn)−1.

The highest (σ < 0) and lowest (σ > 0), respectively, K-type vectors of (I ′−)K is
given by the functions fsgnσ,a where

f−,a(t) = εt(iIn)
−1
a(In − it)−1

f+,a(t) = εt(iIn)−1a(In + it)−1

for a ∈ Rn.

It is possible to describe the general K-finite vector, though the details are more
involved. For instance, it is straightforward to check that the K-finite vectors of
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(I ′+)K are spanned by functions of the form

f(t) = det(In + iεσt)−1/2
∑
σ∈ eS2k

k∏
l=1

((In + iεσt)−1)jσ(2l−1),jσ(2l)

where k ∈ N, j1, . . . , j2k ∈ {1, . . . , n} andS̃2k denotes the set elements of the sym-
metric group S2k satisfying σ(2l − 1) < σ(2l) and σ(1) < σ(3) < · · · < σ(2k − 1).
Notice that each term in the summand is the k-fold product of the determinant of
a minor of (In + iεσt) divided by det(In + iεσt).
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