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RANDOM ATTRACTORS FOR STOCHASTIC LATTICE
REVERSIBLE GRAY-SCOTT SYSTEMS WITH ADDITIVE NOISE

HONGYAN LI, JUNYI TU

Abstract. In this article, we prove the existence of a random attractor of
the stochastic three-component reversible Gray-Scott system on infinite lat-

tice with additive noise. We use a transformation of addition involved with

Ornstein-Uhlenbeck process, for proving the pullback absorbing property and
the pullback asymptotic compactness of the reaction diffusion system with

cubic nonlinearity.

1. Introduction

In the previous decades, chemical kinetics has produced a variety of phenome-
non which had been translated into challenging mathematical problems. A classical
example is seen in the waves of the Belousov-Zhabotinskii reaction. Other exam-
ples have been produced and require fewer species interactions, but still yield very
interesting behavior [26]. The problem of dealing with chemical reactions of sys-
tems, together with a number of initial and final products whose concentrations
are assumed to be controlled throughout the reaction process is an important one
under quite realistic conditions [1] and [26]. It is necessary to consider at least a
cubic nonlinearity in the rate equations [28]. These models include the Brusselator
system [1, 13, 31], the Gray-Scott system [16, 18, 24, 34, 35, 39] and the Glycolysis
model [26, 29, 30].

At the same time, the dynamics of infinite lattice systems has drawn much atten-
tion from mathematicians and physicists (e.g., [3, 4, 5, 13, 32]). Lattice dynamical
systems (LDSs) are spatiotemporal systems with discretization in some variables
including coupled ODEs /PDEs and coupled map lattices and cellular automata
[7], which occur in a wide variety of applications, ranging from biology [23, 33] to
chemical reaction theory [14, 22], laser system [15], electrical engineering [6], ma-
terial science [19], image processing and pattern recognition [8], [9]. In this paper,
we will deal with the existence of a random attractor for the stochastic three-
component reversible Gray-Scott system with additive white noise on an infinite
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lattice as follows:

dui = [d1(ui+1 − 2ui + ui−1)− (F + k)ui + u2
i vi − u3

i +Nzi + f1i]dt
+ αidwi,

dvi = [d2(vi+1 − 2vi + vi−1)− Fvi − u2
i vi + u3

i + f2i]dt+ αidwi,

dzi = [d3(zi+1 − 2zi + zi−1) + kui − (F +N)zi + f3i]dt+ αidwi,

(1.1)

for i ∈ Z and t > 0, with initial conditions

ui(0) = ui,0, vi(0) = vi,0, zi(0) = zi,0, i ∈ Z, (1.2)

where Z denotes the set of integers, u = (ui)i∈Z ∈ `2, v = (vi)i∈Z ∈ `2 and
z = (zi)i∈Z ∈ `2, d1, d2, d3, F, k, and N are positive constants, f1 = (f1i)i∈Z ∈ `2,
f2 = (f2i)i∈Z ∈ `2, f3 = (f3i)i∈Z ∈ `2, α = (αi)i∈Z ∈ `2, {wi|i ∈ Z} is independent
Brownian motions.

A three-component reversible Gray-Scott model was introduced in [24], which is
derived according to the scheme of following two reversible chemical or biochemical
reactions:

2A+B �k1
k−1

3A, A �k2
k−2

P.

In the reversible Gray-Scott model (1.1), k is the effective production rate for the
first reaction, 1/F is the mean residence time in the dimensionless unit, N is the
normalized rate of the second reverse reaction, and the parameter α measures the
proportional strength of the white noise dw/dt to the respective components.

Note the general Gray-Scott equations have the cubic terms ±Gu3, but here
we put G = 1, since the difficulties arise otherwise in the below estimations (3.9),
(4.4) and (4.15). This is one of the key observation in this paper. Equation (1.1)
can be regarded as a discrete analogue of the stochastic three-component reversible
Gray-Scott system on R:

ut = d14u− (F + k)u+ u2v − u3 +Nz + f1 + αwt,

vt = d24v − Fv − u2v + u3 + f2 + αwt,

zt = d34z + ku− (F +N)z + f3 + αwt.

(1.3)

The asymptotic dynamics of solutions for the reversible Gray-Scott system (where
α = 0) have been studied by several authors, e.g. [16, 18, 21, 34, 35, 37, 39]. The
established results naturally focus on the existence of global attractors by showing
the absorbing property and the asymptotic compactness of the solution semigroups
for autonomous system [18, 21, 34, 35, 37, 39] or the skew-product flow for non-
autonomous system [16].

For stochastic three-component reversible Gray-Scott system, the solution map-
ping defines a random dynamical system, which is a parametric dynamical system.
Random attractors are the appropriate objects for describing asymptotic dynamics
of such a parametric dynamical systems and have been studied by several authors
[17, 38]. Note that in these papers, only multiplicative white noise was considered.
In this paper we study stochastic reversible Gray-Scott system driven by additive
white noise as in (1.1). The impact of these two types of noise on the solutions of
stochastic reversible Gray-Scott system is quite different. When dealing with ran-
dom attractors of stochastic equations, we usually transform the stochastic equation
into a pathwise one with random parameters. Additive noises are more challenge
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than multiplicative noises, there is still open to prove the existence of random at-
tractor for stochastic Brusslator system with additive noise. And if the stochastic
three-component reversible Gray-Scott system is driven by additive white noise,
then there are several additional terms appearing after the equation is transformed
(see (4.1) in Section 4). These terms have great effect on the way to derive uniform
estimates of solutions. This is the topic we want to study as well as one of the
main contributions in this work. Beside this common difficulty, there exist new
challenges in analyzing the second pair of oppositely signed cubic terms ±u3 in
the u-equation and the v-equation, and the occurrence of the third component’s
z-equation, which do not occur in dealing with the case of Gray-Scott equations in
[17]. In addition, for the discrete time models governed by difference equations are
more appropriate than the continuous ones. However, very few investigations are
on this topic, especially for the stochastic three-component reversible Gray-Scott
system with additive white noise on infinite lattice, to the best of our knowledge.

This paper is organized as follows. In Section 2 we recall some basic concepts
and results related to random attractor for random dynamical systems. In Section
3 we formulate the problem and make assumptions to define a random dynamical
system generated by the stochastic three-component reversible Gray-Scott system
in an infinite lattice with additive white noise. In Section 4, we conduct uniform
estimate to prove the pullback absorbing property and the pullback asymptotic
compactness for the random dynamical system. Then the existence of random
attractors for (1.1) on infinite lattices is obtained.

2. Preliminaries

In this section, we introduce the definitions of the random dynamical system and
the random attractor, which are taken from [3, 10, 12, 20].

Let (H, d) be a complete separable metric space, (Ω,F ,P) be a probability space,
R+ = [0,∞).

Definition 2.1. (Ω,F ,P, (θt)t∈R) is called a metric dynamical system if θ : R×Ω→
Ω is (B(R)×F ,F) measurable, θ0 = I, θs+t = θs ◦ θt for all s, t ∈ R, and θtP = P
for all t ∈ R.

Definition 2.2. A continuous random dynamical system (RDS) on H over a metric
dynamical system (Ω,F ,P, (θt)t∈R) is a mapping

ϕ : R+ × Ω×H → H, (t, ω, x) 7→ ϕ(t, ω, x),

which is (B(R+)×F × B(H),B(H))-measurable and satisfies, for every ω ∈ Ω,
(i) ϕ(0, ω, ·) is the identity on H;

(ii) Cocycle property: ϕ(t+ s, ω, ·) = ϕ(t, θsω, ϕ(s, ω, ·)) for all t, s ∈ R+;
(iii) ϕ(·, ω, ·) : R+ ×H → H is strongly continuous.

Definition 2.3. The set A ⊂ Ω is called invariant with respect to (θt)t∈R if for all
t ∈ R, θ−1

t A = A.

Definition 2.4. A random bounded set B(ω) ⊂ X is called tempered with respect
to (θt)t∈R if for every ω ∈ Ω,

lim
t→∞

eβtd(B(θ−tω)) = 0 for all β > 0,

where d(B) = supx∈B ‖x‖X .
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Definition 2.5. A random set K(ω) is called a pullback absorbing set in D, where
D is a collection of random sets of H, if for all B ∈ D and every ω ∈ Ω, there exists
a tB(ω) > 0 such that

ϕ(t, θ−tω,B(θ−tω)) ⊂ K(ω), for all t ≥ tB(ω).

Definition 2.6. Suppose ϕ(t, ω) is a RDS, a random set A is called a random D
attractor if the following hold:

(i) A(ω) is a random compact set, i.e., ω → d(x,A(ω)) is measurable for every
x ∈ H and A(ω) is compact for every ω ∈ Ω;

(ii) A(ω) is strictly invariant, i.e., for every ω ∈ Ω and all t ≥ 0 one has
ϕ(t, ω,A(ω)) = A(θtω);

(iii) A(ω) attracts all sets in D, i.e. for all B ∈ D and ω ∈ Ω we have

lim
t→∞

d(ϕ(t, θ−tω,B(θ−tω)),A(ω)) = 0,

where d(X,Y ) = supx∈X infy∈Y ‖x − y‖H is the Hausdorff semi-metric
(here, X ⊆ H,Y ⊆ H).

Theorem 2.7 ([3, Proposition 4.1]). Let K(ω) ∈ D be an absorbing set for the
random dynamical system ϕ(t, θ−tω)t≥0,ω∈Ω which is closed and which satisfies
for ω ∈ Ω the following asymptotic compactness condition: each sequence xn ∈
ϕ(tn, θ−tnω,K(θ−tnω)) with tn →∞ has a convergent subsequence in H. Then the
random dynamical system ϕ has a unique global random attractor

A(ω) = ∩t≥tK(ω)∪t≥τϕ(t, θ−tω,K(θ−tω)).

3. Existence and uniqueness of solutions

In this paper, we have the following standing assumption on the constants in
(1.1):

N + k ≤ 2/7F. (3.1)

which will be used in (3.11), (4.6) and (4.20). We shall use Ci to denote generic or
specific positive constants which do not depend on the proportional strength α of
additive white noise in (1.1).

We first formulate the mathematical setting of our problem (1.1)-(1.2). Set

`2 = {u = (ui)i∈Z : ui ∈ R,
∑
i∈Z
|ui|2 < +∞},

equipped it with the inner product and norm as follows:

〈u, v〉 =
∑
i∈Z

uivi, ‖u‖2 = 〈u, u〉, u = (ui)i∈Z, v = (vi)i∈Z ∈ `2.

Then `2 = (`2, 〈·, ·〉, ‖ · ‖) is a Hilbert space. Set E = `2 × `2 × `2 be the product
Hilbert space. In view of the cubic term ±u2v,±u3, we need u ∈ `6, v ∈ `6 to make
(1.1) hold in `2.

Define A,B and B∗ to be linear operators from `2 to `2 as follows:

(Bu)i = ui+1 − ui, (B∗u)i = ui−1 − ui,
(Au)i = −ui+1 + 2ui − ui−1, for all i ∈ Z.
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It is easy to show that A = BB∗ = B∗B, and (B∗u, v) = (u,Bv) for all u, v ∈ `2,
which implies that (Au, u) ≥ 0 for all u ∈ `2. Indeed, A,B and B∗ are all bounded
operators from `2 to `2, because

‖Bu‖2 =
∑
i∈Z
|ui+1 − ui|2 ≤ 4‖u‖2, ∀u = (ui)i∈Z ∈ `2,

‖B∗u‖2 ≤ 4‖u‖2, ‖Au‖2 ≤ ‖BB∗u‖ ≤ 16‖u‖2, ∀u = (ui)i∈Z ∈ `2.

Let ei ∈ `2 denote the element having 1 at position i and all the other components
0. Define

W (t) ≡W (t, ω) =
∑
i∈Z

αiwi(t)ei, with (αi)i∈Z ∈ `2

as the white noise with values in `2 defined on the probabilities space (Ω,F ,P),
where

Ω = {ω ∈ C(R, `2) : ω(0) = 0},
the σ-algebra F is generated by the compact open topology ([2], Appendices A.2
and A.3), and P is the corresponding Wiener measure on F . Let

θtω(·) = ω(·+ t)− ω(t), t ∈ R,
then (Ω,F ,P, (θt)t∈R) is a metric dynamical system.

We rewrite system (1.1) with initial values Y0 = (u0 = (u0,i)i∈Z, v0 = (v0,i)i∈Z,
z0 = (z0,i)i∈Z)T in a vector form as the integral equations in E = `2 × `2 × `2:

u(t) = u0 +
∫ t

0

[
− d1Au(s)− (F + k)u(s) + u2(s)v(s)− u3(s)

+Nz(s) + f1

]
ds+W (t),

v(t) = v0 +
∫ t

0

[−d2Av(s)− Fv(s)− u2(s)v(s) + u3(s) + f2]ds+W (t),

z(t) = z0 +
∫ t

0

[−d3Az(s) + ku(s)− (F +N)z(s) + f3]ds+W (t),

(3.2)

for t ≥ 0 and ω ∈ Ω.

Lemma 3.1. Assume that (3.1) holds and T > 0. Then the following properties
hold:

(1) For any initial data Y0 = (u0, v0, z0)T ∈ E, there exists a unique solution
Y (t) = (u(t), v(t), z(t))T ∈ L2(Ω, C([0, T ], E)) of equations (1.1).

(2) For all ω ∈ Ω, we have the following estimate

sup
t∈[0,T ]

[‖u(t)‖2 + ‖v(t)‖2 + ‖z(t)‖2]

≤ 2(‖u0‖2 + ‖v0‖2 + ‖z0‖2) + 6 sup
t∈[0,T ]

‖W (t)‖2

+ 2C0

∫ T

0

(‖W (s)‖2 + ‖f1‖2 + ‖f2‖2 + ‖f3‖2)ds.

Proof. Equations (3.2) can be written as an abstract first-order ODE in E as follows

Y (t) = Y0 +
∫ t

0

ΘY (s)ds+
∫ t

0

G(Y (s))ds+W (t), t > 0,

Y (0) = Y0 = (u0, v0, z0)T ∈ E,
(3.3)
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where Y = (u, v, z)T , W (t) = (W (t),W (t),W (t))T and

Θ =

−d1A− (F + k)I 0 NI
0 −d2A− FI 0
kI 0 −d3A− (F +N)I

 ,

G(Y (s)) =

 u2v(s)− u3(s) + f1

−u2v(s) + u3(s) + f2

f3

 .

It is easy to show that the linear bounded operator Θ maps E into E. Let B be a
bounded set in E, we have

‖G(Y (1))−G(Y (2))‖2E
= ‖((u(1))2v(1) − (u(1))3 − (u(2))2v(2)

+ (u(2))3 − (u(1))2v(1) + (u(1))3 + (u(2))2v(2) − (u(2))3, 0)T ‖2E
= 2‖(u(1))2v(1) − (u(2))2v(2)‖2 + 2‖(u(1))3 − (u(2))3‖2

= 2‖(u(1))2(v(1) − v(2)) + v(2)(u(1))2 − (u(2))2‖2 + 2‖(u(1) − u(2))((u(1))2

+ (u(2))2 + u(1)u(2))‖2

≤ 2(2‖(u(1))2(v(1) − v(2))‖2 + 2‖v(2)(u(1) − u(2))(u(1) + u(2))‖2)

+ 3‖(u(1) − u(2))((u(1))2 + (u(2))2)‖2

≤ 4‖u(1)‖4‖v(1) − v(2)‖2 + 4‖v(2)‖2‖u(1) − u(2)‖2‖u(1) + u(2)‖2

+ 6‖(u(1) − u(2))‖2(‖u(1)‖4 + ‖u(2)‖4)

≤ 4L2(B)‖Y (1) − Y (2)‖2E + 4L(B)4L(B)‖Y (1) − Y (2)‖2E
+ 12L2(B)‖Y (1) − Y (2)‖2E
≤ 32L2(B)‖Y (1) − Y (2)‖2E ,

(3.4)

where L(B) is a positive constant depending only on B. (3.4) implies that G(Y )
is locally (with respect to Y ∈ E) Lipschitz from E to E. We obtain the property
(1) by the classical theory of ODEs.

To show the existence of a global solution of equations (3.2), we first transform
(3.2) into pathwise equations. Denote

û(t) = u(t)−W (t), v̂(t) = v(t)−W (t), ẑ(t) = z(t)−W (t).

Then equations (3.2) are transformed into the equations

û(t) = u0 +
∫ t

0

[−d1A(û(s) +W (s))− (F + k)(û(s) +W (s))

+ (û(s) +W (s))2(v̂(s) +W (s))]ds

+
∫ t

0

[−(û(s) +W (s))3 +N(ẑ(s) +W (s)) + f1]ds,

(3.5)

v̂(t) = v0 +
∫ t

0

[−d2A(v̂(s) +W (s))− F (v̂(s) +W (s))

− (û(s) +W (s))2(v̂(s) +W (s))]ds+
∫ t

0

[(û(s) +W (s))3 + f2]ds,
(3.6)
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ẑ(t) = z0 +
∫ t

0

[−d3A(ẑ(s) +W (s)) + k(û(s) +W (s))

− (F +N)(ẑ(s) +W (s)) + f3]ds.
(3.7)

For each fixed ω ∈ Ω, equations (3.5)-(3.7) are pathwise equations. By the clas-
sical theory of ODEs, it follows that equations (3.5)-(3.7) has a local solution
(û(t), v̂(t), ẑ(t))T ∈ L2(Ω, C([0, Tmax), E)), where [0, Tmax) is the maximal inter-
val of existence of the solution of (3.5)-(3.7). Next, we show that the local solution
is a global solution.

For a fixed ω ∈ Ω, taking the inner product of equation (3.5)-(3.7) with (û, v̂, ẑ)T

in E, we obtain

‖û(t)‖2 + ‖v̂(t)‖2 + ‖ẑ(t)‖2

≤ ‖u0‖2 + ‖v0‖2 + ‖z0‖2 − 2d1

∫ t

0

〈A(û(s) +W (s)), û(s)〉ds

− 2(F + k)
∫ t

0

〈û(s) +W (s), û(s)〉ds

+ 2
∫ t

0

〈(û(s) +W (s))2(v̂(s) +W (s)), û(s)〉ds

− 2
∫ t

0

〈(û(s) +W (s))3, û(s)〉ds+ 2
∫ t

0

〈f1, û(s)〉ds

+ 2N
∫ t

0

〈ẑ(s) +W (s), û(s)〉ds− 2d2

∫ t

0

〈A(v̂(s) +W (s)), v̂(s)〉ds (3.8)

− 2F
∫ t

0

〈v̂(s) +W (s), v̂(s)〉ds− 2
∫ t

0

〈(û(s) +W (s))2(v̂(s) +W (s)), v̂(s)〉ds

+ 2
∫ t

0

〈(û(s) +W (s))3, v̂(s)〉ds+ 2
∫ t

0

〈f2, v̂(s)〉ds

− 2d3

∫ t

0

〈A(ẑ(s) +W (s)), ẑ(s)〉ds+ 2k
∫ t

0

〈û(s) +W (s)), ẑ(s)〉ds

− 2(F +N)
∫ t

0

〈ẑ(s) +W (s), ẑ(s)〉ds+ 2
∫ t

0

〈f3, ẑ(s)〉ds.

Grouping the following terms on the right-hand side of (3.8), we have

2
∫ t

0

〈(û(s) +W (s))2(v̂(s) +W (s)), û(s)〉ds− 2
∫ t

0

〈(û(s) +W (s))3, û(s)〉ds

− 2
∫ t

0

〈(û(s) +W (s))2(v̂(s) +W (s)), v̂(s)〉ds+ 2
∫ t

0

〈(û(s) +W (s))3, v̂(s)〉ds

= 2
∫ t

0

〈(û(s) +W (s))2(v̂(s) +W (s)), û(s)− v̂(s)〉ds

− 2
∫ t

0

〈(û(s) +W (s))3, û(s)− v̂(s)〉ds

= 2
∫ t

0

〈(û(s) +W (s))2(v̂(s)− û(s)), û(s)− v̂(s)〉ds
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= −2
∫ t

0

∑
i∈Z

(ûi(s) +Wi(s))2(ûi(s)− v̂i(s))2ds ≤ 0. (3.9)

From (3.8)-(3.9), we have

‖û(t)‖2 + ‖v̂(t)‖2 + ‖ẑ(t)‖2

≤ ‖u0‖2 + ‖v0‖2 + ‖z0‖2 − 2d1

∫ t

0

〈AW (s), û(s)〉ds

− 2(F + k)
∫ t

0

‖û(s)‖2ds− 2(F + k −N)
∫ t

0

〈W (s), û(s)〉ds

+ 2(N + k)
∫ t

0

〈ẑ(s), û(s)〉ds− 2d2

∫ t

0

〈AW (s), v̂(s)〉ds

− 2F
∫ t

0

‖v̂(s)‖2ds− 2F
∫ t

0

〈W (s), v̂(s)〉ds− 2d3

∫ t

0

〈AW (s), ẑ(s)〉ds

− 2(F +N)
∫ t

0

‖ẑ(s)‖2ds− 2(F +N − k)
∫ t

0

〈W (s), ẑ(s)〉ds

+ 2
∫ t

0

〈f1, û(s)〉ds+ 2
∫ t

0

〈f2, v̂(s)〉ds+ 2
∫ t

0

〈f3, ẑ(s)〉ds.

(3.10)

By Young’s inequality, we have the following estimates

−2d1〈AW, û〉 ≤
F + k

4
‖û‖2 +

4d2
1

F + k
‖A‖2‖W‖2,

−2d2〈AW, v̂〉 ≤
F

3
‖v̂‖2 +

3d2
2

F
‖A‖2‖W‖2,

−2d3〈AW, ẑ〉 ≤
F +N

4
‖ẑ‖2 +

4d2
3

F +N
‖A‖2‖W‖2,

−2(F + k −N)〈W, û〉 ≤ F + k

4
‖û‖2 +

4(F + k −N)2

F + k
‖W‖2,

2(N + k)〈û, ẑ〉 ≤ (N + k)‖û‖2 + (N + k)‖ẑ‖2,

−2F 〈W, v̂〉 ≤ F

3
‖v̂‖2 + 3F‖W‖2,

−2(F +N − k)〈W, ẑ〉 ≤ F +N

4
‖ẑ‖2 +

4(F +N − k)2

F +N
‖W‖2

2〈f1, û(s)〉 ≤ F + k

4
‖û‖2 +

4
F + k

‖f1‖2,

2〈f2, v̂(s)〉ds ≤ F

3
‖v̂‖2 +

3
F
‖f2‖2,

2〈f3, ẑ(s)〉ds ≤
F +N

4
‖ẑ‖2 +

4
F +N

‖f3‖2.

By (3.1), we have

N + k ≤ F + k

4
, N + k ≤ F +N

4
. (3.11)

Thus, we obtain

‖ũ(t)‖2 + ‖v̂(t)‖2 + ‖ẑ(t)‖2
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≤ ‖u0‖2 + ‖v0‖2 + ‖z0‖2 +
F + k

4

∫ t

0

‖û(s)‖2ds+
4d2

1

F + k
‖A‖2‖W (s)‖2ds

− 2(F + k)
∫ t

0

‖û(s)‖2ds+
F + k

4

∫ t

0

‖ũ(s)‖2ds

+
4(F + k −N)2

F + k

∫ t

0

‖W (s)‖2ds+ (N + k)
∫ t

0

‖û(s)‖2ds

+ (N + k)
∫ t

0

‖ẑ(s)‖2ds+
F

3

∫ t

0

‖ṽ(s)‖2ds+
3d2

2

F

∫ t

0

‖A‖2‖W (s)‖2ds

− 2F
∫ t

0

‖v̂(s)‖2ds+
F

3

∫ t

0

‖ṽ(s)‖2ds+ 3F
∫ t

0

‖W (s)‖2ds

+
F +N

4

∫ t

0

‖ẑ(s)‖2ds+
4d2

3

F +N

∫ t

0

‖A‖2‖W (s)‖2ds

− 2(F +N)
∫ t

0

‖ẑ(s)‖2ds+
F +N

4

∫ t

0

‖ẑ(s)‖2ds

+
4(F +N − k)2

F +N

∫ t

0

‖W (s)‖2ds+
F + k

4

∫ t

0

‖û(s)‖2ds+
4

F + k

∫ t

0

‖f1‖2ds

+
F

3

∫ t

0

‖v̂(s)‖2ds+
3
F

∫ t

0

‖f2‖2ds+
F +N

4

∫ t

0

‖ẑ(s)‖2ds

+
4

F +N

∫ t

0

‖f3‖2ds

≤ ‖u0‖2 + ‖v0‖2 + ‖z0‖2 − (F + k)
∫ t

0

‖û(s)‖2ds− F
∫ t

0

‖v̂(s)‖2ds

− (F +N)
∫ t

0

‖ẑ(s)‖2ds+
4d2

1

F + k
‖A‖2‖W (s)‖2ds

+
4(F + k −N)2

F + k

∫ t

0

‖W (s)‖2ds+
3d2

2

F

∫ t

0

‖A‖2‖W (s)‖2ds

+ 3F
∫ t

0

‖W (s)‖2ds+
4d2

3

F +N

∫ t

0

‖A‖2‖W (s)‖2ds

+
4(F +N − k)2

F +N

∫ t

0

‖W (s)‖2ds+
4

F + k

∫ t

0

‖f1‖2ds+
3
F

∫ t

0

‖f2‖2ds

+
4

F +N

∫ t

0

‖f3‖2ds .

Then

‖ũ(t)‖2 + ‖v̂(t)‖2 + ‖ẑ(t)‖2

≤ ‖u0‖2 + ‖v0‖2 + ‖z0‖2 − (F + k)
∫ t

0

‖û(s)‖2ds− F
∫ t

0

‖v̂(s)‖2ds

− (F +N)
∫ t

0

‖ẑ(s)‖2ds+
( 4d2

1

F + k
+

3d2
2

F
+

4d2
3

F +N

)∫ t

0

‖A‖2‖W (s)‖2ds

+
(4(F + k −N)2

F + k
+ 3F +

4(F +N − k)2

F +N

)∫ t

0

‖W (s)‖2ds
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+
4

F + k

∫ t

0

‖f1‖2ds+
3
F

∫ t

0

‖f2‖2ds+
4

F +N

∫ t

0

‖f3‖2ds

≤ ‖u0‖2 + ‖v0‖2 + ‖z0‖2 − F
∫ t

0

(‖û(s)‖2 + ‖v̂(s)‖2 + ‖ẑ(s)‖2)ds

+ C1

∫ t

0

‖A‖2‖W (s)‖2ds+ C2

∫ t

0

‖W (s)‖2ds

+ C3

∫ t

0

(‖f1‖2 + ‖f2‖2 + ‖f3‖2)ds

≤ ‖u0‖2 + ‖v0‖2 + ‖z0‖2 + C0

∫ t

0

(‖W (s)‖2 + ‖f1‖2 + ‖f2‖2 + ‖f3‖2)ds, (3.12)

where

C1 =
4d2

1

F + k
+

3d2
2

F
+

4d2
3

F +N
,

C2 =
4(F + k −N)2

F + k
+ 3F +

4(F +N − k)2

F +N
,

C3 = max{ 4
F + k

,
3
F
,

4
F +N

}, C0 = max{C1‖A‖2 + C2, C3}.

(3.13)

Hence, from (3.12), we obtain that ‖û(t)‖2 + ‖v̂(t)‖2 + ‖ẑ(t)‖2 is bounded by a
continuous function, which implies the global existence of a solution on interval
[0, T ]. Therefore, for all ω ∈ Ω, it follows that

sup
t∈[0,T ]

[‖u(t)‖2 + ‖v(t)‖2 + ‖z(t)‖2]

= sup
t∈[0,T ]

[‖û(t) +W (t)‖2 + ‖v̂(t) +W (t)‖2 + ‖ẑ(t) +W (t)‖2]

≤ 2(‖u0‖2 + ‖v0‖2 + ‖z0‖2) + 6 sup
t∈[0,T ]

‖W (t)‖2

+ 2C0

∫ T

0

(‖W (s)‖2 + ‖f1‖2 + ‖f2‖2 + ‖f3‖2)ds.

(3.14)

Thus, the proof is complete. �

Theorem 3.2. Equation (3.2) generates a continuous RDS {ϕ(t, ω)}t≥0,ω∈Ω over
(Ω,F ,P, (θt)t∈R), where

ϕ(t, ω, (u0, v0, z0)) = (u(t, ω, u0), v(t, ω, v0), z(t, ω, z0)), for all t ≥ 0, ω ∈ Ω.

The proof of the above theorem is similar to that of [3, Theorem 3.2]. We omit
it.

4. Existence of random attractors

In this section, we prove the existence of a random attractor for the random
dynamical system generated by (1.1). To convert the stochastic wave equation
to a pathwise one with random parameters, we introduce an Ornstein-Uhlenbeck
process in `2 on the metric dynamical systems (Ω,F ,P, (θt)t∈R) given by the Wiener
process:

y(θtω) = −(F +N + k)
∫ 0

−∞
e(F+N+k)s(θtω)(s)ds, t ∈ R, ω ∈ Ω.
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The above integral exists for any path ω with a sub-exponential growth, and y solve
the following Itô equations respectively:

dy + (F +N + k)ydt = dw(t), t > 0.

Furthermore, there exists a θt-invariant set Ω′ ⊂ Ω of full P measure such that

(1) the mappings s→ y(θsω), is continuous for each ω ∈ Ω;
(2) the random variables ‖y(θtω)‖ is tempered.

Let

ũ(t) = u(t)− y(θtω), ṽ(t) = v(t)− y(θtω), z̃(t) = z(t)− y(θtω).

Then we obtain

ũt = −d1A(ũ+ y(θtω))− (F + k)ũ+ (ũ+ y(θtω))2(ṽ + y(θtω))

− (ũ+ y(θtω))3 +Nz̃ + f1 + 2Ny(θtω),

ṽt = −d2A(ṽ + y(θtω))− F ṽ − (ũ+ y(θtω))2(ṽ + y(θtω))

+ (ũ+ y(θtω))3 + f2 + (N + k)y(θtω),

z̃t = −d3A(z̃ + y(θtω)) + kũ− (F +N)z̃ + f3 + 2ky(θtω),

(4.1)

with the initial value conditions

ũ(0, ω, ũ0) = ũ0(ω) = u0 − y(ω), ṽ(0, ω, ṽ0) = ṽ0(ω) = v0 − y(ω),

z̃(0, ω, z̃0) = z̃0(ω) = v0 − y(ω).

Lemma 4.1. Let (3.1) hold. There exists a θt-invariant set Ω′ ⊂ Ω of full P
measure and an absorbing random set K(ω), ω ∈ Ω′, for the random dynamical
system ϕ(t, ω), i.e. for all B ∈ D and all ω ∈ Ω′, there exists TB(ω) > 0 such that

ϕ(t, θ−tω,B(θ−tω)) ⊂ K(ω) for all t ≥ TB(ω).

Moreover, K ∈ D.

Proof. Taking the inner product of (4.1) with (ũ, ṽ, z̃)T in E, we obtain

1
2
d

dt
‖ũ‖2

= −d1〈Aũ, ũ〉 − d1〈Ay(θtω), ũ〉 − (F + k)‖ũ‖2 + 〈(ũ+ y(θtω))2(ṽ + y(θtω)), ũ〉
− 〈(ũ+ y(θtω))3, ũ〉+ 〈Nz̃, ũ〉+ 〈f1, ũ〉+ 2N〈y(θtω), ũ〉,
1
2
d

dt
‖ṽ‖2

= −d2〈Aṽ, ṽ〉 − d2〈Ay(θtω), ṽ〉 − F‖ṽ‖2 − 〈(ũ+ y(θtω))2(ṽ + y(θtω)), ṽ〉
+ 〈(ũ+ y(θtω))3, ṽ〉+ 〈f2, ṽ〉+ (N + k)〈y(θtω), ṽ〉,

1
2
d

dt
‖z̃‖2 = −d3〈Az̃, z̃〉 − d3〈Ay(θtω)), z̃〉+ k〈ũ, z̃〉 − (F +N)‖z̃‖2

+ 〈f3, z̃〉+ 2k〈y(θtω), z̃〉.
(4.2)
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Summing the three equations, we obtain

d

dt
[‖ũ‖2 + ‖ṽ‖2 + ‖z̃‖2] + 2d1〈Aũ, ũ〉+ 2d2〈Aṽ, ṽ〉+ 2d3〈Az̃, z̃〉

+ 2(F + k)‖ũ‖2 + 2F‖ṽ‖2 + 2(F +N)‖z̃‖2

= −2d1〈Ay(θtω), ũ〉 − 2d2〈Ay(θtω), ṽ〉 − 2d3〈Ay(θtω)), z̃〉+ 2(N + k)〈z̃, ũ〉
+ 2〈f1, ũ〉+ 4N〈y(θtω), ũ〉 − 2〈(ũ+ y(θtω))2(ṽ + y(θtω)), ṽ〉
+ 2〈(ũ+ y(θtω))2(ṽ + y(θtω)), ũ〉 − 2〈(ũ+ y(θtω))3, ũ〉
+ 2〈(ũ+ y(θtω))3, ṽ〉+ 2〈f2, ṽ〉+ 2(N + k)〈y(θtω), ṽ〉+ 2〈f3, z̃〉
+ 4k〈y(θtω), z̃〉.

(4.3)

Similar to (3.9), we have

− 2〈(ũ+ y(θtω))2(ṽ + y(θtω)), ṽ〉+ 2〈(ũ+ y(θtω))2(ṽ + y(θtω)), ũ〉
− 2〈(ũ+ y(θtω))3, ũ〉+ 2〈(ũ+ y(θtω))3, ṽ〉
= 2〈(ũ+ y(θtω))2(ṽ + y(θtω)), ũ− ṽ〉 − 2〈(ũ+ y(θtω))3, ũ− ṽ〉
= −2〈(ũ+ y(θtω))2(ũ− ṽ), ũ− ṽ〉

= −2
∑
i∈Z

(ũi + yi(θtω))2(ũi − ṽi)2 ≤ 0.

(4.4)

By Young’s inequality, we have the estimates

−2d1〈Ay(θtω), ũ〉 ≤ F + k

4
‖ũ‖2 +

4d2
1

F + k
‖Ay(θtω)‖2,

−2d2〈Ay(θtω), ṽ〉 ≤ F

3
‖ṽ‖2 +

3d2
2

F
‖Ay(θtω)‖2,

−2d3〈Ay(θtω), z̃〉 ≤ F +N

4
‖z̃‖2 +

4d2
3

F +N
‖Ay(θtω)‖2,

4N〈y(θtω), ũ〉 ≤ F + k

4
‖ũ‖2 +

16N2

F + k
‖y(θtω)‖2,

2(N + k)〈ũ, z̃〉 ≤ (N + k)‖ũ‖2 + (N + k)‖z̃‖2,

2(N + k)〈y(θtω), ṽ〉 ≤ F

3
‖ṽ‖2 +

3(N + k)2

F
‖y(θtω)‖2,

4k〈y(θtω), z̃〉 ≤ F +N

4
‖z̃‖2 +

16k2

F +N
‖y(θtω)‖2,

2〈f1, ũ〉 ≤
F + k

4
‖ũ‖2 +

4
F + k

‖f1‖2,

2〈f2, ṽ〉ds ≤
F

3
‖ṽ‖2 +

3
F
‖f2‖2,

2〈f3, z̃〉ds ≤
F +N

4
‖z̃‖2 +

4
F +N

‖f3‖2.

(4.5)

By (4.3)-(4.5), we obtain

d

dt
[‖ũ‖2 + ‖ṽ‖2 + ‖z̃‖2] + 2(F + k)‖ũ‖2 + 2F‖ṽ‖2 + 2(F +N)‖z̃‖2

≤ F + k

4
‖ũ‖2 +

4d2
1

F + k
‖Ay(θtω)‖2 +

F

3
‖ṽ‖2 +

3d2
2

F
‖Ay(θtω)‖2 +

F +N

4
‖z̃‖2
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+
4d2

3

F +N
‖Ay(θtω)‖2 + (N + k)‖ũ‖2 + (N + k)‖z̃‖2 +

F + k

4
‖ũ‖2

+
4

F + k
‖f1‖2 +

F + k

4
‖ũ‖2 +

16N2

F + k
‖y(θtω)‖2 +

F

3
‖ṽ‖2

+
3
F
‖f2‖2 +

F

3
‖ṽ‖2 +

3(N + k)2

F
‖y(θtω)‖2 +

F +N

4
‖z̃‖2

+
4

F +N
‖f3‖2 +

F +N

4
‖z̃‖2 +

16k2

F +N
‖y(θtω)‖2.

From (3.1) and (3.11), we have

d

dt
[‖ũ‖2 + ‖ṽ‖2 + ‖z̃‖2] + (F + k)‖ũ‖2 + F‖ṽ‖2 + (F +N)‖z̃‖2

≤ 4d2
1

F + k
‖Ay(θtω)‖2 +

3d2
2

F
‖Ay(θtω)‖2 +

4d2
3

F +N
‖Ay(θtω)‖2

+
16N2

F + k
‖y(θtω)‖2 +

3(N + k)2

F
‖y(θtω)‖2

+
16k2

F +N
‖y(θtω)‖2 +

4
F + k

‖f1‖2 +
3
F
‖f2‖2 +

4
F +N

‖f3‖2

≤ C1‖Ay(θtω)‖2 + C4‖y(θtω)‖2 + C3(‖f1‖2 + ‖f2‖2 + ‖f3‖2)

≤ C5(‖y(θtω)‖2 + ‖Ay(θtω)‖2 + ‖f1‖2 + ‖f2‖2 + ‖f3‖2),

(4.6)

where C1 and C3 are defined in (3.13), C4 = 16N2/(F + k) + 3(N + k)2/F +
16k2/(F + N), and C5 = max{C1, C3, C4}. By Gronwall’s inequality, it follows
that
‖ũ(t, ω, ũ0(ω))‖2 + ‖ṽ(t, ω, ṽ0(ω))‖2 + ‖z̃(t, ω, z̃0(ω))‖2

≤ e−Ft[‖ũ0(ω)‖2 + ‖ṽ0(ω)‖2 + ‖z̃0(ω)‖2] +
C5

F
(‖f1‖2 + ‖f2‖2 + ‖f3‖2)

+ C5

∫ t

0

e−F (t−s)(‖y(θsω)‖2 + ‖Ay(θsω)‖2)ds.

(4.7)

Note that the random variable y(θtω) is tempered and y(θtω) is continuous in t.
Therefore, it follows from Proposition 4.3.3 in [2] that there exists a tempered
function l(ω) > 0 such that

‖y(θtω)‖2 + ‖Ay(θtω)‖2 ≤ l(θtω) ≤ l(ω)eF |t|/2. (4.8)

Replacing ω by θ−tω in (4.7) and using (4.8), we obtain

‖ũ(t, θ−tω, ũ0(θ−tω))‖2 + ‖ṽ(t, θ−tω, ṽ0(θ−tω))‖2 + ‖z̃(t, θ−tω, z̃0(θ−tω))‖2

≤ e−Ft[‖ũ0(θ−tω)‖2 + ‖ṽ0(θ−tω)‖2 + ‖z̃0(θ−tω)‖2] +
C5

F
(‖f1‖2 + ‖f2‖2 + ‖f3‖2)

+ C5

∫ t

0

e−F (t−s)(‖y(θs−tω)‖2 + ‖Ay(θs−tω)‖2)ds

≤ e−Ft[‖ũ0(θ−tω)‖2 + ‖ṽ0(θ−tω)‖2 + ‖z̃0(θ−tω)‖2] +
C5

F
(‖f1‖2 + ‖f2‖2 + ‖f3‖2)

+ C5

∫ 0

−t
eFτ (‖y(θτω)‖2 + ‖Ay(θτω)‖2)dτ

≤ e−Ft[‖ũ0(θ−tω)‖2 + ‖ṽ0(θ−tω)‖2 + ‖z̃0(θ−tω)‖2]
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+
C5

F
(‖f1‖2 + ‖f2‖2 + ‖f3‖2) +

2C5l(ω)
F

. (4.9)

Define R2(ω) = 2[C5(‖f1‖2 +‖f2‖2 +‖f3‖2) + 2C5l(ω)]/F ; since l(ω) is a tempered
function, then R(ω) is also tempered. Define

K̃(ω) = {(ũ, ṽ, z̃) ∈ `2 × `2 × `2, ‖ũ‖2 + ‖ṽ‖2 + ‖z̃‖2 ≤ R2(ω)}.

Then K̃(ω) is an absorbing set for the random dynamical system

(ũ(t, ω, ũ0), ṽ(t, ω, ṽ0), z̃(t, ω, z̃0));

that is, for every B ∈ D and every ω ∈ Ω′, there exists TB(ω) such that

Φ(t, θ−tω,B(θ−tω)) ⊂ K̃(ω) for t ≥ TB(ω).

Let
K(ω) = {(u, v, z) ∈ `2 × `2 × `2, ‖u‖2 + ‖v‖2 + ‖z‖2 ≤ R2

1(ω)},
where

R2
1(ω) = 2R2(ω) + 6‖y(θtω)‖2.

Then, K(ω) is an absorbing random set for the random dynamical system ϕ(t, ω)
since

ϕ(t, ω, (u0, v0, z0))

= Φ(t, ω, (u0 − y(ω), v0 − y(ω), z0 − y(ω))) + (y(θtω), y(θtω), y(θtω))

= (ũ(t, ω, u0 − y(ω)) + y(θtω), ṽ(t, ω, v0 − y(ω)) + y(θtω), z̃(t, ω, z0 − y(ω))

+ y(θtω))

and K ∈ D. This completes the proof. �

To prove the pullback asymptotic compactness for the dynamical system ϕ, we
first prove the following lemma.

Lemma 4.2. Let (3.1) hold. Assume the initial functions (u0(ω), v0(ω), z0(ω)) ∈
K(ω), where K(ω) is the absorbing set in Lemma 4.1. Then for every ε > 0, there
exist T (ε, ω) > 0 and N(ε, ω) > 0 such that the solution

(u(t, ω, u0(ω)), v(t, ω, v0(ω)), z(t, ω, z0(ω)))

of (1.1) satisfies∑
|i|≥N(ε,ω)

[
‖u(t, θ−tω, u0(θ−tω))‖2 + ‖v(t, θ−tω, v0(θ−tω))‖2

+ ‖z(t, θ−tω, z0(θ−tω))‖2
]
< ε,

for all t ≥ T (ε, ω) > 0.

Proof. We choose a smooth function ρ such that 0 ≤ ρ ≤ 1 for all s ∈ R and

ρ(s) =

{
0, if |s| < 1,
1, if |s| > 2,

(4.10)

and there exists a positive constant C6, such that |ρ′(s)| ≤ C6 for s ∈ R.
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We first consider the random equation (4.1). Let r be a fixed positive integer
which will be specified later. Taking the inner product of (4.1) with ρ( |i|r )ũ, ρ( |i|r )ṽ
and ρ( |i|r )z̃ in E, respectively, we obtain

1
2
d

dt

∑
i∈Z

ρ
( |i|
r

)
|ũi|2

= −d1〈Aũ, ρ
( |i|
r

)
ũ〉 − d1〈Ay(θtω), ρ

( |i|
r

)
ũ〉 − (F + k)

∑
i∈Z

ρ
( |i|
r

)
|ũi|2

+ 〈(ũ+ y(θtω))2(ṽ + y(θtω)), ρ
( |i|
r

)
ũ〉 − 〈(ũ+ y(θtω))3, ρ

( |i|
r

)
ũ〉

+N〈z̃, ρ
( |i|
r

)
ũ〉+ 〈f1, ρ

( |i|
r

)
ũ〉+ 2N〈y(θtω), ρ

( |i|
r

)
ũ〉,

1
2
d

dt

∑
i∈Z

ρ
( |i|
r

)
|ṽi|2

= −d2〈Aṽ, ρ
( |i|
r

)
ṽ〉 − d2〈Ay(θtω), ρ

( |i|
r

)
ṽ〉 − F

∑
i∈Z

ρ
( |i|
r

)
|ṽi|2

− 〈(ũ+ y(θtω))2(ṽ + y(θtω)), ρ
( |i|
r

)
ṽ〉+ 〈(ũ+ y(θtω))3, ρ

( |i|
r

)
ṽ〉

+ 〈f2, ρ
( |i|
r

)
ṽ〉+ (N + k)〈y(θtω), ρ

( |i|
r

)
ṽ〉,

(4.11)

1
2
d

dt

∑
i∈Z

ρ
( |i|
r

)
|z̃i|2

= −d3〈Az̃, ρ
( |i|
r

)
z̃〉 − d3〈Ay(θtω), ρ

( |i|
r

)
z̃〉 − (F +N)

∑
i∈Z

ρ
( |i|
r

)
|z̃i|2

+ k〈ũ, ρ
( |i|
r

)
z̃〉+ 〈f3, ρ

( |i|
r

)
z̃〉+ 2k〈y(θtω), ρ

( |i|
r

)
z̃〉.

Recalling the property |ρ′(s)| ≤ C6, we have

〈Aũ, ρ
( |i|
r

)
ũ〉

=
∑
i∈Z

(Bũ)i
(
Bρ
( |i|
r

)
ũ
)
i

=
∑
i∈Z

(Bũ)i
[
ρ
( |i+ 1|

r

)
ũi+1 − ρ

( |i|
r

)
ũi

]
=
∑
i∈Z

(ũi+1 − ũi)
[
ρ
( |i|
r

)
(ũi+1 − ũi) +

(
ρ
( |i+ 1|

r

)
− ρ
( |i|
r

))
ũi+1

]
≥
∑
i∈Z

ρ
( |i|
r

)
|ũi+1 − ũi|2 −

∑
i∈Z

ρ′ (ξ)
r

(ũi+1 − ũi)ũi+1

≥ −C6

r

∑
i∈Z

(|ũi+1|2 + |ũi||ũi+1|) ≥ −
2C6

r
‖ũ‖2.

(4.12)
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Similarly, we have

〈Aṽ, ρ
( |i|
r

)
ṽ〉 =

∑
i∈Z

(Bṽ)i
(
Bρ
( |i|
r

)
ṽ
)
i
≥ −2C6

r
‖ṽ‖2,

〈Az̃, ρ
( |i|
r

)
z̃〉 =

∑
i∈Z

(Bz̃)i
(
Bρ
( |i|
r

)
z̃
)
i
≥ −2C6

r
‖z̃‖2.

(4.13)

Summing the three equations in (4.11), we find that

1
2
d

dt

∑
i∈Z

ρ
( |i|
r

) [
|ũi|2 + |ṽi|2 + |z̃i|2

]
+ (F + k)

∑
i∈Z

ρ
( |i|
r

)
|ũi|2

+ F
∑
i∈Z

ρ
( |i|
r

)
|ṽi|2 + (F +N)

∑
i∈Z

ρ
( |i|
r

)
|z̃i|2

≤ 2C6d1

r
‖ũ‖2 +

2C6d2

r
‖ṽ‖2 +

2C6d3

r
‖z̃‖2 + (N + k)〈z̃, ρ

( |i|
r

)
ũ〉

+ 〈(ũ+ y(θtω))2(ṽ + y(θtω)), ρ
( |i|
r

)
ũ〉 − 〈(ũ+ y(θtω))3, ρ

( |i|
r

)
ũ〉

− 〈(ũ+ y(θtω))2(ṽ + y(θtω)), ρ
( |i|
r

)
ṽ〉+ 〈(ũ+ y(θtω))3, ρ

( |i|
r

)
ṽ〉

+ 〈f1, ρ
( |i|
r

)
ũ〉+ 〈f2, ρ

( |i|
r

)
ṽ〉+ 〈f3, ρ

( |i|
r

)
z̃〉

− d1〈Ay(θtω), ρ
( |i|
r

)
ũ〉 − d2〈Ay(θtω), ρ

( |i|
r

)
ṽ〉 − d3〈Ay(θtω), ρ

( |i|
r

)
z̃〉

+ 2N〈y(θtω), ρ
( |i|
r

)
ũ〉+ (N + k)〈y(θtω), ρ

( |i|
r

)
ṽ〉+ 2k〈y(θtω), ρ

( |i|
r

)
z̃〉.

(4.14)

Grouping from the fifth term to eighth term of the right-hand side of (4.14), we
have

〈(ũ+ y(θtω))2(ṽ + y(θtω)), ρ
( |i|
r

)
ũ〉 − 〈(ũ+ y(θtω))3, ρ

( |i|
r

)
ũ〉

− 〈(ũ+ y(θtω))2(ṽ + y(θtω)), ρ
( |i|
r

)
ṽ〉+ 〈(ũ+ y(θtω))3, ρ

( |i|
r

)
ṽ〉

= 〈(ũ+ y(θtω))2(ṽ + y(θtω)), ρ
( |i|
r

)
(ũ− ṽ)〉

− 〈(ũ+ y(θtω))3, ρ
( |i|
r

)
(ũ− ṽ)〉

= 〈(ũ+ y(θtω))2(ṽ − ũ), ρ
( |i|
r

)
(ũ− ṽ)〉

= −
∑
i∈Z

ρ
( |i|
r

)
(ũi + yi(θtω))2(ũi − ṽi)2 ≤ 0.

(4.15)

Then (4.14) can be reduced to

d

dt

∑
i∈Z

ρ
( |i|
r

) [
|ũi|2 + |ṽi|2 + |z̃i|2

]
+ 2(F + k)

∑
i∈Z

ρ
( |i|
r

)
|ũi|2

+ 2F
∑
i∈Z

ρ
( |i|
r

)
|ṽi|2 + 2(F +N)

∑
i∈Z

ρ
( |i|
r

)
|z̃i|2
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≤ 4C6d1

r
‖ũ‖2 +

4C6d2

r
‖ṽ‖2 +

4C6d3

r
‖z̃‖2 + 2(N + k)〈z̃, ρ

( |i|
r

)
ũ〉 (4.16)

+ 2〈f1, ρ
( |i|
r

)
ũ〉+ 2〈f2, ρ

( |i|
r

)
ṽ〉+ 2〈f3, ρ

( |i|
r

)
z̃〉

− 2d1〈Ay(θtω), ρ
( |i|
r

)
ũ〉 − 2d2〈Ay(θtω), ρ

( |i|
r

)
ṽ〉 − 2d3〈Ay(θtω), ρ

( |i|
r

)
z̃〉

+ 4N〈y(θtω), ρ
( |i|
r

)
ũ〉+ 2(N + k)〈y(θtω), ρ

( |i|
r

)
ṽ〉+ 4k〈y(θtω), ρ

( |i|
r

)
z̃〉.

For the second term to forth term in the right-hand side of (4.16), we have

〈f1, ρ
( |i|
r

)
ũ〉 =

∑
i∈Z

ρ
( |i|
r

)
f1iũi

=
∑
|i|≥r

ρ
( |i|
r

)
f1iũi

≤ F + k

4

∑
|i|≥r

ρ
( |i|
r

)
|ũi|2 +

4
F + k

∑
|i|≥r

|f1i|2,

〈f2, ρ
( |i|
r

)
ṽ〉 =

∑
|i|≥r

ρ
( |i|
r

)
f2iṽi ≤

F

3

∑
|i|≥r

ρ
( |i|
r

)
|ṽi|2 +

3
F

∑
|i|≥r

|f2i|2, (4.17)

〈f3, ρ
( |i|
r

)
z̃〉 =

∑
|i|≥r

ρ
( |i|
r

)
f3iz̃i ≤

F +N

4

∑
|i|≥r

ρ
( |i|
r

)
|z̃i|2 +

4
F +N

∑
|i|≥r

|f3i|2.

For the fifth term to seventh term in the right-hand side of (4.16), we have

− 2d1〈Ay, ρ
( |i|
r

)
ũ〉

= −2d1〈By,B
(
ρ
( |i|
r

)
ũ
)
〉

= −2d1

∑
i∈Z

(yi+1 − yi)
(
ρ
( |i+ 1|

r

)
ũi+1 − ρ

( |i|
r

)
ũi

)
= −2d1

∑
|i|≥r−1

ρ
( |i+ 1|

r

)
(yi+1 − yi)ũi+1 + 2d1

∑
|i|≥r

ρ
( |i|
r

)
(yi+1 − yi)ũi

≤ F + k

4

∑
|i|≥r

ρ
( |i|
r

)
|ũi|2 + C7

∑
|i|≥r−1

|yi|2,

−2d2〈Ay, ρ
( |i|
r

)
ṽ〉 ≤ F

3

∑
|i|≥r

ρ
( |i|
r

)
|ṽi|2 + C8

∑
|i|≥r−1

|yi|2, (4.18)

−2d3〈Ay, ρ
( |i|
r

)
z̃〉 ≤ F +N

4

∑
|i|≥r

ρ
( |i|
r

)
|z̃i|2 + C9

∑
|i|≥r−1

|yi|2,

where Cj , j = 7, 8, 9 are positive constants depending only on d1, d2, d3, F,N, k.
Direct computation shows that

2(N + k)〈z̃, ρ
( |i|
r

)
ũ〉 ≤ (N + k)

∑
i∈Z

ρ
( |i|
r

)
|ũi|2 + (N + k)

∑
i∈Z

ρ
( |i|
r

)
|z̃i|2,
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4N〈y(θtω), ρ
( |i|
r

)
ũ〉 ≤ F + k

4

∑
i∈Z

ρ
( |i|
r

)
|ũi|2 +

16N2

F + k

∑
i∈Z

ρ
( |i|
r

)
|yi(θtω)|2, (4.19)

2(N + k)〈y(θtω), ρ
( |i|
r

)
ṽ〉 ≤ F

3

∑
i∈Z

ρ
( |i|
r

)
|ṽi|2 +

3(N + k)2

F

∑
i∈Z

ρ
( |i|
r

)
|yi(θtω)|2,

4k〈y(θtω), ρ
( |i|
r

)
z̃〉 ≤ F +N

4

∑
i∈Z

ρ
( |i|
r

)
|z̃i|2 +

16k2

F +N

∑
i∈Z

ρ
( |i|
r

)
|yi(θtω)|2.

From (4.16)-(4.19), (3.1) and (3.11), we have

d

dt

∑
i∈Z

ρ
( |i|
r

) [
|ũi|2 + |ṽi|2 + |z̃i|2

]
+ (F + k)

∑
i∈Z

ρ
( |i|
r

)
|ũi|2

+ F
∑
i∈Z

ρ
( |i|
r

)
|ṽi|2 + (F +N)

∑
i∈Z

ρ
( |i|
r

)
|z̃i|2

≤ 4C6d1

r
‖ũ‖2 +

4C6d2

r
‖ṽ‖2 +

4C6d3

r
‖z̃‖2 +

4
F + k

∑
|i|≥r

|f1i|2 +
3
F

∑
|i|≥r

|f2i|2

+
4

F +N

∑
|i|≥r

|f3i|2 + (C7 + C8 + C9)
∑
|i|≥r−1

|yi(θtω)|2 (4.20)

+
( 16N2

F + k
+

3(N + k)2

F
+

16k2

F +N

) ∑
|i|≥r

|yi(θtω)|2.

By Gronwall’s inequality, we obtain that for t ≥ Tk = Tk(ω) ≥ 0,

∑
i∈Z

ρ
( |i|
r

) [
|ũi(t, ω, ũ0(ω))|2 + |ṽi(t, ω, ṽ0(ω))|2 + |z̃i(t, ω, z̃0(ω))|2

]
≤ e−F (t−Tk)

∑
i∈Z

ρ
( |i|
r

) [
|ũi(Tk, ω, ũ0(ω))|2 + |ṽi(Tk, ω, ṽ0(ω))|2 + |z̃i(Tk, ω, z̃0(ω)|2

]
+
∫ t

Tk

(4C6d1

r
‖ũ‖2 +

4C6d2

r
‖ṽ‖2 +

4C6d3

r
‖z̃‖2

)
eF (τ−t)dτx

+
1
F

( 4
F + k

∑
|i|≥r

|f1i|2 +
3
F

∑
|i|≥r

|f2i|2 +
4

F +N

∑
|i|≥r

|f3i|2
)

(4.21)

+ (C7 + C8 + C9)
∫ t

Tk

eF (τ−t)
∑
|i|≥r−1

|yi(θτω)|2dτ

+
( 16N2

F + k
+

3(N + k)2

F
+

16k2

F +N

)∫ t

Tk

eF (τ−t)
∑
|i|≥r

|yi(θτω)|2dτ.

Replace ω by θ−tω. We then estimate each term on the right-hand side of (4.21).
From (4.7)-(4.8) with t replaced by Tk and ω by θ−tω, it follows that
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e−F (t−Tk)
∑
i∈Z

ρ
( |i|
r

)[
|ũi(Tk, θ−tω, ũ0(θ−tω))|2 + |ṽi(Tk, θ−tω, ṽ0(θ−tω))|2

+ |z̃i(Tk, θ−tω), z̃0(θ−tω)|2
]

≤ e−F (t−Tk)
(
e−FTk [‖ũ0(θ−tω)‖2 + ‖ṽ0(θ−tω)‖2 + ‖z̃0(θ−tω)‖2]

+
C5

F
(‖f1‖2 + ‖f2‖2 + ‖f3‖2)

+ C5

∫ Tk

0

e−F (Tk−s)(‖y(θs−tω)‖2 + ‖Ay(θs−tω)‖2)ds
)

≤ e−Ft[‖ũ0(θ−tω)‖2 + ‖ṽ0(θ−tω)‖2 + ‖z̃0(θ−tω)‖2]

+ e−F (t−Tk)C5

F
(‖f1‖2 + ‖f2‖2 + ‖f3‖2) +

2
F
C5l(ω)e−

F
2 (t−Tk).

(4.22)

Thus, there exists a T1(ε, ω) > Tk(ω) such that if t > T1(ε, ω), then

e−F (t−Tk)
∑
i∈Z

ρ
( |i|
r

)[
|ũi(Tk, θ−tω, ũ0(θ−tω))|2 + |ṽi(Tk, θ−tω, ṽ0(θ−tω))|2

+ |z̃i(Tk, θ−tω), z̃0(θ−tω)|2
]
<

1
4
ε.

(4.23)

Next we estimate second term on the right-hand side of (4.21),∫ t

Tk

(4C6d1

r
‖ũ(τ, θ−tω, ũ0(θ−tω))‖2 +

4C6d2

r
‖ṽ(τ, θ−tω, ũ0(θ−tω))‖2

+
4C6d3

r
‖z̃(τ, θ−tω, ũ0(θ−tω))‖2

)
eF (τ−t)dτ

≤ 4C6d

r

∫ t

Tk

eF (τ−t)
(
e−Fτ [‖ũ0(θ−tω)‖2 + ‖ṽ0(θ−tω)‖2 + ‖z̃0(θ−tω)‖2]

+
C5

F
(‖f1‖2 + ‖f2‖2 + ‖f3‖2)

+ C5

∫ τ

0

eF (s−τ)(‖y(θs−tω)‖2 + ‖Ay(θs−tω)‖2)ds
)
dτ

≤ 4C6d

r

(
[‖ũ0(θ−tω)‖2 + ‖ṽ0(θ−tω)‖2 + ‖z̃0(θ−tω)‖2](t− Tk)e−Ft

+
C5

F 2
(‖f1‖2 + ‖f2‖2 + ‖f3‖2) +

4
F
C5l(ω)

)
,

(4.24)

where d = max{d1, d2, d3}. Recall the fact that (ũ0(θ−tω), ṽ0(θ−tω), z̃0(θ−tω)) ∈
K(θ−tω), which implies that ‖ũ0(θ−tω)‖2 +‖ṽ0(θ−tω)‖2 +‖z̃0(θ−tω)‖2 ≤ R2(θ−tω),
and R(ω) is tempered. Thus there exists T2(ε, ω) > Tk(ω) and N1(ε, ω) > 0 such
that for t > T2(ε, ω) and r > N1(ε, ω), we have∫ t

Tk

(2C6d1

r
‖ũ(τ, θ−tω, ũ0(θ−tω))‖2 +

2C6d2

r
‖ṽ(τ, θ−tω, ũ0(θ−tω))‖2

+
2C6d3

r
‖z̃(τ, θ−tω, ũ0(θ−tω))‖2

)
eF (τ−t)dτ <

1
4
ε.

(4.25)
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Since f1, f2, f3 ∈ `2, there exists N2(ε, ω) > 0 such that for r > N2(ε, ω),

1
F

( 4
F + k

∑
|i|≥r

|f1i|2 +
3
F

∑
|i|≥r

|f2i|2 +
4

F +N

∑
|i|≥r

|f3i|2
)
<

1
4
ε. (4.26)

Finally, we estimate the last term on the right-hand side of (4.21). Let T ∗ > 0 to
be determined later. We have for t > T ∗ + Tk

(C7 + C8 + C9)
∫ t

Tk

eF (τ−t)
∑
|i|≥r−1

|yi(θτ−tω)|2dτ

+
(

16N2

F + k
+

3(N + k)2

F
+

16k2

F +N

)∫ t

Tk

eF (τ−t)
∑
|i|≥r

|yi(θτ−tω)|2dτ

=
∫ 0

Tk−t
eFs
(
C10

∑
|i|≥r−1

|yi(θsω)|2ds+ C5

∑
|i|≥r

|yi(θsω)|2ds
)

≤
∫ 0

−T∗
eFs
(
C10

∑
|i|≥r−1

|yi(θsω)|2ds+ C5

∑
|i|≥r

|yi(θsω)|2ds
)

+
∫ −T∗
Tk−t

eFs
(
C10‖y(θsω)‖2ds+ C5‖y(θsω)‖2ds

)
.

(4.27)

Using (4.8), we have

∫ −T∗
Tk−t

eFs
(
C10‖y(θsω)‖2 + C5‖y(θsω)‖2

)
ds ≤ 2C11

F
l(ω)e−

F
2 T

∗
. (4.28)

Thus, by choosing

T ∗ >
2
F

ln
16C11l(ω)

Fε
,

for t > T ∗ + Tk, we have∫ −T∗
Tk−t

eFs
(
C10‖y(θsω)‖2 + C5‖y(θsω)‖2

)
ds <

ε

8
. (4.29)

For the fixed T ∗, from Lebesgue’s theorem there is an N3(ε, ω) such that for r >
N3(ε, ω),∫ 0

−T∗
eFs
(
C10

∑
|i|≥r−1

|yi(θsω)|2ds+ C5

∑
|i|≥r

|yi(θsω)|2ds
)
<
ε

8
. (4.30)

Therefore, by letting

T (ε, ω) = max{T1(ε, ω), T2(ε, ω), T ∗(ε, ω) + Tk(ω)},

Ñ(ε, ω) = max{N1(ε, ω), N2(ε, ω), N3(ε, ω)},
(4.31)
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for t > T (ε, ω) and N > Ñ(ε, ω), we have∑
|i|>2r

[
|ũi(t, θ−tω, ũ0(θ−tω))|2 + |ṽi(t, θ−tω, ṽ0(θ−tω))|2

+ |z̃i(t, θ−tω, z̃0(θ−tω))|2
]

≤
∑
i∈Z

ρ
( |i|
r

)[
|ũi(t, θ−tω, ũ0(θ−tω))|2

+ |ṽi(t, θ−tω, ṽ0(θ−tω))|2 + |z̃i(t, θ−tω, z̃0(θ−tω))|2
]
< ε,

(4.32)

which implies∑
|i|≥N(ε,ω)

[
|ui(t, θ−tω, u0(θ−tω))|2 + |vi(t, θ−tω, v0(θ−tω))|2

+ |zi(t, θ−tω, z0(θ−tω))|2
]

=
∑

|i|≥N(ε,ω)

(|ũi(t, θ−tω, ũ0(θ−tω)) + y(θ−tω)|2 + |ṽi(t, θ−tω, ṽ0(θ−tω))

+ y(θ−tω)|2 + |z̃i(t, θ−tω, z0(θ−tω)) + y(θ−tω)|2)

≤ 2
∑

|i|≥N(ε,ω)

(|ũi(t, θ−tω, ũ0(θ−tω))|2 + |ṽi(t, θ−tω, ṽ0(θ−tω))|2

+ |z̃i(t, θ−tω, z0(θ−tω))|2) + 6
∑

|i|≥N(ε,ω)

|y(θ−tω)|2 < 8ε,

(4.33)

provided N(ε, ω) is large enough. This completes the proof of the lemma. �

We are now ready to show the pullback asymptotic compactness of the random
set K(ω).

Lemma 4.3. For ω ∈ Ω, the set K(ω) is pullback asymptotically compact in the
sense of each sequence (un, vn, zn) ∈ ϕ(tn, θ−tnω,K(θ−tnω)) with tn → ∞ having
a convergent subsequence in `2 × `2 × `2.

Proof. We follow the method in [3]. Let ω ∈ Ω′ for each sequence {tn}∞n=1 :
t1, t2, · · · , tn →∞ as n→∞, and

(un(tn, θ−tnω, xn), vn(tn, θ−tnω, yn), zn(tn, θ−tnω, %n)) ∈ ϕ(tn, θ−tnω,K(θ−tnω));

this implies that there exists (xn, yn, %n) ∈ K(θ−tnω) such that

(un(tn, θ−tnω, xn), vn(tn, θ−tnω, yn), zn(tn, θ−tnω, %n)) = ϕ(tn, θ−tnω, (xn, yn, %n)).

Since K(ω) is a bounded absorbing set, for large n, ϕ(tn, θ−tnω, (xn, yn, %n)) ∈
K(ω); thus there exists (u, v, z) ∈ `2 × `2 × `2, and a subsequence (u′n, v

′
n, z
′
n) =

ϕ(tn, θ−tnω, (xn, yn, %n)) such that

(u′n(tn, θ−tnω, xn), v′n(tn, θ−tnω, yn), z′n(tn, θ−tnω, %n))→ (u, v, z) (4.34)

weak in `2 × `2 × `2. Next, we show that (u′n, v
′
n, z
′
n) is also strongly convergent in

the norm ‖ · ‖ in `2 × `2 × `2, i.e., for each ε > 0 there is N∗(ε, ω) > 0 such that for
n ≥ N∗(ε, ω),

‖(u′n(tn, θ−tnω, xn), v′n(tn, θ−tnω, yn), z′n(tn, θ−tnω, %n))− (u, v, z)‖ ≤ ε.
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In fact, from Lemma 4.2, for any ε > 0, there exists an N∗(ε, ω) and a K1(ε, ω)
such that for n ≥ N∗(ε, ω),∑

|i|≥K1(ε,ω)

(
|u′ni(tn, θ−tnω, xn)|2 + |v′ni(tn, θ−tnω, yn)|2

+ |z′ni(tn, θ−tnω, %n)|2
)
≤ 1

8
ε2.

(4.35)

Since (u, v, z) ∈ `2 × `2 × `2, there exists K2(ε) > 0 such that∑
|i|≥K2(ε)

(
|ui|2 + |vi|2 + |zi|2

)
≤ 1

8
ε2. (4.36)

Let K(ε, ω) = max{K1(ε, ω),K2(ε)}. From the weak convergence (4.34), we have
for each |i| ≤ K(ε, ω) as n→∞,

(u′ni(tn, θ−tnω, xn), v′ni(tn, θ−tnω, yn), z′ni(tn, θ−tnω, %n))→ (ui, vi, zi),

which implies that there exists N∗2 (ε, ω) > 0 such that for n ≥ N∗2 (ε, ω),∑
|i|≤K(ε,ω)

(
|u′ni(tn, θ−tnω, xn)− ui|2 + |v′ni(tn, θ−tnω, yn)− vi|2

+ |z′ni(tn, θ−tnω, %n)− zi|2
)
≤ 1

2
ε2.

(4.37)

Combining (4.35)-(4.37), we obtain that for n ≥ N∗(ε, ω),

‖u′n(tn, θ−tnω, xn)− u‖2 + ‖v′n(tn, θ−tnω, yn)− v‖2 + ‖z′n(tn, θ−tnω, %n)− z‖2

≤
∑

|i|≤K(ε,ω)

(
|u′ni(tn, θ−tnω, xn)− ui|2 + |v′ni(tn, θ−tnω, yn)− vi|2

+ |z′ni(tn, θ−tnω, %n)− zi|2
)

+
∑

|i|≥K(ε,ω)

(
|u′ni(tn, θ−tnω, xn)− ui|2

+ |v′ni(tn, θ−tnω, yn)− vi|2 + |z′ni(tn, θ−tnω, %n)− zi|2
)

≤ 1
2
ε2 + 2

∑
|i|≥K(ε,ω)

(
|ui|2 + |vi|2 + |zi|2

)
+ 2

∑
|i|≥K(ε,ω)

(
|u′ni(tn, θ−tnω, xn)|2

+ |v′ni(tn, θ−tnω, yn)|2 + |z′ni(tn, θ−tnω, %n)|2
)

≤ 1
2
ε2 +

1
4
ε2 +

1
4
ε2 = ε2.

The proof is complete. �

Combining Lemmas 4.1 and 4.2 with Lemma 4.3, we obtain our main result,
which is a direct consequence of Theorem 2.7.

Theorem 4.4. The random dynamical systems {ϕ(t, ω)}t≥0,ω∈Ω possess a random
attractor in `2 × `2 × `2.

Remark 4.5. Equation (1.1) can be reduced to two ordinary differential equations
describing kinetics of cubic chemical or biochemical reactions with additive noise
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on an infinite lattice, such as two following models: stochastic reversible Selkov
equations [27, 36]:

dui = (−d1(Au)i − aui + u2
i vi − u3

i )dt+ αidwi,

dvi = (−d2(Av)i − bvi − u2
i vi + u3

i )dt+ αidwi,
(4.38)

stochastic reversible Glocolysis equations [25]:

dui = (−d1(Au)i − aui + bvi + u2
i vi − u3

i )dt+ αidwi,

dvi = (−d2(Av)i − bvi − u2
i vi + u3

i )dt+ αidwi,
(4.39)

with the conditions (1.2). Equations (4.38)-(4.39) are useful models for study of
cooperative processes in chemical kinetics. By introducing an Ornstein-Uhlenbeck
process, we transform the stochastic equation into a pathwise one with tempered
random variables:

y(θtω) = −b
∫ 0

−∞
ebs(θtω)(s)ds, t ∈ R, ω ∈ Ω.

Note that y solves the Itô equation

dy + bydt = dw(t), t > 0.

Let
ũ = u− y(θtω), ṽ = v − y(θtω).

Then, similar to Lemmas 4.1–4.3 and Theorem 4.4, we can prove that
(1) The random dynamical system governed by stochastic reversible Selkov

equations (4.38) has a random attractor in E.
(2) If 2b ≤ a holds, the random dynamical system governed by stochastic re-

versible Glocolysis equations (4.39) has a random attractor in E.
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