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SEMISTABILITY OF FIRST-ORDER EVOLUTION
VARIATIONAL INEQUALITIES

HASSAN SAOUD

Abstract. Semistability is the property whereby the solutions of a dynam-
ical system converge to a Lyapunov stable equilibrium point determined by

the system initial conditions. We extend the theory of semistability to a

class of first-order evolution variational inequalities, and study the finite-time
semistability. These results are Lyapunov-based and are obtained without any

assumptions of sign definiteness on the Lyapunov function. Our results are

supported by some examples from unilateral mechanics and electrical circuits
involving nonsmooth elements such as Coulomb’s friction forces and diodes.

1. Introduction

Stability analysis of dynamical systems constitutes a very important topic in
mathematics and engineering. This is the case of mechanical systems subject to
unilateral constraints and/or Coulomb friction and/or impacts or electrical circuits
with switches, diodes and many other problems. So, it is not surprising that the uni-
lateral dynamical system has played a central role in the understanding of mechan-
ical processes. The mathematical formulation of the unilateral dynamical system
involved inequality constraints and necessarily contains natural non-smoothness.
The non-smoothness could originate from the discontinuous control term, or from
the environment (non-smooth impact), or from the dry friction.

A large class of unilateral dynamical systems can be represented under the for-
malism of evolution variational inequalities. Recently, new Lyapunov stability re-
sults have been developed for these inequalities (see. [2, 10, 12]). In [12], the
authors developed a Lyapunov approach to study the stability of stationary so-
lutions of first-order evolution variational inequalities in Hilbert spaces. This ap-
proach was efficient for giving sufficient conditions of stability for the problem in
the form of a variational inequality. In [2], the authors has developed a LaSalle’s
invariance theory applicable to a general class of first order non-linear evolution
variational inequalities. This approach was applied to the study of the stability
and the asymptotic properties of second order dynamical systems involving friction
forces. Equally important, is the study of the attractivity properties of the set of
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stationary solutions. In addition, the authors in [1] give a sufficient and a necessary
conditions for the finite-time stability of the evolution variational inequalities.

The aim of this paper is to consider an alternative notion of stability called
semistability which, in certain sense, lies between stability and asymptotic stabil-
ity. More precisely, an equilibrium is semistable if it is Lyapunov stable, and every
trajectory starting in a neighborhood of the equilibrium converges to a (possibly
different) Lyapunov stable equilibrium. It can be seen that, for an equilibrium, as-
ymptotic stability implies semistability, while semistability implies Lyapunov sta-
bility. In addition to semistability, it is desirable that a dynamical system that
exhibits semistability also possesses the property that trajectories that converge
to a Lyapunov stable system state must do so in finite time rather than merely
asymptotically. This is the so called finite-time semistability. In a recent series of
papers [4, 5, 15, 16], the authors developed a general mathematical approach to
study the notions of semistability and finite-time semistability of nonlinear dynam-
ical systems. Here, we will try to extend these notions to the case of first-order
evolution variational inequalities.

In [5], the authors describe the relationship between Lyapunov stability, semista-
bility, and asymptotic stability. This relationship can be understood by considering
the motion of a body translating along a fixed direction. Such a body, when moving
under the action of a linear elastic spring, possesses a unique equilibrium, which
is Lyapunov stable. In the additional presence of viscous damping, all motions of
the body converge to the unique equilibrium state, which is thus asymptotically
stable. On the other hand, a particle moving under the action of viscous damping
in the absence of a position-dependent restoring force can remain at rest in any
position and thus exhibits a continuum of equilibria, each of which is Lyapunov
stable. All motions of such a body converge to rest, and the equilibrium that the
body converges to is determined by the initial position and velocity of the body.
The motion of the body is thus convergent, while every equilibrium of the dynamics
is semistable. Moreover, the authors cite many examples where the semistability
theory is applicable, like the lateral dynamics of an aircraft in level trimmed flight
and the kinetics of chemical reactions.

In this paper, we are concerned with the study of semistability and finite-time
semistability of first-order nonsmooth dynamical systems. More precisely, let ϕ :
Rn → R ∪ {+∞} is a proper convex and lower semicontinuous function. Let f :
Rn → Rn be a continuous vector field. For a given x0 ∈ Dom(∂ϕ), we consider the
following problem: Find x(t) ∈ C0([0,+∞); Rn) and ẋ ∈ L∞loc([0,+∞); Rn) such
that x(t) ∈ Dom(∂ϕ) for all t ≥ 0,

〈ẋ(t) + f(x(t)), y − x(t)〉+ ϕ(y)− ϕ(x(t)) ≥ 0,∀y ∈ Rn, a.e. t ≥ 0,

x(0) = x0.

This variational inequality can equivalently be written as the following differential
inclusion:

ẋ(t) + f(x(t)) ∈ −∂ϕ(x(t)), a.e. t ≥ 0, (1.1)

where ∂ϕ denotes the subdifferential of ϕ. We remark that (1.1) involves two
particular cases. The first one is when the function ϕ is of class C1, then (1.1)
becomes an ordinary differential equation. The second one is when the function
ϕ : Rn → R is convex continuous and hence ∂ϕ(x) is a nonempty, compact and
convex set for every x ∈ Rn. In this case (1.1) is reduced to well known Filippov’s
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differential inclusion. Finally, a special case is obtained when the function ϕ is the
indicator function of a closed convex subset of Rn. In this case, (1.1) reduces to
the complementarity problem introduced in the next section.

The contents of this article is as follows. In Section 2, we recall some definitions,
notations and we review some basic Lyapunov stability results for the first-order
evolution variational inequalities. Next, in Section 3, we introduce the notions of
semistability and finite-time semistability for the evolution variational inequalities
in order to give the main results of this work. Note that, these results do not make
any assumptions about the sign definiteness of the Lyapunov function. Instead,
they require only that the Lyapunov function derivative be nonpositive and the
equilibrium be a local minimizer of the Lyapunov function on the set of points at
which the orbital derivative along the trajectory of Lyapunov function is a negative
definite function. Finally, in Section 4, we illustrate the main results of this article
by applying them to examples from unilateral mechanics and electronics.

2. Preliminaries

Throughout this article ϕ : Rn → R ∪ {+∞} is a proper convex and lower
semicontinuous function (l.s.c., for short). Here, we denote by ∂ϕ the subdifferential
of ϕ. In addition, the sets Dom(ϕ) and Dom(∂ϕ) stand for the domains of ϕ and
the subdifferential ∂ϕ of ϕ respectively, i.e.

Dom(ϕ) = {x ∈ Rn : ϕ(x) < +∞}, Dom(∂ϕ) = {x ∈ Rn : ∂ϕ(x) 6= ∅}.
The function f : Rn → Rn is a continuous vector field. Furthermore, We denote
by ‖ · ‖, 〈·, ·〉, B and B, the Euclidean norm, the usual inner product 〈·, ·〉, the open
unit ball, and the closed unit ball, respectively. For ρ > 0 and x ∈ Rn, x+ ρB and
x+ ρB are the open and the closed balls of center x and radius ρ respectively. For
a subset S of Rn, bd S stands for the boundary of S and dS(x) denotes the distance
from a point x to S; that is, dS(x) := infs∈S ‖x− s‖. Finally, We introduce the set
K∞ as follows,

K∞ := {g : R+ → R+; g(0) = 0, g is strictly increasing and g(x) x→+∞−−−−−→ +∞}.
Given x0 ∈ Dom(∂ϕ), we are interested in the first-order differential inclusion:

Find x : [0,+∞)→ Rn with x ∈ C0([0,+∞); Rn) and ẋ ∈ L∞loc([0,+∞); Rn), and

ẋ(t) + f(x(t)) ∈ −∂ϕ(x(t)), a.e. t ≥ 0

x(0) = x0
(2.1)

System (2.1) possesses a solution which is not unique. When the field f is
continuous and f + kI is monotone for some k > 0, system (2.1) has a unique
solution. For more details, we refer the readers to [12] and [2]. In this article, we
are interested in the case where the field f is continuous. Letting ψ(·, x0) a solution
of (2.1) that exists on [0,+∞) and satisfies the initial condition x(0) = x0 and
where the map ψ : [0,+∞) × Dom(∂ϕ) → Dom(∂ϕ) is continuous and satisfies
ψ(0, x0) = x0. Moreover, the set of equilibrium points of (2.1) is given by the set

E := {z ∈ Dom(∂ϕ) : f(z) ∈ −∂ϕ(z)}.
We denote by ψt := ψ(t, ·) : Dom(∂ϕ) → Dom(∂ϕ) and by ψx0 := ψ(·, x0) :
[0,+∞) → Dom(∂ϕ). For x0 fixed, ψx0(t) is a maximal solution of (2.1). For a
qualitative study of (2.1), it is important to consider the map ψt(·), where for all
τ ≥ 0 fixed ψτ (·) is uniformly continuous on Dom(∂ϕ) (see. [2]).



4 H. SAOUD EJDE-2015/265

An important and interesting case is obtained when the function ϕ is replaced
by the indicator function of a closed convex set C of Rn. Recall that the indicator
function IC is defined as IC = 0 if x ∈ C and IC = +∞ if x /∈ C. The subdifferential
of ∂IC of IC at a point x is the normal cone of C at the point x ∈ C, i.e.

∂IC(x) = NC(x) := {z ∈ Rn; 〈z, y − x〉 ≤ 0, ∀y ∈ C} .

In this case, problem (2.1) reduces to the well-known complementarity problem
defined by, for x0 ∈ C, find x : [0,+∞) → Rn with x ∈ C0([0,+∞); Rn) and
ẋ ∈ L∞loc([0,+∞); Rn), and

ẋ(t) + f(x(t)) ∈ −NC(x(t)), a.e. t ≥ 0

x(0) = x0
(2.2)

The set of equilibrium points of problem (2.2) is

EC := {z ∈ C; f(z) ∈ −NC(z)}.

A set M ⊆ Rn is weakly invariant with respect to (2.1) if ψt(M) ⊆ M and is
invariant with respect to (2.1) if ψt(M) =M. The orbit of a point x0 ∈ Dom(∂ϕ)
is Ox0 := ψx0([0,+∞)). The orbit of x0 is bounded if Ox0 is contained in a compact
set. Finally, we define the ω-limit set as follows,

ω − L∞x0
:= {z ∈ Dom(∂ϕ); ∃(ti)i ∈ [0,+∞), ti → +∞ and ψ(ti, x0)→ z}.

The following proposition gives some important properties for the ω-limit set (see.
[17, 2]),

Proposition 2.1. If, for x0 ∈ Dom(∂ϕ), the orbit Ox0 of x0 is bounded, then the
set ω − L∞x0

is a nonempty compact and weakly invariant set. Moreover,

lim
τ→+∞

dω−L∞x0
(ψτ (x0)) = 0.

We remark that the set of the equilibrium points E is invariant and for x0 ∈
Dom(∂ϕ), the ω−L∞x0

⊆ clOx0 . We recall now the definition of Lyapunov stability
of an equilibrium point of (2.1).

Definition 2.2. An equilibrium point xe ∈ Dom(∂ϕ) of (2.1) is said to be Lya-
punov stable if, for all ε > 0, there exists η := η(ε) > 0 such that, for all
x0 ∈ xe + ηB ∩Dom(∂ϕ), we have ψt(xe + ηB) ⊆ xe + εB.

As Definition 2.2 shows, to prove the Lyapunov stability of an equilibrium point,
it is necessary to find a solution of the problem for a given initial condition x0 ∈
xe + ηB ∩Dom(∂ϕ). This is not an easy task for most problems (even for ODE’s).
Lyapunov’s direct method (known also as the second method of Lyapunov) allows
us to determine the stability of an equilibrium point by studying the behavior of
special functions called Lyapunov function. This method avoids the calculation
of an explicit solution of the problem. But, it requires to find good Lyapunov
candidate functions compatible with the problem, and the disadvantage is that
there is no straightforward construction of Lyapunov function. In fact, the method
consists to find a positive definite function V of class C1 such that its orbital
derivative along the trajectory, given by d

dtV (x(t)) = 〈ẋ(t),∇V (x(t))〉, is a negative
semidefinite function.

In [12], the authors extend this method to the case of problems (2.1) and (2.2)
as show the following results.
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Theorem 2.3. An equilibrium point xe of (2.1) is Lyapunov stable, if there exists
α > 0 and a C1 positive definite function V , such that for x ∈ xe+αB∩Dom(∂ϕ),

〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) ≥ 0.

Corollary 2.4. Let C be a closed convex subset of Rn such that 0 ∈ C. An
equilibrium point xe of (2.2) is Lyapunov stable, if there exists α > 0 and a C1

positive definite function V , such that
(1) 〈f(x),∇V (x)〉 ≥ 0, for all x ∈ xe + αB ∩ C, and
(2) (x−∇V (x)) ∈ C, for all x ∈ xe + αB ∩ boundaryC.

We finish this section by recalling the finite-time stability of an equilibrium point
of (2.1).

Definition 2.5. An equilibrium point xe ∈ Dom(∂ϕ) of (2.1) is said to be finite-
time stable if,

(1) it is Lyapunov stable, and
(2) it is finite-time convergent i.e. there exists δ > 0 such that xe + δB ⊆

Dom(∂ϕ) and a function T : xe + δB \ E →]0,+∞[ (called settling-time
function) such that for all x0 ∈ xe + δB \ E , we have ψt(x0) converges to a
point in xe + δB ∩ E when t tends to T (x0).

As for the Lypapunov stability, the authors in [1] give a sufficient and necessary
conditions for the finite-time stability for both problems (2.1) and (2.2).

3. Semistability Result

We begin this section by introducing the definition of the semistability of an
equilibrium point of the system (2.1). Then, we recall a stability result for (2.1)
given in [12].

Definition 3.1. An equilibrium point xe ∈ Dom(∂ϕ) of (2.1) is said to be semi-
stable, if

(i) it is Lyapunov stable, and
(ii) there exists ρ > 0, with xe+ρB ⊆ Dom(∂ϕ) such that, for x0 ∈ xe+ρB, we

have limt→+∞ ψt(x0) = z, where z ∈ Dom(∂ϕ) and is a Lyapunov stable
point.

Definition 3.2. (1) System (2.1) is called semistable if every equilibrium point
in E is semistable.

(2) For a function V ∈ C1, we define the set V̇ fϕ for (2.1) as

V̇ fϕ := {x ∈ Dom(∂ϕ); 〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) = 0} .

(3) For a function V ∈ C1, we define the set V̇ fC for (2.2) as

V̇ fC := {x ∈ C; 〈f(x),∇V (x)〉 = 0} .

Theorem 3.3. Suppose that Ox0 is bounded for all x0 ∈ Dom(∂ϕ) and there exists
a function V ∈ C1 such that for all x ∈ Dom(∂ϕ),

〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) ≥ 0.

Let M be the largest weakly invariant set contained in V̇ fϕ . For x ∈ M, if x is
Lyapunov stable equilibrium, then it is semistable.
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Proof. According to Proposition 2.1 we have, ω−L∞x0
is nonempty and ω−L∞x0

⊆M.
Every point of M is Lyapunov stable equilibrium with respect to Dom(∂ϕ), we
have ω −L∞x0

is reduced to a single point. Let zx0 be that point. Let us show that
zx0 = limt→+∞ ψt(x0).

Indeed, as zx0 ∈ M then it is a Lyapunov stable equilibrium. So that, for all
ε > 0 there exists η := η(ε) such that, for x0 ∈ zx0 + ηB we have

ψt(zx0 + ηB) ⊆ zx0 + εB, ∀t ≥ 0.

On the other hand, there exists τ ≥ 0 such that ψτ (x0) ∈ zx0 + ηB. So, by the
continuity of ψt and the properties of semigroup, we get

ψt+τ (x0) = ψt(ψτ (x0)) ∈ ψt(zx0 + ηB) ⊆ zx0 + εB, ∀t ≥ 0.

Then, zx0 = limt→+∞ ψt(x0). �

Corollary 3.4. Assume that for every xe ∈ E, there exist α > 0 and a function
V ∈ C1 such that, for all x ∈ (xe + αB ∩Dom(∂ϕ)) \ E, we have

〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) > 0. (3.1)

If the system (2.1) is Lyapunov stable, then it is semistable.

Proof. Since (2.1) is Lyapunov stable, then for all z ∈ E and for all ε ≥ 0 there
exists η ≥ 0 such that for all x0 ∈ z + ηB we have

ψt(z + ηB) ⊆ z + εB, ∀t ≥ 0.

Consider now the set W := ∪z∈E(z + ηB) ⊆ Dom(∂ϕ). For x ∈ W, there exists
z ∈ E such that x ∈ z + ηB and ψt(x) ∈ Dom(∂ϕ),∀t ≥ 0 that means ψt(z + ηB)
is bounded. According to Proposition 2.1, we can deduce that the set ω − L∞x0

is
weakly invariant.

Let M be the largest weakly invariant invariant set contained in V̇ fϕ . For every
x ∈ E , we have 〈f(x),∇V (x)〉+ϕ(x)−ϕ(x−∇V (x)) = 0. As E is weakly invariant
and contained in W, it follows that E ⊆ M. Finally, from (3.1) we can see that
V̇ fϕ ⊆ E ⊆ M ⊆ V̇ fϕ , thus V̇ fϕ = M = E and by applying Theorem 3.3, we obtain
that (2.1) is semistable. �

Applying Corollary 3.4 to problem (2.2), we obtain the following corollary.

Corollary 3.5. Let xe be an equilibrium point of (2.2). Suppose that there exists
α > 0 and a C1 function V , such that

(1) 〈f(x),∇V (x)〉 > 0, for all x ∈ (xe + αB ∩ C) \ E, and
(2) (x−∇V (x)) ∈ C, for all x ∈ xe + αB ∩ bd C.

If xe is Lyapunov stable, then it is semistable.

3.1. Finite-Time Semistability.

Definition 3.6. An equilibrium point xe ∈ Dom(∂ϕ) of (2.1) is said to be finite-
time semistable if it is semistable and it is finite-time convergent.

Theorem 3.7. Assume that for every xe ∈ E, there exist α > 0 and a function
V of class C1. Suppose also that there exists a function g ∈ K∞ for which the
integral

∫ ε
0

dz
g(z) converges for all ε > 0. Moreover, assume that for every x ∈

(xe + δB ∩Dom(∂ϕ)) \ E, we have

〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) ≥ g(V (x)). (3.2)
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Then, if the system (2.1) is finite-time stable, then it is finite-time semistable.

Proof. The proof of Theorem 3.7, is a direct consequence of Theorem 3.3 and [1,
Theorem 3.5]. Indeed, Theorem 3.3 guarantees the semistability and [1, Theorem
3.5] ensures the existence of the settling-time function T . �

Remark 3.8. Note that in Theorem 3.7, we can take g(x) = xα, with α ∈]0, 1[.
Thus, for some c > 0, condition (3.2) can be equivalently replaced by

〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) ≥ c(V (x))α.

This notation is used in [15] in order to study the finite-time semistability.

Now we consider the case of the complementarity problem introduced in Sec-
tion 2. By applying Theorem 3.7 to problem (2.2), we obtain the following result
concerning finite-time semistability.

Corollary 3.9. Assume that for every xe of (2.2), there exist α > 0 and a function
V of class C1. Suppose that there exist a function g ∈ K∞ for which the integral∫ ε
0

dz
g(z) converges for all ε > 0. Moreover, assume that for every x ∈ (xe+δB∩C)\E,

we have
〈f(x),∇V (x)〉 ≥ g(V (x)).

Then, if system (2.2) is finite-time stable, then it is finite-time semistable.

4. Applications

In this section, we give some applications of Theorem 3.3 and Corollary 3.4
in electrical circuits containing nonsmooth devices like diodes and in unilateral
mechanics problems submitted to a Coulomb’s friction force type.

Example 4.1. Consider the system (2.1) where f(x) ≡ 0 and where ϕ(x) = |x|.
Then

∂ϕ(x) =


−1 if x < 0
[−1, 1] if x = 0
1 if x > 0 .

Consider the function V (x) = x2/2, the set of the equilibrium points is reduced to
{0}, thus, for all x ∈ R \ {0} we have

〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) = |x| > 0.

Then, the equilibrium point xe = 0 is Lyapunov stable and according to Corollary
3.4, we can deduce that is semistable. Moreover, the equilibrium xe = 0 is finite-
time semistable. Indeed, consider the function g(x) =

√
x. It is easy to see that

g ∈ K∞ and the condition (3.2) is satisfied,

〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) = |x| ≥
√

2
2
|x| = g(V (x)).

From the proof of [1, Theorem 3.5], and for an initial condition x0, we can deduce
that T (x0) ≤ 2

√
V (x0) < +∞.
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Figure 1. Circuit RLD

Example 4.2. Let us consider the electric circuit of Figure 1., involving a load
resistance R > 0, an input-signal source u and corresponding instantaneous current
i,an inductor L > 0 and a diode D. A diode is a device that constitutes a rectifier
which permits the easy flow of charges in one direction and restrains the flow in the
opposite direction. The electrical superpotential of the diode is

ϕD(i) := |i|.
Figure 2 illustrates the ampere-volt characteristic of the diode used in this example.

φ0(i) = |i|

-

6

�
�
�
��

@
@

@
@@

φ0(i) = |i|

-

6
1

−1

superpotential AV-characteristic

Figure 2. Diode Model

The Kirchoff’s voltage law gives

u− UR − UL = UD,

where UR = Ri denotes the difference of potential across the resistor, UL = L didt
and UD ∈ ∂ϕD(i) is the difference of potential across diode. Thus

L
di

dt
+Ri− u ∈ −∂ϕD(i).

To simplify the work, we take the input-signal u = 0. Then we obtain
di

dt
+
R

L
i ∈ − 1

L
∂ϕD(i). (4.1)

Here, f(i) = R
L i and the set of the equilibrium points of (4.1) contains only the

equilibrium point ie = 0. If we consider the function V (i) = 1
2 i

2, then its gradient
is ∇V (i) = i. For all i 6= 0, the inequality (3.1) occurs because

〈f(i),∇V (i)〉+ ϕD(i)− ϕD(i−∇V (i)) =
R

L
i2 + |i| > 0.



EJDE-2015/265 SEMISTABILITY OF VARIATIONAL INEQUALITIES 9

Then, the equilibrium ie = 0 is Lyapunov stable and by applying Corollary 3.4, we
deduce that the system is semistable. If we consider the same function g(x) in the
previous example, we can remark that

〈f(i),∇V (i)〉+ ϕD(i)− ϕD(i−∇V (i)) =
R

L
i2 + |i| ≥

√
2

2
|i| = g(V (i)).

Hence, the equilibrium ie = 0 is finite-time semistable.

m

c

k

x

∂Φ

Figure 3. Mass-Spring

Example 4.3. (Unilateral Mechanics) Figure 3 describes the motion of a mass
m > 0 restrained by a spring with stiffness constant k > 0 and a damper with
viscous damping coefficient c > 0. The motion is submitted to a Coulomb’s friction
force and the system is modeled by the second-order differential inclusion (see. [2])

mq̈(t) + cq̇(t) + kq(t) ∈ ∂Φ(q̇(t)). (4.2)

With Φ(x) = λ|x|, where λ > 0 denotes the coefficient of friction. Then,

∂Φ(x) =


−λ if x < 0
[−λ, λ] if x = 0
λ if x > 0.

The set of equilibrium points is given by the interval E = [−λk ,
λ
k ].

For xe ∈ E and for x = [x1 x2]T , system (4.2) is equivalent to the first-order
differential inclusion (2.1),

ẋ(t) + f(x(t)) ∈ −∂ϕ(x(t)).

Where, f(x) = Ax+B, with A =
[

0 −1
k
m

c
m

]
, B = k

m

[
0
xe

]
and ϕ(x) = Φ(x2) = |x2|.

If we consider the function V (x1, x2) = 1
2kx

2
1 + 1

2x
2
2, the inequality (3.1) holds,

i.e.

〈f(x),∇V (x)〉+ ϕ(x)− ϕ(x−∇V (x)) = cx2
2 +

k

m
xex2 +

1
m
|x2| > 0.

Then, every equilibrium point is Lyapunov stable, hence it is semistable.
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