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INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR
CONCAVE-CONVEX ELLIPTIC PROBLEM WITH NONLINEAR

BOUNDARY CONDITION

LI WANG, PEIHAO ZHAO

Abstract. In this article, we study the existence of sign-changing solutions

to

−∆u+ u = |u|p−1u in Ω

∂u

∂n
= λ|u|q−1u on ∂Ω

with 0 < q < 1 < p ≤ N+2
N−2

and λ > 0. By using a combination of invariant sets

and Ljusternik-Schnirelman type minimax method, we obtain two sequences of
sign-changing solutions when p is subcritical and one sequence of sign-changing

solutions when p is critical.

1. Introduction

In this article we study the existence of infinitely many sign-changing solutions
to the nonlinear Neumann problem

−∆u+ u = |u|p−1u, in Ω
∂u

∂n
= λ|u|q−1u, on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N > 2, ∂
∂n denotes

the outward normal derivative and 0 < q < 1 < p, λ > 0.
The existence of sign-changing solutions has been studied extensively in recent

years. For the Dirichlet problem

−∆u = f(u) in Ω
u = 0 on ∂Ω

(1.2)

the authors in [3] considered that for f ∈ C1(R), f(0) = 0 and limu→∞ f ′(u) <
λ1 < λ2 < f ′(0), in which λi is the eigenvalue of −∆ on Ω, then problem (1.2)
has at least one sign-changing solution. If f(u) is odd about u, superlinear and
subcrtical, Bartsch [4] Showed that problem (1.2) has a sequence of unbounded
sign-changing solutions. In this case, the positive cone is a invariant set of gradient
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flow. For f(u) = λu + |u|2∗−2u, N ≥ 7, λ > 0, the authors in [18, 19] proved
that (1.2) has also infinitely many sign-changing solutions. We can look for more
examples in [3, 4, 5, 6] and references therein. Problems with nonlinear boundary
condition of form (1.1) appear in a nature way when one considers the Sobolev
trace embedding H1(Ω) ↪→ Lq(∂Ω) and conformal deformations on Riemannian
manifolds with boundary, see [7, 8]. In [9], Garcia et al considered problem (1.1).
For subcritical case, 0 < q < 1 < p < N+2

N−2 , there exists a λ0 > 0 such that if
0 < λ < λ0, equation (1.1) has infinitely many solutions with negative energy; and
for 0 < q < 1 < p ≤ N+2

N−2 , there exists Λ > 0, such that for 0 < λ < Λ, there exists
at least two positive solutions for (1.1), for λ = Λ, at least one positive solution,
and no positive solution for λ > Λ. Kajikiya et al [10] studied the problem

−∆u+ u = f(x, u) in Ω,
∂u

∂n
= g(x, u), on ∂Ω.

(1.3)

and proved that the problem has two sequences of solutions, if f(x, u) and g(x, u)
satisfying that in a neighborhood of u = 0, one of f(x, u) and g(x, u) is locally
sublinear, and at infinity, one of them is locally superlinear, and they showed that
one sequence of the solutions converges to 0, the other diverges to infinity.

Inspired by [9, 10], we consider the existence of sign-changing solutions of prob-
lem (1.1). The main part of our work is that (1.1) has two sequence of sign-changing
solutions under the subcritical and concave case. In this sense, the work of the
present paper extends the results of [9, 10] partially. In section 2, we give the main
results of the paper. In section 3, we establish the invariant sets of pseudo gradient.
In section 4, we proof the theorems.

2. Main results

In this section, we state the main results and some preliminaries. We call u a
weak solution of (1.1) if u ∈ H1(Ω) and it satisfies (1.1) in the distribution sense,
i.e. ∫

Ω

(∇u∇v + uv)dx =
∫

Ω

|u|p−1uvdx+ λ

∫
∂Ω

|u|q−1uvdσ,

for any v ∈ H1(Ω). Here dσ denotes the surface measure on ∂Ω.
Throughout this paper, the norm of H1(Ω) = W 1,2(Ω) is defined by

‖u‖ :=
(∫

Ω

(|∇u|2 + u2)dx
)1/2

,

and the H1(Ω) inner product of u and v by

(u, v) :=
∫

Ω

(∇u∇v + uv)dx.

We state the main result as follows.

Theorem 2.1. For 0 < q < 1 < p < N+2
N−2 , λ > 0, there exist at least two sequences

of sign-changing solutions of (1.1), one converges to 0 in H1(Ω), and the other
diverges to infinity.

Theorem 2.2. For 0 < q < 1, p = N+2
N−2 , λ > 0, there exists at least one sequence

of sign-changing solutions of (1.1) which converges to 0 in H1(Ω).
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Now, we state some results we will need in the following sections. Next lemma
is Lemma 6.1 in [9].

Lemma 2.3. For 0 < q < 1 < p ≤ N+2
N−2 , there exists a Λ > 0 such that for λ ≤ Λ,

then (1.1) has a minimal positive solution u+ and a maximal negative solution u−.

If λ > Λ, (1.1) has no positive and negative solutions, by the results in [10] as
we mentioned above, we know the existence of two sequences of solutions that are
sign-changing solutions. Hence, we only need to prove the results in Theorem 2.1
under the condition 0 < λ ≤ Λ. Throughout the paper, we assume that λ ≤ Λ. For
(1.1) the minimal positive solution and the maximal negative solution satisfying
u+ = −u−.

The following lemma is a variant of [14, Lemma 3.2] and we can also look for
[15, Lemma 2.4].

Lemma 2.4. Let H be a Hilbert space, D1 and D2 be two closed convex subsets
of H, and I ∈ C1(H,R). Suppose I ′(u) = u − A(u) and A(Di) ⊂ Di for i = 1, 2.
Then there exists a pseudo gradient vector field V of I in the form V (u) = u−B(u)
with B satisfying B(Di) ⊂ int(Di) if A(Di) ⊂ int(Di) for i = 1, 2, and V is odd if
I is even and D1 = −D2.

We refer to [10] for the following priori estimates.

Lemma 2.5. Let f(x, s) and g(x, s) satisfy:
(1) |f(x, s)| ≤ C(|s|p + 1),
(2) |g(x, s)| ≤ C(|s|q + 1) with 0 < q < 1 < p < N+2

N−2

Then for every H1(Ω)-solution u of (1.3) belongs to W 1,r(Ω) for all r < ∞, and
satisfies

‖u‖W 1,r(Ω) ≤ Cr‖u‖dpH1(Ω) + Cr‖u‖dqH1(Ω) + Cr,

where Cr is a constant depends only on r and d is independent of u and r.

Here we call that V is a pseudo gradient vector field of I if V ∈ C(H,H), V |H\K is
locally Lipschitz continuous with K := {u ∈ H : I ′(u) = 0}, and (I ′(u), V (u)) ≥
1
2‖I
′(u)‖2 and ‖V (u)‖ ≤ 2‖I ′(u)‖ for all u ∈ H.

3. Invariant sets of the gradient flow

To construct nodal solutions we need to isolate the signed solutions into certain
invariant sets. We know that problem (1.1) has a minimal positive solution and a
maximal negative solution, by this results we can build the invariant sets.

Define v := A(u), u ∈ H1(Ω) if

−∆v + v = |u|p−1u in Ω
∂v

∂n
= λ|u|q−1u on ∂Ω,

and
d

dt
ηt(u) = −ηt(u) +B(ηt(u))

η0(u) = u,

where B is related to A via Lemma 2.4 in which D1 and D2 will be constructed in
Theorem 3.1. This section is concerned with the construction of these sets which
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are invariant under the flow ηt(u) such that all positive and negative solutions are
contained in these invariant sets. Recall that a subset W ⊂ H is an invariant set
with respect to η if, for any u ∈W , ηt(u) ∈W for all t > 0.

We first note that because of the sublinear term on the boundary, any neigh-
borhoods of the positive (and negative) cones are no longer invariant sets of the
gradient flow. We give a construction inspired by [15]. Let e1 ∈ H1(Ω) be the first
eigenfunction associated with the first eigenvalue λ1 of the eigenvalue problem

−∆u+ u = 0 in Ω
∂u

∂n
= λu on ∂Ω

(3.1)

such that maxΩ e1(x) ≤ s0, in which 0 < s0 ≤ minΩ u
+(x) and s0 to be determined

later. Then we have u+(x) ≥ e1(x) and u−(x) ≤ −e1(x) for all x ∈ Ω, u± is
the minimal positive solution and maximal negative solution to (1.1), respectively.
Define:

D± := {u ∈ H1(Ω) : ±u ≥ e1}.
From above, we know that all positive and negative solutions to (1.1) are contained
in D+ and D−, respectively. Define (D±)ε = {u ∈ H1(Ω) : dist(u,D±) < ε}.

Theorem 3.1. Assume 0 < q < 1 < p < N+2
N−2 , and 0 < λ ≤ Λ. Then there exists

ε0 > 0 such that

A((D±)ε) ⊂ int((D±)ε) for all 0 < ε < ε0,

ηt((D±)ε) ⊂ int((D±)ε) for all t ≥ 0, 0 < ε < ε0,

Proof. We only prove the result for the positive one, the other case follows analo-
gously. For u ∈ H1(Ω), we denote

v = Au, v1 = max{e1, v}.
Then dist(v,D+) ≤ ‖v − v1‖ which implies dist(v,D+) · ‖v − v1‖ ≤ ‖v − v1‖2 and

‖v − v1‖2 = (v − e1, v − v1)

=
∫

Ω

∇(v − e1) · ∇(v − v1) + (v − e1)(v − v1)dx

=
∫

Ω

(−∆(v − e1) + v − e1)(v − v1)dx+
∫
∂Ω

(λ|u|q−1u− λ1e1)(v − v1)dσ

=
∫

Ω

(|u|p−1u)(v − v1)dx+
∫
∂Ω

(λ|u|q−1u− λ1e1)(v − v1)dσ

=: I1 + I2.

Note that

I1 ≤
∫
{u<0}∩Ω

(v1 − v)(−|u|p−1u)dx ≤
∫
{u<0}∩Ω

(v1 − v)(e1 − |u|p−1u)dx

≤ Cp
∫
{u<0}∩Ω

(v1 − v)(e1 − u)pdx.

On {u < 0} ∩ Ω, we have u ≤ e1, hence

‖e1 − u‖pLp+1((u<0)∩Ω) = inf
w∈D+

‖w − u‖pLp+1((u<0)∩Ω)

≤ inf
w∈D+

‖w − u‖pLp+1(Ω) ≤ Cpdist
p(u,D+),
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and I1 ≤ C‖v − v1‖ distp(u,D+). Here Cp and C are constants which are relevant
to p and e1, and may change from line to line. Note that

I2 ≤
∫
∂Ω∩{λ|u|q−1u<λ1e1}

(λ1e1 − λ|u|q−1u)(v1 − v)dσ

=
(∫

∂Ω∩{λ(
e1
2 )q<λ|u|q−1u<λ1e1}

+
∫
∂Ω∩{u≤ e12 }

)
(λ1e1 − λ|u|q−1u)(v1 − v)dσ.

If λ(e1/2)q > λ1e1, the first term above vanishing, this can be done by choose s0

small enough such that s1−q
0 ≤ λ

λ12q . On ∂Ω ∩ {u ≤ e1
2 }, we have

λ1e1 − λ|u|q−1u ≤ Cr(e1 − u)r,

where r ∈ (1, N
N−2 ).

‖e1 − u‖rLr+1({u< e1
2 }∩∂Ω) = inf

w∈D+
‖w − u‖rLr+1({u< e1

2 }∩∂Ω)

≤ inf
w∈D+

‖w − u‖rLr+1(∂Ω) ≤ Cr distr(u,D+).

Hence, I2 ≤ C‖v − v1‖ distr(u,D+).

dist(v,D+) · ‖v − v1‖ ≤ C‖v − v1‖(distr(u,D+) + distp(u,D+))

Then we can choose ε0 small, such that for ε < ε0,

dist(v,D+) < dist(u,D+) for u ∈ D+
ε .

The first conclusion in Theorem 3.1 is proved, the second part is a consequence of
the first one as shown in [14] via Lemma 2.4 above. �

4. Proof of main results

Let us start with a more abstract setting. Consider I ∈ C1(X,R) where X is a
Banach space. V is a pseudo gradient vector field of I such that V is odd if I is
even, and consider

d

dt
σ(t, u) = −V (σ),

σ(0, u) = u ∈ X.
To construct nodal solution by using the combination of invariant sets and minimax
method, we need a deformation lemma in the presence of invariant sets. We have
the following deformation lemma which follows from [15, Lemma 5.1] (see also [13,
Lemma 2.4]).

Lemma 4.1. Assume I satisfies the (PS)-condition, and c ∈ R is fixed, W =
∂W ∪ int(W ) is an invariant subset such that σ(t, ∂W ) ⊂int(W ) for t > 0. Define
K1
c := Kc ∩W , K2

c := Kc ∩ (X\W ), where Kc := {u ∈ X : I ′(u) = 0, I(u) = c}.
Let δ > 0, be such that (K1

c )δ ⊂W where (K1
c )δ = {u ∈ X : dist(u,K1

c ) < δ}. Then
there exists an ε0 > 0 such that for any 0 < ε < ε0, there exists η ∈ C([0, 1]×X,X)
satisfying:

(1) η(t, u) = u for t = 0 or u /∈ I−1(c− ε0, c+ ε0)\(K2
c )δ.

(2) η(1, Ic+ε∪W\(K2
c )3δ) ⊂ Ic−ε∪W and η(1, Ic+ε∪W ) ⊂ Ic−ε∪W if K2

c = ∅.
(3) η(t, ·) is a homeomorphism of X for t ∈ [0, 1].
(4) ‖η(t, u)− u‖ ≤ δ, for any (t, u) ∈ [0, 1]×X.
(5) I(η(t, ·)) is non-increasing.
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(6) η(t,W ) ⊂ W for any t ∈ [0, 1].
(7) η(t, ·) is odd if I is even and if W is symmetric with respect to 0.

Set

Σ := {A ⊂ H1(Ω)\0 : A is closed and A = −A},
Γk := {A ⊂ H1(Ω)\0 : Ais closed, symmetric, γ(A) ≥ k}

where γ(A) denotes the Krasnoselskii’s genus of the set A. We refer to [17] for the
following properties of genus.

Lemma 4.2. Let A,B ∈ Γk, and h ∈ C(H1(Ω), H1(Ω)) be an odd map. Then

(1) A ⊂ B ⇒ γ(A) ≤ γ(B);
(2) γ(A ∪B) ≤ γ(A) + γ(B);
(3) γ(A) ≤ γ(h(A));
(4) If A is compact, there exists an N ∈ Γk such that A ⊂ int(N) ⊂ N and

γ(A) = γ(N);
(5) If F is a linear subspace of H1(Ω) with dimF =n, A ⊂ F is bounded, open

and symmetric, and 0 ∈ A, then γ(∂FA) = n;
(6) Let W be a closed linear subspace of H1(Ω) whose codimension is finite. If

γ(A) is greater than the codimension of W , then A ∩W 6= ∅.

We choose an even function h ∈ C∞0 (R) such that h(s) = 1 for |s| ≤ 1, h(s) = 0
for|s| ≥ 2, 0 ≤ h ≤ 1; defining

f(s) := s|s|p−1h(s), g(s) = s|s|q−1h(s); (4.1)

Ĩ(u) =
1
2
‖u‖2 −

∫
Ω

F (u)dx−
∫
∂Ω

G(u)dσ,

in which F (u) =
∫ u

0
f(s)ds, G(u) =

∫ u
0
g(s)ds, both of them are bounded. As-

sume (λi, ei) is the eigenvalue and corresponding eigenfunction of (3.1), and Em =
span{e1, · · · , em}. Then the following lemma is obvious.

Lemma 4.3. Ĩ ∈ C1(H1(Ω),R),

(1) for all m ∈ N, there exists a ρ > 0, such that supEm∩∂Bρ Ĩ(u) < 0, where
∂Bρ := {u ∈ H1(Ω) : ‖u‖ = ρ},

(2) Ĩ is even, bounded from blow, and the (PS)-condition holds, Ĩ(0) = 0;

The following lemma is similar to [15, Lemma 5.3].

Lemma 4.4. For any ρ > 0, let Bρ = {u ∈ H1(Ω), ‖u‖ ≤ ρ}. Then

dist(∂Bρ ∩ E⊥1 , D+ ∪D−) > 0.

Proof. Assume on the contrary, that there exists (un) ∈ D+, vn ∈ ∂Bρ ∩E⊥1 , such
that ‖un − vn‖ → 0. Then (un, e1) = (un − vn, e1) + (vn, e1)→ 0, as n→∞. But,
since un ≥ e1, we have

(un, e1) = λ1

∫
∂Ω

une1 ≥ λ1

∫
∂Ω

e2
1dσ 6= 0,

a contradiction. �
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Proof of Theorems. We essentially follow from [15], see also [2] and [16].

Part 1. In this part, we will prove that for 0 < q < 1 < p ≤ N+2
N−2 , (1.1) has a

sequence of sign-changing solutions which converge to 0. This is a conclusion of
[11] and [9]. By Lemma 4.3 above we have taht for each k ∈ N, there exists an
Ak ∈ Γk such that supu∈Ak Ĩ(u) < 0. With the help of [11, Theorem 1], there exists
a sequence {uk} satisfying

Ĩ ′(uk) = 0, Ĩ(uk) < 0, uk → 0 in H1(Ω).

By Lemma 2.5, uk converges to zero in C(Ω). Hence for large k, we have ‖uk‖C(Ω) <

1, Ĩ(uk) = I(uk) and Ĩ ′(uk) = I ′(uk). But from Lemma 2.3 we know that (1.1) has
a minimal positive solution and a maximal negative solution, thus, for large j, uj
must change signs. Theorem 2.2 and the first part of Theorem 2.1 follows from the
above argument.

Part 2. In this part, we prove the existence of a sequence of sign-changing solutions
which tends to infinity under the case 0 < q < 1 < p < N+2

N−2 . The functional

I(u) =
1
2
‖u‖2 − 1

p+ 1

∫
Ω

|u|p+1dx− λ

q + 1

∫
∂Ω

|u|q+1dσ,

is well defined on H1(Ω) and I ∈ C1(H1(Ω),R), I satisfies the (PS) condition for
0 < q < 1 < p < N+2

N−2 .

Lemma 4.5. Assume m ≥ 2, then there exists R = R(m) > 0 such that for all
λ > 0,

sup
BcR∩Em

I(u) < 0.

where BcR := H1(Ω)\BR.

From Theorem 3.1 we can choose an ε > 0 small enough such that (D±)ε are
invariant sets. Set W=(D+)ε ∪ (D−)ε, S = H1(Ω)\W contains only sign-changing
solutions. Set

Gm = {h ∈ C(BR ∩ Em, H1(Ω)) : h is odd and h =id on ∂BR ∩ Em},

in which R is determined in Lemma 4.5.

Γ̃j = {h(BR ∩ Em\Y ) : h ∈ Gm, ∀m ≥ j, Y = −Y, closed, γ(Y ) ≤ m−j}, j ≥ 2.

From [1] and[15], we know that Γ̃j satisfying the following properties:

(1’) Γ̃j 6= ∅ for all j ≥ 2.
(2’) Γ̃j+1 ⊂ Γ̃j for all j ≥ 2.
(3’) if σ ∈ C(H1(Ω), H1(Ω)) is odd and σ = id on ∂BR ∩ Em, then σ(A) ∈ Γ̃j

if A ∈ Γ̃j .
(4’) if A ∈ Γ̃j , Z = −Z, closed, and γ(Z) ≤ s < j and j − s ≥ 2, then

A\Z ∈ Γ̃j−s.

For j ≥ 2, we define

c̃j := inf
A∈eΓj sup

u∈A∩S
I(u).



8 L. WANG, P. ZHAO EJDE-2015/266

If A ∈ Γ̃j with j ≥ 2, then A∩∂Bρ ∩ (E1)⊥ 6= ∅. By Lemma 4.4, ∂Bρ ∩ (E1)⊥ ⊂ S.
Thus, for j ≥ 2, and A ∈ Γ̃j , A ∩ S 6= ∅, we conclude that

c̃j ≥ inf
∂Bρ∩(E1)⊥

I(u) > −∞.

Then from the definition of c̃j and (2’) we have−∞ < c̃2 ≤ c̃3 ≤ · · · ≤ c̃j ≤ · · · <∞.
We claim that if c := c̃j = · · · = c̃j+k for some 2 ≤ j ≤ j + k with k ≥ 0, then
γ(Kc ∩ S) ≥ k + 1. Before we prove this claim, we first show that c̃j → ∞, as
j →∞. We need the following lemma.

Lemma 4.6. The constant c̃j is independent of the choice of R(m) as long as R(m)
is chosen to satisfy Lemma 4.5 for which m ≥ j.

The above lemma is well known, see for instance [12, Lemma 4.9]. And we can
choose R(m) such that R(m) → ∞, as m → ∞. This part follows by [10]. Let
Wm := {

∑∞
i=m tiwi :

∑∞
i=m t

2
i <∞} and wm is the eigenfunction of the Neumann

Laplacian equation:

−∆w = µw in Ω,
∂w

∂n
= 0 on ∂Ω.

Wj is a closed linear subspace of H1(Ω) whose codimension is equal to j − 1, we
have:

h(BR ∩ Em\Y ) ∩ ∂Br ∩Wj 6= ∅,

for h ∈ Gm, γ(Y ) ≤ m − j, and 0 < r < R(since that γ(h(BR ∩ Em\Y )) ≥ j, and
the codimension of Wj is j − 1. This implies

sup
u∈BR∩Em\Y

I(h(u)) ≥ inf{I(u) : u ∈ ∂Br ∩Wj},

for h ∈ Gm, γ(Y ) ≤ m− j, taking the infimum of both sides over h ∈ Gm, we have

c̃j ≥ inf{I(u) : u ∈ ∂Br ∩Wj},

for 0 < r < R. Next we can have inf{I(u) : u ∈ ∂Br ∩Wj} diverges to ∞, the rest
of the proof is similarly with [10, Lemma 5.14], we omit it here.

Now we give the proof the claim. Denote Kc ∩ S by K2
c . If the claim is false,

γ(Kc ∩ S) ≤ k, because of c̃j →∞, we can assume that 0 /∈ Kc and K2
c = Kc ∩ S

is compact, there exists N such that K2
c ⊂ int(N) and γ(N) = γ(K2

c ). Then
by Lemma 4.1, there exists an ε0 > 0 such that for 0 < ε < ε0, there exists an
η ∈ C([0, 1]×H1(Ω), H1(Ω)) satisfying (1)-(7) of Lemma 4.1. Then

η(1, Ic+ε ∪W\N) ⊂ (Ic−ε ∪W ).

Choose A ∈ Γ̃j+k such that
sup
A∩S

I(u) ≤ c+ ε,

Then by (4’) above A\N ∈ Γ̃j hence η(1, A\N) ∈ Γ̃j . Then

c ≤ sup
η(1,A\N)

I(u) ≤ sup
(Ic−ε∪W )∩S

≤ c− ε,

contradiction. Hence γ(Kc ∩ S) ≥ k + 1. Now we finish the proof.



EJDE-2015/266 INFINITELY MANY SIGN-CHANGING SOLUTIONS 9

References

[1] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and
application, J. Funct. Anal., 14 (1973), 349-381.

[2] T. Bartsch, Z. Liu, T. Weth; Nodal solutions of a p-Laplacian equation, Proc. London Math.

Soc., 91 (2005), 129-152.
[3] T. Bartsch, Z. Wang; On the existence of sign-changing solutions for semilinear Dirichlet

problems, Topol. Methods Nonlinear Anal., 7 (1996), 115-131.

[4] T. Bartsch; Critical point theory on partially ordered hilbert spaces, J. Funct. Anal.,
186(2001), 117-152.

[5] T. Bartsch, K. Chang, Z. Wang; On the Morse indices of sign changing solutions of nonlinear
elliptic problems, Math. Z., 233 (2000), 655-677.

[6] T. Bartsch, K. Chang, Z. Wang; Sign changing solutions of nonlinear Schrödinger equations,

Topol. Methods Nonlinear Anal., 13 (1999), 191-198.
[7] J. F. Escobar; Uniqueness theorems on conformal deformations of metrics, Sobolev inequal-

ities, and eigenvalue estimate, Comm. Pure Appl. Math., 43 (1990), 857-883.

[8] J. F. Escobar; Conformal deformation of a Riemannian metric to a scalar flat metric with
constant mean curvature, Ann. of Math., 136 (1992), no 2, 1-50.

[9] J. Garcia-Azorero, I. Peral, J. D. Rossi; A convex-concave problem with a nonlinear boundary

condition, J. Diff. Eqns., 198 (2004), 91-128.
[10] R. Kajikiya, D. Naimen; Two sequences of solutions for indefinite superlinear-sublinear el-

liptic equations with nonlinear boudary conditions, Comm. Pure. Appl. Anal., 13 (2014) no4,

1593-1612.
[11] R. Kajikiya; A critical point theorem related to the symmetric mountain pass lemma and its

applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.
[12] R. Kajikiya; Superlinear elliptic equations with singular coefficients on the boundary, Non-

linear Anal., 73 (2010), 2117-2131.

[13] S. Li, Z. Wang; Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Am.
Math. Soc., 354 (2002), 3207-3227.

[14] Z. Liu, J. Sun; Invariant sets of descending flow in critical point theory with applications to

nonlinear differential equations, J. Diff.Eqns., 127 (2001), 257-299.
[15] Z. Liu, F. A. van Heerden, Z. Wang; Nodal type bound states of Schrödinger equations via

invariant set and minimax methods, J. Diff. Eqns., 214 (2005), 358-390.

[16] P. H. Rabinowitz; Minimax Methods in Critical Point Theory with Applications to Dif-
ferential Equations, CBMS Regional Conference Series in Mathematics, vol.65 American

Mathematical Society, Providence, RI, 1986.

[17] M. Struwe; Variational Methods: Applications to Nonlinear Partial Differential Equations
and Hamiltonian Systems, Springer, Berlin, New York, 1990.

[18] M. Schechter, W. Zhou; On the Brezis-Nirenberg problem, Arch. Rational Mech.Anal., 197

(2010), 337-356.
[19] J. Sun, S. Ma; Infinitely many sign-changing solutions for the Brezis-Nirenberg problem,

Comm. Pure Appl. Anal., 13 (2014) no 6, 2317-2330.

Li Wang
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

E-mail address: lwang10@lzu.edu.cn

Peihao Zhao

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

E-mail address: zhaoph@lzu.edu.cn


	1. Introduction
	2. Main results
	3. Invariant sets of the gradient flow
	4. Proof of main results
	Proof of Theorems

	References

