Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 266, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR CONCAVE-CONVEX ELLIPTIC PROBLEM WITH NONLINEAR BOUNDARY CONDITION

LI WANG, PEIHAO ZHAO

Abstract. In this article, we study the existence of sign-changing solutions to

$$
\begin{gathered}
-\Delta u+u=|u|^{p-1} u \quad \text { in } \Omega \\
\frac{\partial u}{\partial n}=\lambda|u|^{q-1} u \quad \text { on } \partial \Omega
\end{gathered}
$$

with $0<q<1<p \leq \frac{N+2}{N-2}$ and $\lambda>0$. By using a combination of invariant sets and Ljusternik-Schnirelman type minimax method, we obtain two sequences of sign-changing solutions when p is subcritical and one sequence of sign-changing solutions when p is critical.

1. Introduction

In this article we study the existence of infinitely many sign-changing solutions to the nonlinear Neumann problem

$$
\begin{gather*}
-\Delta u+u=|u|^{p-1} u, \quad \text { in } \Omega \\
\frac{\partial u}{\partial n}=\lambda|u|^{q-1} u, \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega, N>2, \frac{\partial}{\partial n}$ denotes the outward normal derivative and $0<q<1<p, \lambda>0$.

The existence of sign-changing solutions has been studied extensively in recent years. For the Dirichlet problem

$$
\begin{gather*}
-\Delta u=f(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{gather*}
$$

the authors in [3] considered that for $f \in C^{1}(\mathbb{R}), f(0)=0$ and $\lim _{u \rightarrow \infty} f^{\prime}(u)<$ $\lambda_{1}<\lambda_{2}<f^{\prime}(0)$, in which λ_{i} is the eigenvalue of $-\Delta$ on Ω, then problem 1.2 has at least one sign-changing solution. If $f(u)$ is odd about u, superlinear and subcrtical, Bartsch [4] Showed that problem (1.2) has a sequence of unbounded sign-changing solutions. In this case, the positive cone is a invariant set of gradient

[^0]flow. For $f(u)=\lambda u+|u|^{2^{*}-2} u, N \geq 7, \lambda>0$, the authors in [18, 19] proved that (1.2 has also infinitely many sign-changing solutions. We can look for more examples in [3, 4, 5, 6, and references therein. Problems with nonlinear boundary condition of form (1.1) appear in a nature way when one considers the Sobolev trace embedding $H^{1}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ and conformal deformations on Riemannian manifolds with boundary, see [7, 8. In 9, Garcia et al considered problem (1.1). For subcritical case, $0<q<1<p<\frac{N+2}{N-2}$, there exists a $\lambda_{0}>0$ such that if $0<\lambda<\lambda_{0}$, equation (1.1) has infinitely many solutions with negative energy; and for $0<q<1<p \leq \frac{N+2}{N-2}$, there exists $\Lambda>0$, such that for $0<\lambda<\Lambda$, there exists at least two positive solutions for 1.1 , for $\lambda=\Lambda$, at least one positive solution, and no positive solution for $\lambda>\Lambda$. Kajikiya et al [10] studied the problem
\[

$$
\begin{gather*}
-\Delta u+u=f(x, u) \quad \text { in } \Omega \\
\frac{\partial u}{\partial n}=g(x, u), \quad \text { on } \partial \Omega \tag{1.3}
\end{gather*}
$$
\]

and proved that the problem has two sequences of solutions, if $f(x, u)$ and $g(x, u)$ satisfying that in a neighborhood of $u=0$, one of $f(x, u)$ and $g(x, u)$ is locally sublinear, and at infinity, one of them is locally superlinear, and they showed that one sequence of the solutions converges to 0 , the other diverges to infinity.

Inspired by [9, 10, we consider the existence of sign-changing solutions of problem (1.1). The main part of our work is that (1.1) has two sequence of sign-changing solutions under the subcritical and concave case. In this sense, the work of the present paper extends the results of [9, 10] partially. In section 2, we give the main results of the paper. In section 3, we establish the invariant sets of pseudo gradient. In section 4, we proof the theorems.

2. Main Results

In this section, we state the main results and some preliminaries. We call u a weak solution of (1.1) if $u \in H^{1}(\Omega)$ and it satisfies (1.1) in the distribution sense, i.e.

$$
\int_{\Omega}(\nabla u \nabla v+u v) d x=\int_{\Omega}|u|^{p-1} u v d x+\lambda \int_{\partial \Omega}|u|^{q-1} u v d \sigma
$$

for any $v \in H^{1}(\Omega)$. Here $d \sigma$ denotes the surface measure on $\partial \Omega$.
Throughout this paper, the norm of $H^{1}(\Omega)=W^{1,2}(\Omega)$ is defined by

$$
\|u\|:=\left(\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\right)^{1 / 2}
$$

and the $H^{1}(\Omega)$ inner product of u and v by

$$
(u, v):=\int_{\Omega}(\nabla u \nabla v+u v) d x
$$

We state the main result as follows.
Theorem 2.1. For $0<q<1<p<\frac{N+2}{N-2}, \lambda>0$, there exist at least two sequences of sign-changing solutions of (1.1), one converges to 0 in $H^{1}(\Omega)$, and the other diverges to infinity.

Theorem 2.2. For $0<q<1, p=\frac{N+2}{N-2}, \lambda>0$, there exists at least one sequence of sign-changing solutions of 1.1 which converges to 0 in $H^{1}(\Omega)$.

Now, we state some results we will need in the following sections. Next lemma is Lemma 6.1 in 9 .
Lemma 2.3. For $0<q<1<p \leq \frac{N+2}{N-2}$, there exists a $\Lambda>0$ such that for $\lambda \leq \Lambda$, then (1.1) has a minimal positive solution u^{+}and a maximal negative solution u_{-}.

If $\lambda>\Lambda$, 1.1) has no positive and negative solutions, by the results in [10] as we mentioned above, we know the existence of two sequences of solutions that are sign-changing solutions. Hence, we only need to prove the results in Theorem 2.1 under the condition $0<\lambda \leq \Lambda$. Throughout the paper, we assume that $\lambda \leq \Lambda$. For (1.1) the minimal positive solution and the maximal negative solution satisfying $u^{+}=-u^{-}$.

The following lemma is a variant of [14, Lemma 3.2] and we can also look for [15, Lemma 2.4].

Lemma 2.4. Let H be a Hilbert space, D_{1} and D_{2} be two closed convex subsets of H, and $I \in C^{1}(H, \mathbb{R})$. Suppose $I^{\prime}(u)=u-A(u)$ and $A\left(D_{i}\right) \subset D_{i}$ for $i=1,2$. Then there exists a pseudo gradient vector field V of I in the form $V(u)=u-B(u)$ with B satisfying $B\left(D_{i}\right) \subset \operatorname{int}\left(D_{i}\right)$ if $A\left(D_{i}\right) \subset \operatorname{int}\left(D_{i}\right)$ for $i=1,2$, and V is odd if I is even and $D_{1}=-D_{2}$.

We refer to [10] for the following priori estimates.
Lemma 2.5. Let $f(x, s)$ and $g(x, s)$ satisfy:
(1) $|f(x, s)| \leq C\left(|s|^{p}+1\right)$,
(2) $|g(x, s)| \leq C\left(|s|^{q}+1\right)$ with $0<q<1<p<\frac{N+2}{N-2}$

Then for every $H^{1}(\Omega)$-solution u of 1.3 belongs to $W^{1, r}(\Omega)$ for all $r<\infty$, and satisfies

$$
\|u\|_{W^{1, r}(\Omega)} \leq C_{r}\|u\|_{H^{1}(\Omega)}^{d p}+C_{r}\|u\|_{H^{1}(\Omega)}^{d q}+C_{r}
$$

where C_{r} is a constant depends only on r and d is independent of u and r.
Here we call that V is a pseudo gradient vector field of I if $V \in C(H, H),\left.V\right|_{H \backslash K}$ is locally Lipschitz continuous with $K:=\left\{u \in H: I^{\prime}(u)=0\right\}$, and $\left(I^{\prime}(u), V(u)\right) \geq$ $\frac{1}{2}\left\|I^{\prime}(u)\right\|^{2}$ and $\|V(u)\| \leq 2\left\|I^{\prime}(u)\right\|$ for all $u \in H$.

3. Invariant sets of the gradient flow

To construct nodal solutions we need to isolate the signed solutions into certain invariant sets. We know that problem (1.1) has a minimal positive solution and a maximal negative solution, by this results we can build the invariant sets.

Define $v:=A(u), u \in H^{1}(\Omega)$ if

$$
\begin{gathered}
-\Delta v+v=|u|^{p-1} u \quad \text { in } \Omega \\
\frac{\partial v}{\partial n}=\lambda|u|^{q-1} u \quad \text { on } \partial \Omega
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{d}{d t} \eta^{t}(u)=-\eta^{t}(u)+B\left(\eta^{t}(u)\right) \\
\eta^{0}(u)=u
\end{gathered}
$$

where B is related to A via Lemma 2.4 in which D_{1} and D_{2} will be constructed in Theorem 3.1. This section is concerned with the construction of these sets which
are invariant under the flow $\eta^{t}(u)$ such that all positive and negative solutions are contained in these invariant sets. Recall that a subset $W \subset H$ is an invariant set with respect to η if, for any $u \in W, \eta^{t}(u) \in W$ for all $t>0$.

We first note that because of the sublinear term on the boundary, any neighborhoods of the positive (and negative) cones are no longer invariant sets of the gradient flow. We give a construction inspired by [15]. Let $e_{1} \in H^{1}(\Omega)$ be the first eigenfunction associated with the first eigenvalue λ_{1} of the eigenvalue problem

$$
\begin{gather*}
-\Delta u+u=0 \quad \text { in } \Omega \\
\frac{\partial u}{\partial n}=\lambda u \quad \text { on } \partial \Omega \tag{3.1}
\end{gather*}
$$

such that $\max _{\Omega} e_{1}(x) \leq s_{0}$, in which $0<s_{0} \leq \min _{\Omega} u^{+}(x)$ and s_{0} to be determined later. Then we have $u^{+}(x) \geq e_{1}(x)$ and $u^{-}(x) \leq-e_{1}(x)$ for all $x \in \Omega, u^{ \pm}$is the minimal positive solution and maximal negative solution to (1.1), respectively. Define:

$$
D^{ \pm}:=\left\{u \in H^{1}(\Omega): \pm u \geq e_{1}\right\}
$$

From above, we know that all positive and negative solutions to (1.1) are contained in D^{+}and D^{-}, respectively. Define $\left(D^{ \pm}\right)_{\epsilon}=\left\{u \in H^{1}(\Omega): \operatorname{dist}\left(u, D^{ \pm}\right)<\epsilon\right\}$.
Theorem 3.1. Assume $0<q<1<p<\frac{N+2}{N-2}$, and $0<\lambda \leq \Lambda$. Then there exists $\epsilon_{0}>0$ such that

$$
\begin{gathered}
A\left(\left(D^{ \pm}\right)_{\epsilon}\right) \subset \operatorname{int}\left(\left(D^{ \pm}\right)_{\epsilon}\right) \quad \text { for all } 0<\epsilon<\epsilon_{0} \\
\eta^{t}\left(\left(D^{ \pm}\right)_{\epsilon}\right) \subset \operatorname{int}\left(\left(D^{ \pm}\right)_{\epsilon}\right) \quad \text { for all } t \geq 0,0<\epsilon<\epsilon_{0}
\end{gathered}
$$

Proof. We only prove the result for the positive one, the other case follows analogously. For $u \in H^{1}(\Omega)$, we denote

$$
v=A u, \quad v_{1}=\max \left\{e_{1}, v\right\}
$$

Then $\operatorname{dist}\left(v, D^{+}\right) \leq\left\|v-v_{1}\right\|$ which implies $\operatorname{dist}\left(v, D^{+}\right) \cdot\left\|v-v_{1}\right\| \leq\left\|v-v_{1}\right\|^{2}$ and

$$
\begin{aligned}
\left\|v-v_{1}\right\|^{2} & =\left(v-e_{1}, v-v_{1}\right) \\
& =\int_{\Omega} \nabla\left(v-e_{1}\right) \cdot \nabla\left(v-v_{1}\right)+\left(v-e_{1}\right)\left(v-v_{1}\right) d x \\
& =\int_{\Omega}\left(-\Delta\left(v-e_{1}\right)+v-e_{1}\right)\left(v-v_{1}\right) d x+\int_{\partial \Omega}\left(\lambda|u|^{q-1} u-\lambda_{1} e_{1}\right)\left(v-v_{1}\right) d \sigma \\
& =\int_{\Omega}\left(|u|^{p-1} u\right)\left(v-v_{1}\right) d x+\int_{\partial \Omega}\left(\lambda|u|^{q-1} u-\lambda_{1} e_{1}\right)\left(v-v_{1}\right) d \sigma \\
& =: I_{1}+I_{2}
\end{aligned}
$$

Note that

$$
\begin{aligned}
I_{1} & \leq \int_{\{u<0\} \cap \Omega}\left(v_{1}-v\right)\left(-|u|^{p-1} u\right) d x \leq \int_{\{u<0\} \cap \Omega}\left(v_{1}-v\right)\left(e_{1}-|u|^{p-1} u\right) d x \\
& \leq C_{p} \int_{\{u<0\} \cap \Omega}\left(v_{1}-v\right)\left(e_{1}-u\right)^{p} d x .
\end{aligned}
$$

On $\{u<0\} \cap \Omega$, we have $u \leq e_{1}$, hence

$$
\begin{aligned}
\left\|e_{1}-u\right\|_{L^{p+1}((u<0) \cap \Omega)}^{p} & =\inf _{w \in D^{+}}\|w-u\|_{L^{p+1}((u<0) \cap \Omega)}^{p} \\
& \leq \inf _{w \in D^{+}}\|w-u\|_{L^{p+1}(\Omega)}^{p} \leq C_{p} \operatorname{dist}^{p}\left(u, D^{+}\right)
\end{aligned}
$$

and $I_{1} \leq C\left\|v-v_{1}\right\| \operatorname{dist}^{p}\left(u, D^{+}\right)$. Here C_{p} and C are constants which are relevant to p and e_{1}, and may change from line to line. Note that

$$
\begin{aligned}
I_{2} & \leq \int_{\partial \Omega \cap\left\{\lambda|u|^{q-1} u<\lambda_{1} e_{1}\right\}}\left(\lambda_{1} e_{1}-\lambda|u|^{q-1} u\right)\left(v_{1}-v\right) d \sigma \\
& =\left(\int_{\partial \Omega \cap\left\{\lambda\left(\frac{e_{1}}{2}\right)^{q}<\lambda|u|^{q-1} u<\lambda_{1} e_{1}\right\}}+\int_{\partial \Omega \cap\left\{u \leq \frac{e_{1}}{2}\right\}}\right)\left(\lambda_{1} e_{1}-\lambda|u|^{q-1} u\right)\left(v_{1}-v\right) d \sigma
\end{aligned}
$$

If $\lambda\left(e_{1} / 2\right)^{q}>\lambda_{1} e_{1}$, the first term above vanishing, this can be done by choose s_{0} small enough such that $s_{0}^{1-q} \leq \frac{\lambda}{\lambda_{1} 2^{q}}$. On $\partial \Omega \cap\left\{u \leq \frac{e_{1}}{2}\right\}$, we have

$$
\lambda_{1} e_{1}-\lambda|u|^{q-1} u \leq C_{r}\left(e_{1}-u\right)^{r}
$$

where $r \in\left(1, \frac{N}{N-2}\right)$.

$$
\begin{aligned}
\left\|e_{1}-u\right\|_{L^{r+1}\left(\left\{u<\frac{e_{1}}{2}\right\} \cap \partial \Omega\right)}^{r} & =\inf _{w \in D^{+}}\|w-u\|_{L^{r+1}\left(\left\{u<\frac{e_{1}}{2}\right\} \cap \partial \Omega\right)}^{r} \\
& \leq \inf _{w \in D^{+}}\|w-u\|_{L^{r+1}(\partial \Omega)}^{r} \leq C_{r} \operatorname{dist}^{r}\left(u, D^{+}\right)
\end{aligned}
$$

Hence, $I_{2} \leq C\left\|v-v_{1}\right\| \operatorname{dist}^{r}\left(u, D^{+}\right)$.

$$
\operatorname{dist}\left(v, D^{+}\right) \cdot\left\|v-v_{1}\right\| \leq C\left\|v-v_{1}\right\|\left(\operatorname{dist}^{r}\left(u, D^{+}\right)+\operatorname{dist}^{p}\left(u, D^{+}\right)\right)
$$

Then we can choose ϵ_{0} small, such that for $\epsilon<\epsilon_{0}$,

$$
\operatorname{dist}\left(v, D^{+}\right)<\operatorname{dist}\left(u, D^{+}\right) \quad \text { for } u \in D_{\epsilon}^{+} .
$$

The first conclusion in Theorem 3.1 is proved, the second part is a consequence of the first one as shown in [14] via Lemma 2.4 above.

4. Proof of main results

Let us start with a more abstract setting. Consider $I \in C^{1}(X, \mathbb{R})$ where X is a Banach space. V is a pseudo gradient vector field of I such that V is odd if I is even, and consider

$$
\begin{aligned}
\frac{d}{d t} \sigma(t, u) & =-V(\sigma) \\
\sigma(0, u) & =u \in X
\end{aligned}
$$

To construct nodal solution by using the combination of invariant sets and minimax method, we need a deformation lemma in the presence of invariant sets. We have the following deformation lemma which follows from [15, Lemma 5.1] (see also [13, Lemma 2.4]).

Lemma 4.1. Assume I satisfies the $(P S)$-condition, and $c \in \mathbb{R}$ is fixed, $W=$ $\partial W \cup \operatorname{int}(W)$ is an invariant subset such that $\sigma(t, \partial W) \subset \operatorname{int}(W)$ for $t>0$. Define $K_{c}^{1}:=K_{c} \cap W, K_{c}^{2}:=K_{c} \cap(X \backslash W)$, where $K_{c}:=\left\{u \in X: I^{\prime}(u)=0, I(u)=c\right\}$. Let $\delta>0$, be such that $\left(K_{c}^{1}\right)_{\delta} \subset W$ where $\left(K_{c}^{1}\right)_{\delta}=\left\{u \in X: \operatorname{dist}\left(u, K_{c}^{1}\right)<\delta\right\}$. Then there exists an $\varepsilon_{0}>0$ such that for any $0<\varepsilon<\varepsilon_{0}$, there exists $\eta \in C([0,1] \times X, X)$ satisfying:
(1) $\eta(t, u)=u$ for $t=0$ or $u \notin I^{-1}\left(c-\varepsilon_{0}, c+\varepsilon_{0}\right) \backslash\left(K_{c}^{2}\right)_{\delta}$.
(2) $\eta\left(1, I^{c+\varepsilon} \cup W \backslash\left(K_{c}^{2}\right)_{3 \delta}\right) \subset I^{c-\varepsilon} \cup W$ and $\eta\left(1, I^{c+\varepsilon} \cup W\right) \subset I^{c-\varepsilon} \cup W$ if $K_{c}^{2}=\emptyset$.
(3) $\eta(t, \cdot)$ is a homeomorphism of X for $t \in[0,1]$.
(4) $\|\eta(t, u)-u\| \leq \delta$, for any $(t, u) \in[0,1] \times X$.
(5) $I(\eta(t, \cdot))$ is non-increasing.
(6) $\eta(t, W) \subset W$ for any $t \in[0,1]$.
(7) $\eta(t, \cdot)$ is odd if I is even and if W is symmetric with respect to 0 .

Set

$$
\begin{gathered}
\Sigma:=\left\{A \subset H^{1}(\Omega) \backslash 0: A \text { is closed and } A=-A\right\} \\
\Gamma_{k}:=\left\{A \subset H^{1}(\Omega) \backslash 0: A \text { is closed, symmetric, } \gamma(A) \geq k\right\}
\end{gathered}
$$

where $\gamma(A)$ denotes the Krasnoselskii's genus of the set A. We refer to [17] for the following properties of genus.

Lemma 4.2. Let $A, B \in \Gamma_{k}$, and $h \in C\left(H^{1}(\Omega), H^{1}(\Omega)\right)$ be an odd map. Then
(1) $A \subset B \Rightarrow \gamma(A) \leq \gamma(B)$;
(2) $\gamma(A \cup B) \leq \gamma(A)+\gamma(B)$;
(3) $\gamma(A) \leq \gamma(h(A))$;
(4) If A is compact, there exists an $N \in \Gamma_{k}$ such that $A \subset \operatorname{int}(N) \subset N$ and $\gamma(A)=\gamma(N) ;$
(5) If F is a linear subspace of $H^{1}(\Omega)$ with $\operatorname{dim} F=n, A \subset F$ is bounded, open and symmetric, and $0 \in A$, then $\gamma\left(\partial_{F} A\right)=n$;
(6) Let W be a closed linear subspace of $H^{1}(\Omega)$ whose codimension is finite. If $\gamma(A)$ is greater than the codimension of W, then $A \cap W \neq \emptyset$.

We choose an even function $h \in C_{0}^{\infty}(\mathbb{R})$ such that $h(s)=1$ for $|s| \leq 1, h(s)=0$ for $|s| \geq 2,0 \leq h \leq 1$; defining

$$
\begin{gather*}
f(s):=s|s|^{p-1} h(s), g(s)=s|s|^{q-1} h(s) \tag{4.1}\\
\widetilde{I}(u)=\frac{1}{2}\|u\|^{2}-\int_{\Omega} F(u) d x-\int_{\partial \Omega} G(u) d \sigma
\end{gather*}
$$

in which $F(u)=\int_{0}^{u} f(s) d s, G(u)=\int_{0}^{u} g(s) d s$, both of them are bounded. Assume $\left(\lambda_{i}, e_{i}\right)$ is the eigenvalue and corresponding eigenfunction of 3.1), and $E_{m}=$ $\operatorname{span}\left\{e_{1}, \cdots, e_{m}\right\}$. Then the following lemma is obvious.
Lemma 4.3. $\widetilde{I} \in C^{1}\left(H^{1}(\Omega), \mathbb{R}\right)$,
(1) for all $m \in \mathbb{N}$, there exists a $\rho>0$, such that $\sup _{E_{m} \cap \partial B_{\rho}} \widetilde{I}(u)<0$, where $\partial B_{\rho}:=\left\{u \in H^{1}(\Omega):\|u\|=\rho\right\}$,
(2) \widetilde{I} is even, bounded from blow, and the $(P S)$-condition holds, $\widetilde{I}(0)=0$;

The following lemma is similar to [15, Lemma 5.3].
Lemma 4.4. For any $\rho>0$, let $B_{\rho}=\left\{u \in H^{1}(\Omega),\|u\| \leq \rho\right\}$. Then

$$
\operatorname{dist}\left(\partial B_{\rho} \cap E_{1}^{\perp}, D^{+} \cup D^{-}\right)>0
$$

Proof. Assume on the contrary, that there exists $\left(u_{n}\right) \in D^{+}, v_{n} \in \partial B_{\rho} \cap E_{1}^{\perp}$, such that $\left\|u_{n}-v_{n}\right\| \rightarrow 0$. Then $\left(u_{n}, e_{1}\right)=\left(u_{n}-v_{n}, e_{1}\right)+\left(v_{n}, e_{1}\right) \rightarrow 0$, as $n \rightarrow \infty$. But, since $u_{n} \geq e_{1}$, we have

$$
\left(u_{n}, e_{1}\right)=\lambda_{1} \int_{\partial \Omega} u_{n} e_{1} \geq \lambda_{1} \int_{\partial \Omega} e_{1}^{2} d \sigma \neq 0
$$

a contradiction.

Proof of Theorems. We essentially follow from [15], see also [2] and [16].
Part 1. In this part, we will prove that for $0<q<1<p \leq \frac{N+2}{N-2}$, 1.1 has a sequence of sign-changing solutions which converge to 0 . This is a conclusion of [11] and [9. By Lemma 4.3 above we have taht for each $k \in \mathbb{N}$, there exists an $A_{k} \in \Gamma_{k}$ such that $\sup _{u \in A_{k}} I(u)<0$. With the help of [11, Theorem 1], there exists a sequence $\left\{u_{k}\right\}$ satisfying

$$
\widetilde{I}^{\prime}\left(u_{k}\right)=0, \quad \widetilde{I}\left(u_{k}\right)<0, \quad u_{k} \rightarrow 0 \text { in } H^{1}(\Omega)
$$

By Lemma $2.5 u_{k}$ converges to zero in $C(\bar{\Omega})$. Hence for large k, we have $\left\|u_{k}\right\|_{C(\bar{\Omega})}<$ 1, $\widetilde{I}\left(u_{k}\right)=I\left(u_{k}\right)$ and $\widetilde{I}^{\prime}\left(u_{k}\right)=I^{\prime}\left(u_{k}\right)$. But from Lemma 2.3 we know that (1.1) has a minimal positive solution and a maximal negative solution, thus, for large j, u_{j} must change signs. Theorem 2.2 and the first part of Theorem 2.1 follows from the above argument.
Part 2. In this part, we prove the existence of a sequence of sign-changing solutions which tends to infinity under the case $0<q<1<p<\frac{N+2}{N-2}$. The functional

$$
I(u)=\frac{1}{2}\|u\|^{2}-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x-\frac{\lambda}{q+1} \int_{\partial \Omega}|u|^{q+1} d \sigma
$$

is well defined on $H^{1}(\Omega)$ and $I \in C^{1}\left(H^{1}(\Omega), \mathbb{R}\right), I$ satisfies the (PS) condition for $0<q<1<p<\frac{N+2}{N-2}$.

Lemma 4.5. Assume $m \geq 2$, then there exists $R=R(m)>0$ such that for all $\lambda>0$,

$$
\sup _{B_{R}^{c} \cap E_{m}} I(u)<0 .
$$

where $B_{R}^{c}:=H^{1}(\Omega) \backslash B_{R}$.
From Theorem 3.1 we can choose an $\epsilon>0$ small enough such that $\left(D^{ \pm}\right)_{\epsilon}$ are invariant sets. Set $\mathrm{W}=\overline{\left(D^{+}\right)_{\epsilon}} \cup \overline{\left(D^{-}\right)_{\epsilon}}, S=H^{1}(\Omega) \backslash W$ contains only sign-changing solutions. Set

$$
G_{m}=\left\{h \in C\left(B_{R} \cap E_{m}, H^{1}(\Omega)\right): h \text { is odd and } h=\mathrm{id} \text { on } \partial B_{R} \cap E_{m}\right\}
$$

in which R is determined in Lemma 4.5.
$\widetilde{\Gamma}_{j}=\left\{h\left(\overline{B_{R} \cap E_{m} \backslash Y}\right): h \in G_{m}, \forall m \geq j, Y=-Y\right.$, closed, $\left.\gamma(Y) \leq m-j\right\}, \quad j \geq 2$.
From [1] and 15], we know that $\widetilde{\Gamma}_{j}$ satisfying the following properties:
(1') $\widetilde{\Gamma}_{j} \neq \emptyset$ for all $j \geq 2$.
(2') $\widetilde{\Gamma}_{j+1} \subset \widetilde{\Gamma}_{j}$ for all $j \geq 2$.
(3') if $\sigma \in \underset{\sim}{C}\left(H^{1}(\Omega), H^{1}(\Omega)\right)$ is odd and $\sigma=i d$ on $\partial B_{R} \cap E_{m}$, then $\sigma(A) \in \widetilde{\Gamma}_{j}$ if $A \in \widetilde{\Gamma}_{j}$.
(4') if $A \in \widetilde{\Gamma}_{j}, Z=-Z$, closed, and $\gamma(Z) \leq s<j$ and $j-s \geq 2$, then $\overline{A \backslash Z} \in \widetilde{\Gamma}_{j-s}$.
For $j \geq 2$, we define

$$
\widetilde{c}_{j}:=\inf _{A \in \widetilde{\Gamma}_{j}} \sup _{u \in A \cap S} I(u) .
$$

If $A \in \widetilde{\Gamma}_{j}$ with $j \geq 2$, then $A \cap \partial B_{\rho} \cap\left(E_{1}\right)^{\perp} \neq \emptyset$. By Lemma 4.4, $\partial B_{\rho} \cap\left(E_{1}\right)^{\perp} \subset S$. Thus, for $j \geq 2$, and $A \in \widetilde{\Gamma}_{j}, A \cap S \neq \emptyset$, we conclude that

$$
\tilde{c}_{j} \geq \inf _{\partial B_{\rho} \cap\left(E_{1}\right)^{\perp}} I(u)>-\infty
$$

Then from the definition of \widetilde{c}_{j} and (2') we have $-\infty<\widetilde{c}_{2} \leq \widetilde{c}_{3} \leq \cdots \leq \widetilde{c}_{j} \leq \cdots<\infty$. We claim that if $c:=\widetilde{c}_{j}=\cdots=\widetilde{c}_{j+k}$ for some $2 \leq j \leq j+k$ with $k \geq 0$, then $\gamma\left(K_{c} \cap S\right) \geq k+1$. Before we prove this claim, we first show that $\widetilde{c}_{j} \rightarrow \infty$, as $j \rightarrow \infty$. We need the following lemma.

Lemma 4.6. The constant \widetilde{c}_{j} is independent of the choice of $R(m)$ as long as $R(m)$ is chosen to satisfy Lemma 4.5 for which $m \geq j$.

The above lemma is well known, see for instance [12, Lemma 4.9]. And we can choose $R(m)$ such that $R(m) \rightarrow \infty$, as $m \rightarrow \infty$. This part follows by [10]. Let $W_{m}:=\left\{\sum_{i=m}^{\infty} t_{i} w_{i}: \sum_{i=m}^{\infty} t_{i}^{2}<\infty\right\}$ and w_{m} is the eigenfunction of the Neumann Laplacian equation:

$$
-\Delta w=\mu w \quad \text { in } \Omega, \quad \frac{\partial w}{\partial n}=0 \quad \text { on } \partial \Omega
$$

W_{j} is a closed linear subspace of $H^{1}(\Omega)$ whose codimension is equal to $j-1$, we have:

$$
h\left(\overline{B_{R} \cap E_{m} \backslash Y}\right) \cap \partial B_{r} \cap W_{j} \neq \emptyset,
$$

for $h \in G_{m}, \gamma(Y) \leq m-j$, and $0<r<R\left(\right.$ since that $\gamma\left(h\left(\overline{B_{R} \cap E_{m} \backslash Y}\right)\right) \geq j$, and the codimension of W_{j} is $j-1$. This implies

$$
\sup _{u \in B_{R} \cap E_{m} \backslash Y} I(h(u)) \geq \inf \left\{I(u): u \in \partial B_{r} \cap W_{j}\right\},
$$

for $h \in G_{m}, \gamma(Y) \leq m-j$, taking the infimum of both sides over $h \in G_{m}$, we have

$$
\widetilde{c}_{j} \geq \inf \left\{I(u): u \in \partial B_{r} \cap W_{j}\right\}
$$

for $0<r<R$. Next we can have $\inf \left\{I(u): u \in \partial B_{r} \cap W_{j}\right\}$ diverges to ∞, the rest of the proof is similarly with [10, Lemma 5.14], we omit it here.

Now we give the proof the claim. Denote $K_{c} \cap S$ by K_{c}^{2}. If the claim is false, $\gamma\left(K_{c} \cap S\right) \leq k$, because of $\widetilde{c_{j}} \rightarrow \infty$, we can assume that $0 \notin K_{c}$ and $K_{c}^{2}=K_{c} \cap S$ is compact, there exists N such that $K_{c}^{2} \subset \operatorname{int}(N)$ and $\gamma(N)=\gamma\left(K_{c}^{2}\right)$. Then by Lemma 4.1, there exists an $\epsilon_{0}>0$ such that for $0<\epsilon<\epsilon_{0}$, there exists an $\eta \in C\left([0,1] \times H^{1}(\Omega), H^{1}(\Omega)\right)$ satisfying (1)-(7) of Lemma 4.1. Then

$$
\eta\left(1, I^{c+\epsilon} \cup W \backslash N\right) \subset\left(I^{c-\epsilon} \cup W\right)
$$

Choose $A \in \widetilde{\Gamma}_{j+k}$ such that

$$
\sup _{A \cap S} I(u) \leq c+\epsilon
$$

Then by (4') above $\overline{A \backslash N} \in \widetilde{\Gamma}_{j}$ hence $\eta(1, \overline{A \backslash N}) \in \widetilde{\Gamma}_{j}$. Then

$$
c \leq \sup _{\eta(1, \overline{A \backslash N})} I(u) \leq \sup _{\left(I^{c-\epsilon} \cup W\right) \cap S} \leq c-\epsilon,
$$

contradiction. Hence $\gamma\left(K_{c} \cap S\right) \geq k+1$. Now we finish the proof.

References

[1] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and application, J. Funct. Anal., 14 (1973), 349-381.
[2] T. Bartsch, Z. Liu, T. Weth; Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc., 91 (2005), 129-152.
[3] T. Bartsch, Z. Wang; On the existence of sign-changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal., 7 (1996), 115-131.
[4] T. Bartsch; Critical point theory on partially ordered hilbert spaces, J. Funct. Anal., 186(2001), 117-152.
[5] T. Bartsch, K. Chang, Z. Wang; On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z., 233 (2000), 655-677.
[6] T. Bartsch, K. Chang, Z. Wang; Sign changing solutions of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal., 13 (1999), 191-198.
[7] J. F. Escobar; Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and eigenvalue estimate, Comm. Pure Appl. Math., 43 (1990), 857-883.
[8] J. F. Escobar; Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature, Ann. of Math., 136 (1992), no 2, 1-50.
[9] J. Garcia-Azorero, I. Peral, J. D. Rossi; A convex-concave problem with a nonlinear boundary condition, J. Diff. Eqns., 198 (2004), 91-128.
[10] R. Kajikiya, D. Naimen; Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boudary conditions, Comm. Pure. Appl. Anal., 13 (2014) no4, 1593-1612.
[11] R. Kajikiya; A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.
[12] R. Kajikiya; Superlinear elliptic equations with singular coefficients on the boundary, Nonlinear Anal., 73 (2010), 2117-2131.
[13] S. Li, Z. Wang; Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Am. Math. Soc., 354 (2002), 3207-3227.
[14] Z. Liu, J. Sun; Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Diff.Eqns., 127 (2001), 257-299.
[15] Z. Liu, F. A. van Heerden, Z. Wang; Nodal type bound states of Schrödinger equations via invariant set and minimax methods, J. Diff. Eqns., 214 (2005), 358-390.
[16] P. H. Rabinowitz; Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65 American Mathematical Society, Providence, RI, 1986.
[17] M. Struwe; Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, New York, 1990.
[18] M. Schechter, W. Zhou; On the Brezis-Nirenberg problem, Arch. Rational Mech.Anal., 197 (2010), 337-356.
[19] J. Sun, S. Ma; Infinitely many sign-changing solutions for the Brezis-Nirenberg problem, Comm. Pure Appl. Anal., 13 (2014) no 6, 2317-2330.

Li Wang
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
E-mail address: lwang10@lzu.edu.cn
Peihao Zhao
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
E-mail address: zhaoph@lzu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 35J60, 47J30, 58E05.
 Key words and phrases. Nonlinear boundary condition; concave-convex; invariant sets; sign-changing solutions.
 (C) 2015 Texas State University.

 Submitted August 30, 2015. Published October 16, 2015.

