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STABLE ALGORITHM FOR IDENTIFYING A SOURCE IN THE
HEAT EQUATION

LAHCÈNE CHORFI, LEÏLA ALEM

Abstract. We consider an inverse problem for the heat equation uxx = ut

in the quarter plane {x > 0, t > 0} where one wants to determine the tem-

perature f(t) = u(0, t) from the measured data g(t) = u(1, t). This problem
is severely ill-posed and has been studied before. It is well known that the

central difference approximation in time has a regularization effect, but the

backward difference scheme is not well studied in theory and in practice. In
this paper, we revisit this method to provide a stable algorithm. Assuming an

a priori bound on ‖f‖Hs we derive a Hölder type stability result. We give some

numerical examples to show the efficiency of the proposed method. Finally,
we compare our method to one based on the central or forward differences.

1. Introduction

In many engineering applications, we need to determine the temperature on both
sides of a thick wall, but one side is inaccessible to measurements [3]. This problem
leads to the following parabolic equation in the quarter plane:

uxx = ut, x > 0, t > 0,

u(1, t) = g(t), t ≥ 0,

u(x, 0) = 0, x ≥ 0.
(1.1)

Our purpose is to determine the boundary condition source f(t) = u(0, t) from the
temperature g(t) = u(1, t) at the interior point x = 1. Since the data g is based
on (physical) observations, we have a measured data function gδ ∈ L2(R) which
satisfies

‖gδ − g‖ ≤ δ
where ‖ · ‖ denotes the L2-norm, and the constant δ > 0 represents the level noise.
The problem of identifying the source f is ill-posed in the sense that the solution (if
it exists) does not depend continuously on the data g. This can be seen by solving
(1.1) in the frequency domain.

Let v̂ denote the Fourier transform of function v(t) ∈ L2(R) defined by

v̂(ξ) :=
1√
2π

∫ +∞

−∞
v(t)e−iξtdt, ξ ∈ R,
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and ‖ · ‖s denote the norm in Sobolev space Hs(R) defined by

‖v‖s :=
(∫ +∞

−∞
(1 + ξ2)s|v̂(ξ)|2dξ

)1/2

.

When s = 0, ‖ · ‖0 := ‖ · ‖ denotes the L2(R) norm.
To use Fourier techniques, we extend the functions u(x, t) and g(t) to the whole

real t-axis by defining them to be zero for t < 0. Problem (1.1) can now be
formulated, in the frequency space, as follows:

ûxx(x, ξ) = iξû(x, ξ), x > 0, ξ ∈ R,
û(1, ξ) = ĝ(ξ), ξ ∈ R,

û(., ξ), is bounded when x→ +∞.
(1.2)

The (formal) solution of problem (1.2) is

û(x, ξ) = e
√
iξ(1−x)ĝ(ξ) (1.3)

where √
iξ =

{
(1 + i)

√
|ξ|/2, ξ ≥ 0,

(1− i)
√
|ξ|/2, ξ < 0.

and, in particular, for x = 0,

f̂(ξ) = e
√
iξ ĝ(ξ). (1.4)

It is clear, from equation (1.4), that the transform ĝ must decay faster than the
factor exp (−

√
|ξ|/2). This implies that g must belong to Sobolev space Hs(R)

for all s ≥ 0. However, in general, the measured data gδ does not possess such
a decay property. Thus, the numerical simulation is very difficult and a special
regularization is required. Some papers have presented mathematical and effective
algorithms of these problems [1, 7, 8, 9, 11, 12, 13]. In the papers [7, 12, 13] the
authors investigated finite difference methods but they have only considered the
central (or forward ) difference scheme in time. To our knowledge the backward
scheme has not been well studied numerically until now. In this paper, we examine
this question with the objective of providing a stability result. Our algorithm
consists of two steps. In the first one, we solve a well-posed problem in the interval
x ≥ 1 with perturbed data gδ such that ‖u(1, .) − gδ‖L2 ≤ δ. In the second step,
we solve a Cauchy problem for x ∈ [0, 1] with perturbed Cauchy data (gδ, Hmg

δ),
where Hm is a regularized Fourier integral operator [9, 10]. We approximate the
previous problem by backward finite differences in time. Then, we solve, at each
step, an initial value problem for a second order equation in the space variable.

In section 2, we give some information on the forward problem. In section 3, the
inverse problem is reduced to the Cauchy problem in the interval [0, 1]. In section
4, we propose a numerical procedure and derive a stability estimation under an a
priori bound on ‖f‖s and we show that the regularization parameter τ (step length
in time) can be chosen by a discrepancy principle. Finally, numerical results are
given, in section 5, to show the efficiency of the method and compared with other
schemes.
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2. Forward problem

To give some numerical examples, we need the solution of the forward problem in
an explicit form. The direct problem is set as follows: given the source f , determine
u which satisfies the system

uxx(x, t) = ut(x, t), x > 0, t > 0,

u(x, 0) = 0, ∀x ≥ 0,

u(0, t) = f(t), t > 0, lim
x→+∞

u(x, t) = 0.
(2.1)

Applying the Fourier-sine transform with respect to the variable x,

û(ξ, t) =
∫ ∞

0

u(x, t) sin(ξx)dx, ξ ≥ 0,

and its inverse

u(x, t) =
2
π

∫ ∞
0

û(ξ, t) sin(ξx)dξ, x ≥ 0,

yields the following problem in frequency and time,

∂û

∂t
(ξ, t) + ξ2û(ξ, t) = ξf(t), t > 0,

û(ξ, 0) = 0.
(2.2)

It is easy to see that the solution of problem (2.2) is

û(ξ, t) =
∫ t

0

ξf(s) exp[ξ2(s− t)]ds.

Then the solution of (2.1) is given by the integral

u(x, t) =
∫ t

0

x

t− s
k(x, t− s)f(s)ds (2.3)

where k(x, t) is the heat kernel

k(x, t) =
1

2
√
πt

exp
(−x2

4t
)
.

For more details see the book [5]. The heat flux at x = 1 is

h(t) := ux(1, t) =
∫ t

0

(1− 1
2(t− s)

)
1

t− s
k(1, t− s)f(s) ds. (2.4)

Problem (2.1) is well-posed in the following sense.

Theorem 2.1. (1) The solution t→ u(., t) is unique in the space

H = C0([0,+∞[, H2(R+)) ∩ C1(]0,+∞[, L2(R+)).

(2) Assume that f ∈ L2(R). Then, for all s ≥ 0,

u(x, .) ∈ C0([0,+∞[, L2(R)) ∩ C∞(]0,+∞[, Hs(R)),

and we have the stability estimate

‖u(x, .)‖s ≤ C(s, x0)‖f‖ for all x ≥ x0 > 0. (2.5)
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Proof. (1) Assume that t→ u(., t) is in the space H. After multiplying in the PDE
with u, integrating with respect to x, the following identity results

1
2
d

dt

∫ ∞
0

|u(x, t)|2dx+
∫ ∞

0

|ux(x, t)|2dx = −f(t)ux(0, t).

If f = 0, it follows that the energy E(t) = 1
2‖u(., t)‖2 is a decreasing function. Since

E(0) = 0, u must vanish identically.
(2) Using (1.3) and (1.4) we get û(x, ξ) = e−x

√
iξ f̂(ξ). Since |e−x

√
iξ| = e−x

√
|ξ|/2,

we see that u(x, .) ∈ Hs(R) for all s ≥ 0. If x ≥ x0 > 0, we have the uniform bound

‖u(x, .)‖s ≤
[

sup
ξ≥0

(1 + ξ2)se−x
√

2ξ
]1/2‖f̂‖ ≤ C(s, x0)‖f‖

with C(s, x0, ) = (5s/x0)s.
From the representation (2.3), we see that u(·, t) is C∞ for x > 0 and is rapidly

decreasing as t → ∞. On the other hand û(·, ξ) is C∞ for x > 0 and we have, for
all n ∈ N,

∂̂nu

∂xn
(x, ξ) =

∂n

∂xn
û(x, ξ) = (−

√
iξ)ne−x

√
iξ f̂(ξ).

Using the rapid decay of the factor e−x
√
|ξ|/2, this proves that ∂nu

∂xn (x, ·) ∈ Hs(R).
It remains to show that the mapping x → u(x, ·) is continuous at x = 0, i.e.,
limx→0 ‖(1− e−x

√
iξ)f̂‖ = 0. Using the inequalities

|1− e−x
√
iξ| ≤ 2 for x ≥ 0 and ξ ∈ R,

|1− e−x
√
iξ| ≤ x

√
Aex

√
A for x ≥ 0 and |ξ| ≤ A,

it follows that for all x ∈ [0, 1] and all A ≥ 1,∫
R
(1− e−x

√
iξ)2‖f̂‖2dξ ≤ Ax2e2x

√
A‖f̂‖2 + 4

∫
|ξ|≥A

|f̂ |2dξ.

For any ε > 0, if we choose Ax ≤ 1 and A large enough, we can make the right
hand side less than ε. Which ends the proof. �

We remark that our inverse problem is equivalent to the following integral equa-
tion of Volterra type,

g(t) =
∫ t

0

k(1, t− s)
t− s

f(s)ds, (2.6)

with a C∞-kernel, which proves again that problem (1.1) is severely ill-posed. This
equation is regularized by Tikhonov method in the paper [2].

Remark 2.2. From the integral (2.3) we see that the direct problem f 7→ g = u(1, .)
satisfies the causality principle. That is if we change f(t) for t ≥ t∗ then the solution
g(t) can only change for t ≥ t∗ as well. On the other hand the integral equation
(2.6) shows that for inverse problem the numerical solution f(t∗) depends on g(t)
for t ∈ [0, t∗]. Numerically this may creates more noise amplifications as has been
noted by Carasso in [4]. To reduce this phenomenon, we must observe g(t) = u(1, t)
for enough long period.
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3. Inverse problem

Cauchy problem. Consider the well-posed problem
uxx = ut, x > 1, t > 0,

u(1, t) = g(t), t > 0,

u(x, 0) = 0, x ≥ 1.
(3.1)

If g ∈ Hs(R), s ≥ 1/2, the actual solution is

u(x, t) =
∫ ∞
−∞

ĝ(ξ) exp[
√
iξ(1− x)] exp(iξt)dξ for x ≥ 1. (3.2)

Since | exp
[√
iξ(1− x)

]
| = e−(x−1)

√
|ξ|/2 , the integral (3.2) is convergent for x > 1

and u(x, .) ∈ Hσ(R) for all σ > 0.
The heat flux h(t) = ux(1, t) is in Hs− 1

2 (R) and is given by:

h(t) := Hg(t) = −
∫ +∞

−∞

√
iξĝ(ξ) exp(iξt)dξ. (3.3)

We see that (1.1) is equivalent to the Cauchy problem

uxx(x, t) = ut(x, t), 0 < x < 1, t > 0,

u(1, t) = g(t), ux(1, t) = h(t) t > 0,

u(x, 0) = 0, 0 < x < 1.
(3.4)

Fourier regularization of the heat flux. Since the data gδ is not smooth, to
compute numerically h, it is necessary to consider the Fourier integral (3.3) only
for |ξ| ≤ ξm (see [9, 10]). Indeed, we consider two approximations of h:

hm(t) = Hmg := −
∫ +∞

−∞

√
iξĝ(ξ) exp(iξt)χm(ξ)dξ, (3.5)

hm,δ(t) = −
∫ +∞

−∞

√
iξĝδ(ξ) exp(iξt)χm(ξ)dξ, (3.6)

where χm is the characteristic function of the interval [−ξm, ξm].
In the following, we will derive an error estimate for the approximation (3.6).

We assume that there exists an a priori bound for f(t) := u(0, t),

‖f‖ ≤ E. (3.7)

According to the estimate (2.5), it follows that ‖g‖s ≤ M = C(s, 1)E. Under
this condition we estimate the L2−distance between h and hm,δ in the following
theorem.

Theorem 3.1. Suppose that ‖g‖s ≤ M , s ≥ 1/2, and gδ ∈ L2(R) satisfying
‖g − gδ‖ ≤ δ. If we select ξm = (M/δ)1/s then we get the error bound

‖h− hm,δ‖ ≤ 2M
1
2s δ1−

1
2s . (3.8)

Proof. We have

‖h− hm‖2 =
∫
|ξ|>ξm

|ξ||ĝ(ξ)|2dξ

≤ max
ξ>ξm

ξ

(1 + ξ2)s
‖g‖2s ≤M2(ξm)1−2s.

(3.9)
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On the other hand

‖hm − hm,δ‖ ≤
√
ξm‖g − gδ‖ ≤ δ

√
ξm. (3.10)

If we choose ξm = (M/δ)1/s, then

‖h− hm,δ‖ ≤ ‖h− hm‖+ ‖hm − hm,δ‖ ≤ 2M1/(2s)δ1−
1
2s . (3.11)

�

Corollary 3.2. Assume that ĝ(ξ) = e−x
√
iξ f̂(ξ) with ‖f‖ ≤ E, and gδ ∈ L2(R)

satisfying ‖g − gδ‖ ≤ δ. If we select ξm = 5s(E/δ)1/s then we get the error bound

‖h− hm,δ‖ ≤ 2
√

5sE
1
2s δ1−

1
2s , ∀s ≥ 1

2
. (3.12)

4. Discretization of the Cauchy problem and stability

The solution of the Cauchy problem (3.4) is unique but is not stable with respect
of the data (g, h). To stabilize the problem, we propose a scheme in two steps.

Time discretization. The problem for 0 ≤ t ≤ T can be discretized by replacing
the time derivative ut by the backward difference with step length τ . Indeed, let
tn = nτ , n = 0 to N , with τ = T

N is the time step, then we have the approximation,
for n ≥ 1:

ut(x, tn) ≈ u(x, tn)− u(x, tn−1)
τ

.

Furthermore if we assume that |u(x, t)|, |ut(x, t)|, |utt(x, t)| ≤ M , for all (x, t) ∈
[0, 1]× [0, T ], then

ut(x, tn) =
u(x, tn)− u(x, tn−1)

τ
+ ψ(x, tn) with ψ(x, t) = O(τ).

Noticing wn(x) = u(x, tn) and ψn(x) = ψ(x, tn), the equation uxx = ut becomes
an ordinary differential equation in the space variable x:

w′′n − θ2wn = −θ2wn−1 + ψn(x),

with θ2 = 1/τ . Thus we consider the semi-discrete problem

v′′n(x)− θ2vn(x) = −θ2vn−1(x), for 0 ≤ x ≤ 1, (v0 = 0)

vn(1) = gn, v′n(1) = hn (gn = g(tn), hn = h(tn)).
(4.1)

The solution vn has the representation

vn(x) = gn cosh(θ(1−x))− hn
θ

sinh(θ(1−x)) + θ

∫ 1

x

sinh θ(x−y)vn−1(y)dy. (4.2)

Starting with v0 = 0, we obtain recursively the expression

vn(x) = ϕn + Sϕn−1 + S2ϕn−2 + · · ·+ Sn−1ϕ1, (4.3)

with

ϕn(x) = gn cosh(θ(1− x))− hn
θ

sinh(θ(1− x)),

Sϕ(x) = θ

∫ 1

x

sinh θ(x− y)ϕ(y)dy.
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Space discretization. Now we discrete the interval [0, 1] by the sequence xj = jk,
j = 1, L (k = 1/L) and we approximate the integral operator S by quadrature by
considering the matrix Sk:

Sk(i, j) =

{
kθ sinh(θ(j − i)k) if j > i,

0 if j ≤ i.

For a function Ψ(x, t) defined on the grid G = {xm = mk; tn = nτ : m = 0, L; n =
0, N}, we introduce the vector

Ψn = (Ψ(x1, tn),Ψ(x2, tn), . . . ,Ψ(1, tn)).

Now we define the discrete solution ū(x, t) on the grid G by

ūn := ϕn + Skϕn−1 + S2
kϕn−2 + · · ·+ Sn−1

k ϕ1 (4.4)

with ϕn = (ϕn(x1), ϕn(x2), . . . , ϕn(1)). For simplicity, we assume in the following
that T = 1.

Theorem 4.1. Let wn(x) = u(x, tn) be the exact solution of the Cauchy problem
(3.4) at t = tn and vn(x) be the semi-discrete solution given by (4.3) . Then for all
n ≤ N and all x ∈]0, 1],

|wn(x)− vn(x)| ≤Mτ22−n exp
(n(1− x)

τ
1
2

)
. (4.5)

Proof. Let zn = wn − vn. Then

z′′n − θ2zn = −θ2zn−1 + ψn(x), (z0 = 0)

zn(1) = 0, z′n(1) = 0.

Hence

zn(x) = θ

∫ 1

x

sinh θ(x− y)zn−1(y) dy − 1
θ

∫ 1

x

sinh θ(x− y)ψn(y) dy. (4.6)

It follows that
zn(x) = −τ [Sψn + S2ψn−1 + · · ·+ Snψ1]. (4.7)

Since |ψn(x)| ≤Mτ/2, we have

|zn(x)| ≤ M

2
τ2

n∑
i=1

‖S‖i. (4.8)

But ‖S‖ ≤ 1
2 exp θ(1− x), which leads to

|zn(x)| ≤ M

2
τ2[2−1 exp θ(1− x) + 2−2 exp 2θ(1− x) + · · ·+ 2−n expnθ(1− x)]

≤Mτ22−n exp
(n(1− x)

τ1/2

)
.

(4.9)
�

Remark 4.2. Since n ≤ N = 1/τ , the right hand of (4.5) behaves like r(x, τ) =
τ2 exp

(
− log 2

τ + 1−x
τ
√
τ

)
. In particular, if exp( 1

τ
√
τ

) = 1
ε ⇔ τ = 1/(log 1

ε )2/3, then

r(x, τ) ≤ 1
ε1−x (log 1

ε )−4/3 does not approach zero as ε → 0. This means that the
difference scheme is (perhaps) inconsistent. But, in the numerical test (see Figure
1) the algorithm converges at least when the Cauchy data are exact. It seems that
the error bound (4.5) is sharp.
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Remark 4.3. (1) Elden [7, Corollary 3.2] investigated central difference discretiza-
tion in time. He approximates the heat equation by the central difference equation:

vxx(x, t) =
1
2τ

(v(x, t+ τ)− v(x, t− τ)),

and he proved an error estimate between u(x, t) and v(x, t) subjected to the con-
ditions u(1, t) = g(t) and v(1, t) = gδ. More precisely, he gets asymptotically, as
δ → 0,

‖u(x, .)− v(x, .)‖ ∼ M

(log(Mδ ))2

with τ = 1/2(log(Mδ )2.
(2) To prove a similar estimate for the backward difference equation

vxx(x, t) =
1
τ

(v(x, t)− v(x, t− τ)),

is an open problem. Indeed, one of the conclusions of Elden in his paper is It is
important that the time difference has a substantial forward component.

The stability of the discrete scheme (4.4) is proved in the following theorem.

Theorem 4.4. Let ūn be the solution defined by (4.4) associated with (gn, hn).
Then we have

‖ūn‖ ≤ 2τ1/4(
√
kθ)n exp(n(1− k)θ)

(
|gn|+

√
τ |hn|

)
, ∀n ≤ N, (4.10)

where ‖ · ‖ is the discrete L2-norm, i.e. ‖ūn‖2 = k
∑L
m=1(ūmn )2.

Proof. From (4.4) we have

‖ūn‖ ≤
n−1∑
i=0

‖Sk‖i‖ϕn−i‖. (4.11)

Moreover,

|ϕmn | ≤ |gn| cosh(θ(1−mk)) +
|hn|
θ

sinh(θ(1−mk))

≤
√

2 exp(θ(1−mk))(|gn|+
√
τ |hn|),

then
‖ϕn‖ ≤

1√
θ

exp(θ(1− k))(|gn|+
√
τ |hn|).

On the other hand

‖Sk‖2 ≤ kθ2
L∑
i=1

L∑
j=i

sinh2[θk(j − i)] ≤ 1
4
kθ2

L∑
i=1

L∑
j=i

exp[2θk(j − i)]

≤ 1
4
kθ2

L∑
i=1

L−i∑
j=0

exp[2jθk]

≤ 1
2
kθ2

L∑
i=1

exp(2kθ(L− i)) ≤ kθ2 exp(2θ(1− k));

that is,
‖Sk‖ ≤

√
kθ exp(θ(1− k)),

which leads to estimate (4.10). �
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As a consequence we prove the following the main result.

Theorem 4.5. Assume that ‖f‖ ≤ E. Let ū the discrete solution associated
with (g, h = Hg) and ūδ the discrete solution associated with the perturbed data
(gδ, hm,δ = Hmg

δ), where H (resp. Hm) is the operator given by (3.3) (resp.
(3.5)). If we select ξm = 5s(Eδ )1/s, τ = (2s/ log 1

δ )2/3 and k ≤ τ , then we have

‖ū− ūδ‖ ≤ 8
√

10sE
1
2s

(
log

1
δ

)−1/3
δ1−

1
s , ∀s ≥ 1, (4.12)

where ‖ · ‖ is the discrete L2-norm.

Proof. Since
√
kθ ≤ 1 and n ≤ N = 1/τ , it follows from (4.10) that

‖ū− ūδ‖ ≤ 2
√

2 exp
( 1
τ
√
τ

)
[‖g − gδ‖+

√
τ‖h− hm,δ‖]. (4.13)

With (3.12), it follows that

‖ū− ūδ‖ ≤ 2
√

2 exp
( 1
τ
√
τ

)
[δ + 2

√
5sE

1
2s δ1−

1
2s
√
τ ]. (4.14)

If we choose τ = (2s/ log 1
δ )2/3, then exp

(
1

τ
√
τ

)
= ( 1

δ )
1
2s and we obtain

‖ū− ūδ‖ ≤ 8
√

10sE
1
2s δ1−

1
s

(
log

1
δ

)−1/3
, (4.15)

which establishes the estimate (4.12). �

Remark 4.6. Assume the a priori bound ‖f‖s ≤ E with s ≥ 1. Since ĝ(ξ) =
e−
√
iξ f̂(ξ), then ‖g‖s ≤ E. As a consequence, we can establish, as in theorem 4.5,

the estimate

‖ū− ūδ‖ ≤ 8
√

2s
1
3E

1
2s δ1−

1
s

(
log

1
δ

)−1/3
. (4.16)

5. Algorithms and numerical examples

Numerical implementation of the Fourier integral. To use the Fast Fourier
Transform (FFT) it is necessary to assume periodicity. Therefore we extend g to
the interval [T, 2T ] (as in [6]). The Fourier integral

hN (t) = −
∫ +ξN

−ξN

√
iξĝ(ξ) exp(iξt)dξ, ξN =

πN

T
,

is approximated by Discrete Fourier Transform (DFT). Let g = {gk}2Nk=1 be a dis-
crete vector and ĝ = {ĝk}2Nk=1 its DFT, then the vector hN (t) is given by the
trigonometric interpolation polynomial of the form

hN (t) = − 1
2T

N∑
k=−N+1

√
−iξkĝN+ke

iξkt; ξk =
kπ

T
.
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Algorithms. The proposed algorithm is described as follows:
Method 1 (Backward)

(1) Given an exact source f , we provide a data (g = Af, h = Bf) by solving the
forward problem (see section 2 where A and B are the integral operators
(2.3) and (2.4) respectively). We extend g to [0, 2T ] such that the extension
g̃ vanishes at the end point t = 2T and we set gk = g̃(tk), k = 1, . . . , 2N .

(2) We perturb the data gδ = g + δσ, where σ(t) is the Gaussian random
function and δ is the level noise.

(3) Calculate ĝ = F (gδ) and hm = F ∗(
√

Λĝ), with Λ = (iξk),where F is the
Fast Fourier Transform (FFT) and F ∗ its inverse.

(4) Calculate ū by the procedure:
u(1, :) = zeros(1, N);
for i = 2 : N + 1;
w = D ∗ u(i− 1, :)′; % D(i, j) = sinh(r ∗ (i− j) ∗ k)
for j = 1 : M + 1;
u(i, j) = g(i) ∗ cosh(r ∗ (1− (j − 1) ∗ k))−
h(i) ∗ sinh(r ∗ (1− (j − 1) ∗ k))/r + r ∗ k ∗ w(j); % with (r =

√
τ)

end;
end;

(5) The approximate solution is fap = (u(:, 1)).
To compare our algorithm (method 1), we recall the forward and central time
difference schemes.

Letting w := ux, the Cauchy problem (3.4) can be rewritten as

ux(x, t) = w(x, t), wx(x, t) = ut(x, t), 0 < x < 1, t > 0,

u(1, t) = g(t), w(1, t) = h(t), t > 0,

u(x, 0) = 0, 0 < x < 1.
(5.1)

This problem is discretized by

un+1
m − unm

k
= wn+1

m , n = 1, . . . , N, m = 1, . . . ,M + 1,

wn+1
m − wnm

k
=
unm+1 − unm

τ
,

(resp.
unm+1 − unm−1

2τ
), n = 1, . . . , N, m = 1, . . . ,M,

uN+1
m = gm, wN+1

m = hm, m = 1, . . . ,M + 1,

un1 = 0, n = 1, . . . , N + 1.

(5.2)

Then step (4) in the method 1 is replaced respectively by the following process:
Method 2 (Forward)
u(1, :) = zeros(1, N + 1); u(:, N + 1) = g; w(:, N + 1) = h;
for i = 1 : N ;
for j = 2 : M ;
u(j,N − i+ 1) = u(j,N − i+ 2)− k ∗ w(j,N − i+ 2);
w(j,N − i+ 1) = w(j,N − i+ 2)− r ∗ (u(j,N − i+ 2)− u(j − 1, N − i+ 2)− . . .
k ∗ (w(j + 1, N − i+ 2)− w(j,N − i+ 2))); % with (k = 1

N , τ = T
M , r = k

τ )
end;
end;
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Method 3 (Central)
u(1, :) = zeros(1, N + 1); u(:, N + 1) = g; w(:, N + 1) = h;
for i = 1 : N ;
for j = 2 : M ;
u(j,N − i+ 1) = u(j,N − i+ 2)− k ∗ w(j,N − i+ 2);
w(j,N−i+1) = w(j,N−i+2)−(r/2)∗(u(j+1, N−i+2)−u(j−1, N−i+2)− . . .
k ∗ (w(j + 1, N − i+ 2)−w(j − 1, N − i+ 2))); % with ( k = 1

N , τ = T
M , r = k

τ )
end;
end;

The unconditional stability of the central difference scheme (method 3) is proved
in [12, Theorem 3.2] and in its references.

Numerical tests. In all the numerical experiments we choose the parameters:
T = 3, M = M(δ), N ≥ 2M .
Test 1. First we consider the function

f(t) = 1.4te−30(t−1.5)2 ,

f belongs to Hs(R) for all s. Since f(t) approaches zero as |t− 1.5| ≥ 1, we will do
the test with t ∈ [0, 3].

Figure 1. Test 1 (Method 1): The exact and approximate solu-
tion at x = 0; (left): with exact Cauchy data (g, h) with δ = 0,
N = 180, M = 90; (right): with perturbed Cauchy data (gδ, hδ)
with δ = 10−4, M = 80, N = 100.

The numerical results are very good if the data (g, h) are exact (see Figure 1) and
less good if h = Hmg is regularized (as we can see in Figure 2 (left)). This is due
to the loss of accuracy in the computation of h by Fourier regularization (Figure
2 (right)). Moreover we observe end-point instabilities near t = 0 (see Figure 3
(left)). This phenomenon can be reduced by the adequate choice of M = M(δ),
taking into account the relation τ = (2s/ log 1

δ )2/3 (Figure 3). We point out that,
for T ≤ 2, the data g(t) in [0, T ] is not enough to determine f in the same interval
(see remark 2.2).
Test 2. We consider the example

f(t) =

{
1, 1.3 < t ≤ 1.7
0, otherwise.
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Figure 2. Test 1 (Method 1): (left) exact and approximate solu-
tion at x = 0; (right) exact and approximate heat flow at x = 1,
with δ = 0, M = 80.

Figure 3. Test 1 (Method 1): Exact and approximate solution at
x=0; (left) δ = 10−4, M = 90; (right) δ = 10−3, M = 45.

This function belongs to L2(R). The numerical results (in Figure 4) are not as good
as in the above cases. Indeed, some oscillations appear at the discontinuities of f .
Despite this, the approximation is of satisfactory quality outside a neighbourhood
of the jumps.

Comparison with methods 2 and 3. Figure 4 and Figure 5 show that method
1 and method 2 are comparable. Figure 6 shows the results associated with method
3, confirming the numerical stability of the central difference algorithm with respect
to perturbations in the data. But this procedure induces high oscillations at left of
the end-point t = T . Using Fourier techniques, Elden in the paper[7] has compared
the errors for the different schemes, he shows that method 3 gives a much better
approximation than the forward and backward difference.

Conclusion. We have revisited an inverse heat conduction problem which is se-
verely ill-posed and has been considered by many authors ([7, 1, 12]). We have pro-
posed a numerical algorithm for identifying a boundary condition for the heat equa-
tion in the quarter plane. Our method is based on the backward finite-difference
scheme in the time variable. We proved that our algorithm is stable and we derived
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Figure 4. Test 2 (Method 1): Exact and approximate solution at
x = 0: (left) with δ = 0, M = 90; (right) with δ = 10−4, M = 60.

Figure 5. Test 2 (Method 2): Exact and approximate solution at
x = 0: (left) with δ = 0, M = 90; (right) with δ = 10−4, M = 60.

Figure 6. Test 2 (Method 3): Exact and approximate solution at
x = 0: (left) with δ = 0, M = 90; (right) with δ = 10−4, M = 60.

a Hölder type estimate under an a priori condition and with suitable choice of the
parameters. The numerical experiments for test examples are acceptable. From
the numerical tests we expect the backward scheme (method 1) behave as well as
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the forward scheme (method 2) but is not as good as the central scheme (method
3) near the jumps of f . Finally, the question of the convergence of the approximate
solution (method 1) to the exact one remains open, indeed the scheme is stable but
“perhaps” inconsistent.
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