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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR
PERTURBED KIRCHHOFF TYPE ELLIPTIC PROBLEMS WITH

HARDY POTENTIAL

MEI XU, CHUANZHI BAI

Abstract. In this article, by using critical point theory, we show the existence

of infinitely many weak solutions for a fourth-order Kirchhoff type elliptic

problems with Hardy potential.

1. Introduction

This article concerns the existence of infinitely many weak solutions for the p-
biharmonic equation with Hardy potential of Kirchhoff type

M
(∫

Ω

|∆u|pdx
)

∆2
pu−

a

|x|2p
|u|p−2u = λf(x, u) + µg(x, u) in Ω

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN (N ≥ 3) containing the origin and with smooth
boundary ∂Ω, 1 < p < N

2 , ∆2
pu = ∆(|∆u|p−2∆u) is an operator of fourth order, the

so-called p-biharmonic operator, λ, µ are two positive parameters, M : [0,+∞[→ R
is a continuous function, and f, g : Ω× R→ R are two continuous functions.

Kirchhoff [16] first introduced a model given by the equation

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

|∂u
∂x
|dx
)∂2u

∂x2
= 0, (1.2)

which extends the classical D’Alembert’s wave equation by considering the effects
of the changes in the length of the strings during the vibrations. After that, many
authors studied the following nonlocal elliptic boundary value problem

−M
(∫

Ω

|∇u|2dx
)

∆u(x) = f(x, u) in Ω

u = 0 on ∂Ω.
(1.3)

Problems like this are called the Kirchhoff type problems. In recent years, many
interesting results for problem of Kirchhoff type were obtained [1, 9, 13, 14, 17, 18,
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21]. Recently, using the variational methods, Graef, Heidarkham and Kong [12]
studied the existence of at least three weak solutions to the Kirchhoff-type problem

−K
(∫

Ω

|∇u|2dx
)

∆u(x) = λf(x, u) + µg(x, u) in Ω

u = ∆u = 0 on ∂Ω.
(1.4)

In [7], using variational methods and critical point theory, Ferrara, Khademloo
and Heidarkhani established the multiplicity results of nontrivial and nonnegative
solutions for the following perturbed fourth-order Kirchhoff type elliptic problem

∆2
pu− [M(

∫
Ω

|∇u|pdx)]p−1∆pu+ ρ|u|p−2u = λf(x, u) in Ω

u = ∆u = 0 on ∂Ω.
(1.5)

On the other hand, singular elliptic problems have been intensively studied in
recent years, see for example, [11, 10, 19] and the references. Ferrara and Molica
Basic [8] studied the existence of solutions for the elliptic problem with Hardy
potential

−∆pu = µ
|u|p−2u

|x|p
+ λf(x, u) in Ω

u = ∆u = 0 on ∂Ω.
(1.6)

Huang and Liu [15] studied the sign-changing solutions for p-biharmonic equations
with Hardy potential

∆2
pu−

a

|x|2p
|u|p−2u = f(x, u) in Ω

u = ∆u = 0 on ∂Ω,
(1.7)

by using the method of invariant sets of descending flow.
Motivated by the papers [7, 8, 2, 3, 4, 12, 15], in this paper, we look for the

existence of infinitely many solutions of problem (1.1). Precisely, under appropriate
hypotheses on the nonlinear term f, g, the existence of two intervals Λ and J such
that, for each λ ∈ Λ and µ ∈ J , BVP (1.1) admits a sequence of pairwise distinct
solutions is proved. Our analysis is mainly based on a recent critical point theorem
in [5].

This article is organized as follows. In section 2, we present some necessary
preliminary facts that will be needed in the paper. In section 3, we establish our
main two existence results.

Remark 1.1. If M(·) ≡ 1, then Kirchhoff type problem (1.1) reduces to the p-
biharmonic equation with Hardy potential

∆2
pu−

a

|x|2p
|u|p−2u = λf(x, u) + µg(x, u), in Ω

u = ∆u = 0, on ∂Ω.

2. Preliminaries

Let X be the space W 2,p(Ω) ∩W 1,p
0 (Ω) endowed with the norm

‖u‖ =
(∫

Ω

|∆u|pdx
)1/p

.
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We recall Rellich inequality [6], which says that∫
Ω

|u(x)|p

|x|2p
dx ≤ 1

H

∫
Ω

|∆u|pdx, (2.1)

where the best constant is

H =
( (p− 1)N(N − 2p)

p2

)p
. (2.2)

Define the functionals Φ,Ψ : X → R by

Φ(u) =
1
p
M̂(‖u‖p)− a

p

∫
Ω

|u(x)|p

|x|2p
dx,

Ψ(u) =
∫

Ω

[
F (x, u(x)) +

µ

λ
G(x, u(x))

]
dx,

(2.3)

where

M̂(t) =
∫ t

0

M(s)ds, t ≥ 0,

F (x, t) =
∫ t

0

f(x, ξ)dξ, G(x, t) =
∫ t

0

g(x, ξ)dξ, (x, t) ∈ Ω× R.

In this article, we assume that the following condition holds,

(H1) M : [0,+∞[→ R is a continuous function. And there are two positive
constants m0, m1 such that

m0 ≤M(t) ≤ m1, ∀t ≥ 0. (2.4)

It is easy to show that the functionals Φ and Ψ are well defined and continuously
Gateaux differentiable and whose derivative are

Φ′(u)(v) = M
(∫

Ω

|∆u(x)|pdx
)∫

Ω

|∆u(x)|p−2∆u(x)∆v(x)dx

− a
∫

Ω

|u(x)|p−2

|x|2p
u(x)v(x)dx,

(2.5)

and

Ψ′(u)(v) =
∫

Ω

[f(x, u(x)) +
µ

λ
g(x, u(x))]v(x)dx, (2.6)

for every u, v ∈ X.
Set p∗ = pN

N−p . By the Sobolev embedding theorem there exist a positive constant
c such that

‖u‖Lp∗ (Ω) ≤ c‖u‖, ∀u ∈ X,

where

c := π−
1
2N−

1
p

( p− 1
N − p

)1− 1
p
[ Γ(1 + N

2 )Γ(N)
Γ(Np )Γ(N + 1− N

p )

]1/N
, (2.7)

see, for instance, [20]. Fixing q ∈ [1, p∗), again from the Sobolev embedding theo-
rem, there exists a positive constant cq such that

‖u‖Lq(Ω) ≤ cq‖u‖, ∀u ∈ X. (2.8)
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Thus, the embedding X ↪→ Lq(Ω) is compact. By (2.7), as a simple consequence
of Hölder’s inequality, one has the upper bound

cq ≤ π−
1
2N−1/p

( p− 1
N − p

)1− 1
p
[ Γ(1 + N

2 )Γ(N)
Γ(Np )Γ(N + 1− N

p )

]1/N
|Ω|

p∗−q
p∗q , (2.9)

where |Ω| denotes the Lebesgue measure of the open set Ω.
Our main tools is an infinitely many critical points theorem [5] which is recalled

below.

Theorem 2.1. Let X be a reflexive real Banach space; Φ,Ψ : X → R be two
Gateaux differentiable functionals such that Φ is sequentially weakly lower semi-
continuous, strongly continuous, and coercive and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, let us put

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)
r − Φ(u)

,

γ = lim inf
r→+∞

ϕ(r), δ = lim inf
r→(infX Φ)+

ϕ(r).

Then, one has
(i) If γ < +∞ then, for each λ ∈]0, 1

γ [, the following alternative holds: either
the functional Φ−λΨ has a global minimum, or there exists a sequence {un}
of critical points (local minima) of Φ−λΨ such that limn→+∞ Φ(un) = +∞.

(ii) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds: either

there exists a global minimum of Φ which is a local minimum of Φ − λΨ,
or there exists a sequence {un} of pairwise distinct critical points (local
minima) of Φ−λΨ, with limn→+∞ Φ(un) = infX Φ, which weakly converges
to a global minimum of Φ.

3. Main results

Pick s > 0 such that B(0, s) ⊂ Ω, where B(0, s) denotes the ball with center at
0 and radius of s. Let

L =
2πN/2

Γ
(
N
2

) ∫ s

s
2

|12(N + 1)
s3

r − 24N
s2

+
9(N − 1)

s

1
r
|prN−1dr. (3.1)

Theorem 3.1. Suppose that (H1) and 0 < a < m0H hold (with H is as in (2.2)).
Also assume

(H2) f ∈ C(Ω× R), and F (x, t) ≥ 0 for every (x, t) ∈ Ω× [0,+∞[;
(H3) There exists s > 0 as considered in (3.1) such that, if we put

α := lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t
∫

Ω
F (x, ξ)dx

tp
, β := lim sup

t→+∞

∫
B(0,s/2)

F (x, t/h)dx

tp
,

one has
α < Rβ, (3.2)

where R = (m0H−a)hp

m1HLc
p
q

(constants h > 1, cq and L are as in (2.8) and (3.1),
respectively).

Then, for every λ ∈ Λ := m0H−a
pHcp

q

]
1
Rβ ,

1
α

[
and for every g ∈ C(Ω× R) such that



EJDE-2015/268 EXISTENCE OF INFINITELY MANY SOLUTIONS 5

(H4) G(t, u) ≥ 0, for all (t, u) ∈ Ω× [0,+∞[, and

G∞ := lim sup
t→+∞

sup‖ξ‖Lq(Ω)≤t
∫

Ω
G(x, ξ)dx

tp
,

if we put

µ∗ =

{
m0H−a−pHcp

qαλ

pHcp
qG∞

, G∞ > 0,

+∞, G∞ = 0,
(3.3)

then (1.1) possesses an unbounded sequence of weak solutions in X for every µ ∈
J := [0, µ∗[.

Proof. Our aim is to apply part (i) of Theorem 2.1. Let Φ,Ψ be the functionals
defined in (2.3). From the above, we know that the Gateaux derivative of Φ and Ψ
are given by (2.5) and (2.6), respectively. By (2.1), it follows that

m0H − a
pH

‖u‖p ≤ Φ(u) ≤ m1

p
‖u‖p, u ∈ X, (3.4)

which implies that Φ is coercive. Moreover, from the weakly lower semicontinuity of
norm, and the monotonicity and continuity of M̂ , we known that Φ is sequentially
weakly lower semicontinuous. The functional Ψ has compact derivative, hence it is
sequentially weakly upper semicontinuous.

By (2.8) and (3.4), we obtain

Φ−1(]−∞, r[) = {u ∈ X : Φ(u) < r}

⊂
{
u ∈ X :

m0H − a
pH

‖u‖p < r
}

⊂
{
u ∈ X : ‖u‖Lq(Ω) < cq

( pHr

m0H − a
)1/p}

.

(3.5)

Note that Φ(0) = 0 and Ψ(0) = 0. For every r > 0, we obtain by (3.5) that

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)
r − Φ(u)

≤
supv∈Φ−1(]−∞,r[) Ψ(v)

r

≤
sup‖ξ‖Lq(Ω)≤l

∫
Ω
F (x, ξ)dx

r
+
µ

λ

sup‖ξ‖Lq(Ω)≤l
∫

Ω
G(x, ξ)dx

r
,

where l = cq
(

pHr
m0H−a

)1/p.
Let {σn} be a sequence of positive numbers such that σn → +∞ and

lim
n→+∞

sup‖ξ‖Lq(Ω)≤σn

∫
Ω
F (x, ξ)dx

σpn

= lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t
∫

Ω
F (x, ξ)dx

tp
.

(3.6)
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Let rn = m0H−a
pHcp

q
σpn for all n ∈ N. From (H3), (H4) and (3.6), we obtain

γ = lim inf
r→+∞

ϕ(r) ≤ lim inf
n→+∞

ϕ(rn)

≤
pHcpq

m0H − a
lim

n→+∞

sup‖ξ‖Lq(Ω)≤σn

∫
Ω
F (x, ξ)dx

σpn

+
µ

λ

pHcpq
m0H − a

lim sup
n→+∞

sup‖ξ‖Lq(Ω)≤σn

∫
Ω
G(x, ξ)dx

σpn

≤
pHcpq

m0H − a

(
α+

µ

λ
G∞

)
< +∞.

(3.7)

By (3.3) and (3.7), we easily check that

γ <

{
pHcp

q

m0H−a
(
α+ µ∗

λ G∞
)

= 1
λ , G∞ > 0,

pHcp
q

m0H−aα <
1
λ , G∞ = 0

(3.8)

From the definition of Λ and (3.2), we have that Λ ⊂]0, 1
γ [.

In the following, we claim that the functional Φ − λΨ for λ ∈ Λ is unbounded
from below. Indeed, since 1

λ <
pHcp

q

m0H−aRβ = php

m1L
β, there exists a sequence {τn} of

positive numbers and η > 0 such that τn → +∞ and

1
λ
< η <

php

m1L

∫
B(0,s/2)

F (x, τn/h)dx

τpn
, (3.9)

for n large enough.
Let h > 1 be as in R ((3.2)), we consider a sequence {wn} in X defined by setting

wn(x) =


0, x ∈ Ω \B(0, s),
τn

h

(
4
s3 ρ

3 − 12
s2 ρ

2 + 9
sρ− 1

)
, x ∈ B(0, s) \B(0, s2 ),

τn

h , x ∈ B(0, s2 )
(3.10)

with ρ = dist(x, 0) =
√∑N

i=1 x
2
i . Clearly wn ∈ X. A direct calculation shows

∂wn(x)
∂xi

=

{
0, x ∈ (Ω \B(0, s)) ∩B(0, s2 ),
τn

h

(
12ρxi

s3 − 24xi

s2 + 9xi

sρ

)
, x ∈ B(0, s) \B(0, s2 )

and

∂2wn(x)
∂x2

i

=

{
0, x ∈ (Ω \B(0, s)) ∩B(0, s2 ),
τn

h

(
12(x2

i +ρ2)
s3ρ − 24

s2 + 9(ρ2−x2
i )

sρ3

)
, x ∈ B(0, s) \B(0, s2 ).

(3.11)
By (3.11) and (3.1) we have

N∑
i=1

∂2wn(x)
∂x2

i

=

{
0, x ∈ (Ω \B(0, s)) ∩B(0, s2 ),
τn

h

(
12ρ(N+1)

s3 − 24N
s2 + 9(N−1)

sρ

)
, x ∈ B(0, s) \B(0, s2 ),

and∫
Ω

|∆wn(x)|pdx

=
(τn
h

)p 2πN/2

Γ
(
N
2

) ∫ s

s
2

|12(N + 1)
s3

r − 24N
s2

+
9(N − 1)

s

1
r
|prN−1dr =

L

hp
τpn.

(3.12)
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Thus, we have by (2.4) and (3.12) that

Φ(wn) =
1
p
M̂(‖wn‖p)−

a

p

∫
Ω

|wn(x)|p

|x|2p
dx ≤ 1

p
M̂
(∫

Ω

|∆wn(x)|pdx
)

≤ m1L

php
τpn.

(3.13)

On the other hand, by (H4), one has

Ψ(wn) =
∫

Ω

[
F (x,wn(x) +

µ

λ
G(x,wn(x))

]
dx ≥

∫
B(0,s/2)

F (x, τn/h)dx. (3.14)

Hence, it follows from (3.13), (3.14) and (3.9) that

Φ(wn)− λΨ(wn) ≤ m1L

php
τpn − λ

∫
B(0,s/2)

F (x, τn)dx <
m1L

php
(1− λη)τpn

for every n ∈ N large enough, which leads to limn→+∞(Φ(wn)− λΨ(wn)) = −∞.
The alternative of Theorem 2.1 case (i) assures the existence of unbounded se-

quence {un} of critical points of the functional Φ − λΨ. This completes the proof
in view of the relation between the critical points of Φ−λΨ and the weak solutions
of problem (1.1). �

Remark 3.2. If α <∞, β > 0, and h > 1 large enough, then (3.2) holds.

In the following, arguing in a similar way, but applying case (ii) of Theorem 2.1,
we can establishes the existence of infinitely many solutions to (1.1) converging at
zero.

Theorem 3.3. Suppose that (H1) and 0 < a < m0H hold (with H is as in (2.2)).
Also assume

(H5) f ∈ C(Ω × R), and there exists c > 0 such that F (x, t) ≥ 0 for every
(x, t) ∈ Ω× [0, c];

(H6) There exists s > 0 as considered in (3.1) such that, if we put

α0 := lim inf
t→0+

sup‖ξ‖Lq(Ω)≤t
∫

Ω
F (x, ξ)dx

tp
, β0 := lim sup

t→0+

∫
B(0,s/2)

F (x, t/h)dx

tp
,

one has
α0 < Rβ0, (3.15)

where R = (m0H−a)hp

m1HLc
p
q

(constants h > 1, cq and L are as in (2.8) and (3.1),
respectively).

Then, for every λ ∈ Λ0 := m0H−a
pHcp

q
] 1
Rβ0 ,

1
α0 [ and for every g ∈ C(Ω× R) such that

(H7) G(t, u) ≥ 0, for all (t, u) ∈ Ω× [0, c] and

G0 := lim sup
t→0+

sup‖ξ‖Lq(Ω)≤t
∫

Ω
G(x, ξ)dx

tp
,

if we put

µ∗ =

{
m0H−a−pHcp

qαλ

pHcp
qG0

, G0 > 0,

+∞, G0 = 0,
(3.16)

then (1.1) admits a sequence {un} of weak solutions such that un → 0 strongly in
X for every µ ∈ J := [0, µ∗[.
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Proof. We take Φ and Ψ be as in (2.3). First, note that minX Φ = Φ(0) = 0.
Let {σn} be a sequence of positive numbers such that σn → 0+, and putting
rn = m0H−a

pHcp
q
σpn. Similarly as above, we get

δ := lim inf
r→0+

ϕ(r) ≤ lim inf
n→+∞

ϕ(rn)

≤
pHcpq

m0H − a

(
α0 +

µ

λ
G0

)
< +∞.

(3.17)

From (3.16) and (3.17), we have that Λ0 ⊂]0, 1
δ [. Now, for λ ∈ Λ0, we claim that

Φ− λΨ does not have a local minimum at zero. Indeed, let {τn} be a sequence of
positive numbers in ]0, τ [ and η > 0 such that τn → 0+ and

1
λ
< η <

php

m1L

∫
B(0,s/2)

F (x, τn/h)dx

τpn
,

for n large enough. Let {wn} be the sequence in X defined in (3.10). By (H7), one
has that (3.14) holds. Thus, from (3.13), (3.14) and (3.9) we obtain that

Φ(wn)− λΨ(wn) <
m1L

php
(1− λη)τpn < 0 = Φ(0)− λΨ(0)

for every n ∈ N large enough. This together with the fact that ‖wn‖ → 0 shows
that Φ − λΨ has not a local minimum at zero. The conclusion follows from the
alternative of Theorem 2.1 case (ii). �
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