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MULTIPLE SOLUTIONS FOR AN INDEFINITE
KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING

POTENTIAL

HONGLIANG LIU, HAIBO CHEN

Abstract. In this article, we study a Kirchhoff-type equation with sign-
changing potential on an infinite domain. Using Morse theory and variational

methods, we show the existence of two and of infinitely many nontrivial solu-
tions.

1. Introduction and statement of main results

In this article, we study the existence of multiple solutions for the nonlinear
Kirchhoff-type equation

−
(
a+ b

∫
RN
|∇u|2dx

)
∆u+ V (x)u = f(x, u), in RN , (1.1)

where N ≥ 2 and parameters a > 0, b ≥ 0 and the potential V satisfies the condition
(A1) V ∈ C(RN ) ∩ L∞(RN ), V (x) ≤ V̄ ∈ (0,∞) for all x ∈ RN and there exists

a constant l0 > 0 such that∫
RN

[|∇u|2 + V (x)|u|2]dx ≥ l0
∫

RN
[V̄ − V (x)]|u|2dx, ∀u ∈ H1(RN ). (1.2)

From this condition, we see that V (x) is allowed to be sign-changing and we consider
the increasing sequence λ1 ≤ λ2 ≤ λ3 ≤ . . . of minimax values defined by

λn := inf
V ∈Vn

sup
u∈V,u6=0

∫
RN
(
|∇u|2 + V u2

)
dx∫

RN u
2dx

, (1.3)

where Vn denotes the family of n-dimensional subspaces of C∞0 (RN ). Denote λ∞ =
limn→∞ λn. Then λ∞ is the bottom of the essential spectrum of −∆ + V if it is
finite and for every n ∈ N the inequality λn < λ∞ implies that λn is an eigenvalue
of −∆+V of finite multiplicity [23]. Throughout this paper, we assume there exists
k ≥ 1 such that

λk < 0 < λk+1. (1.4)
Problem (1.1) has been widely studied in recent years. For instance, by using

a variant version of fountain theorem, Liu and He [14] studied the existence of
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infinitely many high energy solutions of (1.1). Wu [27] investigated the existence
of nontrivial solutions and infinitely many high energy solutions of (1.1) via a
symmetric mountain pass theorem. Sun and Wu [25] applied variational methods
to study the existence and the non-existence of nontrivial solutions of (1.1) and
explored the concentration of solutions. Li and Ye [9] considered (1.1) with pure
power nonlinearities f(x, u) = |u|p−1u in R3. By using a monotonicity trick and
a new version of global compactness lemma, they verified that the problem has a
positive ground state solution which can be viewed as a partial extension of [7]
where the authors studied the existence and concentration behavior of positive
solutions of (1.1). For other interesting results on the related Kirchhoff equations,
we refer to [3, 5, 6, 10, 11, 18, 19, 20, 21, 22, 28, 32, 33] and the references therein.

It is well known that the Morse theory [2] and variational methods [17] are two
useful tools in studying the existence and multiplicity of solutions for the variational
problem (see, e.g.[8, 12, 13, 24, 26, 31]). However, to the best of our knowledge,
there is only one paper [15], in which the authors considered the problem in a do-
main Ω ⊂ RN with smooth boundary ∂Ω, dealing with the Kirchhoff-type problem
by using Morse theory up to now. Inspired by the above facts, the aim of this
paper is to study the multiple solutions of (1.1) with sign-changing potential by
using Morse theory and variational methods.

Before stating our main results we need to make some assumptions on the non-
linearity f .

(A2) f ∈ C1(RN × R) and there exist p ∈ (2, 2∗) and c1 > 0 such that

|f(x, t)| ≤ c1(1 + |t|p−1), ∀(x, t) ∈ RN × R. (1.5)

(A3) There exists 0 < h < λ∞ such that

0 < tf(x, t) ≤ ht2, ∀(x, t) ∈ RN × R. (1.6)

Our main results read as follows.

Theorem 1.1. Assume (A1)–(A3) hold. Then (1.1) has two nontrivial solutions.

Theorem 1.2. Assume (A1)–(A3) hold and that
(A4) f(x,−u) = −f(x, u) for all (x, u) ∈ RN × R.

Then (1.1) has infinitely many nontrivial solutions {um} with ‖um‖L∞(RN ) → 0 as
m→∞.

It should be pointed out that in a large number of the aforementioned references,
the authors always employed the variational methods such as mountain pass the-
orem, fountain theorem, linking theorem or the variant versions of them to study
problem (1.1) with positive potential V (x) (see [7, 14, 25, 27, 29, 30]) and they
usually obtain that (1.1) has one and infinitely many solutions under some suitable
assumptions on f , such as f(x, t) = o(t) as t → 0, F (x, u)/u4 → +∞ as |u| → ∞
and (AR) (or variant version (AR)) condition (see, e.g.[10, 22, 27]). However, in
this article, we consider the problem (1.1) with sign-changing potential and without
the condition f(x, t) = o(t) as t → 0, F (x, u)/u4 → +∞ as |u| → ∞ and (AR)-
condition, and we can get that the problem (1.1) has two solutions by combining a
three points theorem [31] with local linking method. Moreover, when the functional
is even we can also prove that the problem (1.1) has infinitely many solutions {um}
with ‖um‖ → 0 as m→∞ via a variant version of Clark’s theorem due to Liu and
Wang [16]. This is quite different from the references we cited above.
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The remainder of this article is organized as follows. In Section 2, some important
preliminaries are presented while the proofs of the main results are given in Section
3.

2. Preliminaries

As usual, let Lp(RN ) be the standard Lp space for 1 ≤ p < +∞ associated with
the norm

‖u‖p =
(∫

RN
|u|pdx

)1/p

, u ∈ Lp(RN ),

and let H1(RN ) be the standard Sobolev space with norm

‖u‖H1(RN ) =
(∫

RN
[|∇u|2 + u2]dx

)1/2

, u ∈ H1(RN ). (2.1)

Let
E =

{
u|u ∈ H1(RN ), V u2 ∈ L1(RN )

}
.

Corresponding to the eigenvalue λk, we let W− and W+ be the negative space and
positive space of the quadratic form∫

RN
[|∇u|2 + V (x)u2]dx.

From (1.4), we deduce that E = W−
⊕
W+. For any u, v ∈ E, we define

(u, v) =
∫

RN
(∇û+∇v̂+ + V (x)û+v̂+)dx−

∫
RN

(∇û−∇v̂− + V (x)û−v̂−)dx,

where u = û+ + û−, v = v̂+ + v̂−, û+, v̂+ ∈ W+ and û−, v̂− ∈ W−. Then (·, ·) is
an inner product in E. Therefore, E s a Hilbert space with the norm

‖u‖ = (u, u)1/2 =
(
‖u+‖2 − ‖u−‖2

)1/2
.

Furthermore, we have the following result, by Deng, Jin and Peng [4].

Lemma 2.1 ([4]). Assume that V satisfies (A1). Then there exist two positive
constants C1, C2 > 0 such that

C1‖u‖2H1(RN ) ≤
∫

RN
[|∇u|2 + V (x)u2]dx ≤ C2‖u‖2H1(RN ), ∀u ∈ E. (2.2)

Recall that H1(RN ) is a Hilbert space with the norm (2.1) and is continuous
embedded into Lp(RN ) for any p ∈ [2, 2∗]. By Lemma 2.1, for any p ∈ [2, 2∗], there
exists an imbedding constant γs ∈ (0,∞) such that

‖u‖s ≤ γs‖u‖, ∀u ∈ E. (2.3)

From (A3), we can choose l0 > 0 and V̄ ∈ (h, λ∞) such that V̄ /∈ {λi|1 ≤ i <
+∞} and (1.2) holds. Let E− be the space spanned by the eigenfunctions with
corresponding eigenvalues less than V̄ . Then, E− is finite dimensional subspace
of E. Let E+ be the orthogonal complement space of E− in E. Since E is a
Hilbert space, we have E = E+

⊕
E−. So, for every u ∈ E, we have a unique

decomposition u = u+ + u− with u+ ∈ E+ and u− ∈ E−.
By V̄ /∈ {λi|1 ≤ i < +∞} and Lemma 2.1, there exists an equivalent norm of E,

still denoted by ‖ · ‖, such that∫
RN
|∇u|2 +

∫
RN

V (x)u2 − V̄
∫

RN
u2 = ‖u+‖2 − ‖u−‖2. (2.4)
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Let E be a real Banach space and J ∈ C1(E,R).

Definition 2.2 ([2]). Let u be an isolated critical point of J with J(u) = c, for
c ∈ R, and let U be a neighborhood of u, containing the unique critical point. We
call

Cq(J, u) := Hq(Jc ∩ U, Jc ∩ U \ {u}), q = 0, 1, 2, . . . ,
the qth critical group of J at u, where Jc := {u ∈ E : J(u) ≤ c}, Hq(·, ·) stands for
the qth singular relative homology group with integer coefficients.

We say that u is a homological nontrivial critical point of J if at least one of its
critical groups is nontrivial.

Proposition 2.3 ([1]). Let 0 be a critical point of J with J(0) = 0. Assume that
J has a local linking at 0 with respect to E = E1 ⊕ E2, m = dimE1 < ∞, that is,
there exists ρ > 0 small such that

J(u) ≤ 0, u ∈ E1, ‖u‖ ≤ ρ, J(u) > 0, u ∈ E2, 0 < ‖u‖ ≤ ρ. (2.5)

Then Cm(J, 0) 6∼= 0; that is, 0 is a homological nontrivial critical point of J .

Definition 2.4. We say that J ∈ C1(E,R) satisfies (PS)-condition if any sequence
{un} in E such that

J(un)→ c, J ′(un)→ 0, as n→∞,
has a convergent subsequence.

Proposition 2.5 ([31]). Assume that J satisfies the (PS)-condition and is bounded
from below. If J has a critical point that is homological nontrivial and is not the
minimizer of J . Then J has at least three critical points.

Proposition 2.6 ([16]). Let X be a Banach space, J ∈ C1(X,R). Assume that
J satisfies (PS)-condition, is even and bounded from below, and J(0) = 0. If for
any m ∈ N, there exists a k-dimensional subspace Xm of X and ρm > 0 such
that supXm∩Sρm J < 0, where Sρm = {u ∈ X|‖u‖ = ρm}, then at least one of the
following conclusions holds.

(i) There exists a sequence of critical points {um} satisfying J(um) < 0 for all
m and ‖um‖ → 0 as m→∞.

(ii) There exists r > 0 such that for any 0 < a < r there exists a critical point
u such that ‖u‖ = a and J(u) = 0.

3. Proofs of main results

We begin this section by defining a functional J on E as

J(u) =
1
2

∫
RN

[
a|∇u|2 + V (x)u2

]
+
b

4

(∫
RN
|∇u|2

)2

−
∫

RN
F (x, u), (3.1)

for all u ∈ E, where F (x, t) =
∫ t
0
f(x, s).

Under assumption (A1), (A2) and (A3), following [27, Lemma 1], it is easy to
show that J is a C1-functional in E, and for all u, v ∈ E, and the derivative of J is
given by

〈J ′(u), v〉 =
(
a+ b

∫
RN
|∇u|2

) ∫
RN
∇u∇v +

∫
RN

V (x)uv −
∫

RN
f(x, u)v. (3.2)

Consequently, the critical points of J are the solutions of (1.1).
To complete the proofs, we need the following lemmas.
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Lemma 3.1. Assume that V (x) satisfies (A1) and the conditions (A2) and (A3)
hold. Then J is coercive, bounded from below in E.

Proof. Arguing by contradiction, we suppose that there exists C > 0 and ‖un‖ → ∞
such that J(un) ≤ C as n → ∞. For all (x, u) ∈ RN × R, we deduce from (1.6)
that

1
2
hu2 ≥ F (x, u) > 0. (3.3)

Now, we choose h < V̄ < λ∞ and l0 > 0 such that V̄ /∈ {λi|1 ≤ i < +∞} and (1.2)
holds. Then, applying (2.4), (3.1) and (3.3) yields

J(un) =
1
2

∫
RN

[a|∇un|2 + V (x)u2
n − V̄ u2

n] +
b

4

(∫
RN
|∇un|2

)2

+
∫

RN

[1
2
V̄ u2

n − F (x, un)
]

≥ 1
2

min{a, 1}
(
‖u+

n ‖2 − ‖u−n ‖2
)

+
b

4

(∫
RN
|∇un|2

)2

≥ 1
2

min{a, 1}
(
‖u+

n ‖2 − ‖u−n ‖2
)
.

(3.4)

Let vn := un/‖un‖. By ‖un‖ → ∞, J(un) ≤ C and (3.4), we have

‖v+
n ‖2 ≤ ‖v−n ‖2 + o(1). (3.5)

Going if necessary to a subsequence, we may assume that vn ⇀ v in E and vn(x)→
v(x) a.e. in RN . If v = 0, then by the finite dimension of E−, we deduce that
v−n → 0 in E. This and (3.5) yield vn → 0 in E. It is a contradiction, because for
every n, we have ‖vn‖ = 1. Therefore, v− 6= 0 and then v 6= 0. Then it deduces
from Fatou’s lemma that

lim inf
n→∞

b

4‖un‖4
(∫

RN
|∇un|2

)2

= lim inf
n→∞

b

4

(∫
RN
|∇vn|2

)2

≥ b

4

(∫
RN
|∇v|2

)2

> 0.
(3.6)

Since ‖un‖ → ∞ and J(un) ≤ C, we have

‖un‖−4J(un)→ 0, as n→∞. (3.7)

Hence, multiplying both sides of the following inequality by ‖un‖−4 and letting
n→∞,

J(un) ≥ 1
2

min{a, 1}
(
‖u+

n ‖2 − ‖u−n ‖2
)

+
b

4

(∫
RN
|∇un|2

)2

, (3.8)

From (3.6) and (3.7) we obtain

0 ≥ b

4

(∫
RN
|∇v|2

)2

> 0.

It is a contradiction. Therefore, we prove that J is coercive in E. Consequently, J
is bounded form below in E. The proof is complete. �

Lemma 3.2. Assume that (A1)-(A3) hold. Then J satisfies the (PS)-condition.
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Proof. Let {un} be a (PS)c sequence, i.e., J(un) → c and J ′(un) → 0 in E∗, as
n → ∞. Lemma 3.1 shows that J is coercive. Then J(un) → c implies that {un}
is bounded. By (3.2) and J ′(un)→ 0, we have

o(‖un‖)
= 〈J ′(un), un〉

= a

∫
RN
|∇un|2 +

∫
RN

V (x)u2
n + b

(∫
RN
|∇un|2

)2

−
∫

RN
f(x, un)un

≥ min{a, 1}
(
‖u+

n ‖2 − ‖u−n ‖2
)

+ b
(∫

RN
|∇un|2

)2

+
∫

RN
[hu2

n − f(x, un)un].

(3.9)

Then we deduce from (3.9) that

o(‖un‖) + min{a, 1}‖u−n ‖2

≥ min{a, 1}‖u+
n ‖2 + b

(∫
RN
|∇un|2

)2

+
∫

RN
[hu2

n − f(x, un)un].
(3.10)

Up to a subsequence, we may assume un ⇀ u in E. Then we have that u is a
critical point of J . It follows that

0 = 〈J ′(u), u〉

≥ min{a, 1}
(
‖u+‖2 − ‖u−‖2

)
+ b
(∫

RN
|∇u|2

)2

+
∫

RN
[hu2 − f(x, u)u],

(3.11)

which implies

min{a, 1}‖u−‖2

≥ min{a, 1}‖u+‖2 + b
(∫

RN
|∇u|2

)2

+
∫

RN
[hu2 − f(x, u)u].

(3.12)

Since E− is a finite dimensional subspace of E, we get u−n → u−, and then ‖u−n ‖2 →
‖u−‖2. This together with (3.10) and (3.12) imply

lim
n→∞

[
min{a, 1}‖u+

n ‖2 + b
(∫

RN
|∇un|2

)2

+
∫

RN
[hu2

n − f(x, un)un]
]

= min{a, 1}‖u+‖2 + b
(∫

RN
|∇u|2

)2

+
∫

RN
[hu2 − f(x, u)u].

(3.13)

An easy calculation, using (A3) and Fatou’s lemma, shows that

lim inf
n→∞

[
b
(∫

RN
|∇un|2

)2

+
∫

RN
[hu2

n − f(x, un)un]
]

≥ b
(∫

RN
|∇u|2

)2

+
∫

RN
[hu2 − f(x, u)u].

(3.14)

Combining (3.13) with (3.14) gives that limn→∞ ‖u+
n ‖2 = ‖u+‖2. It follows that

un → u in E. Thus, we completed the proof. �

Now, we are in a position to calculate the critical groups of J at 0.

Lemma 3.3. Assume that (A1)–(A3) hold. Then there exists m ∈ N with m ≥ k
such that Cm(J, 0) 6∼= 0.
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Proof. Let E1 = E− and E2 = E+. Then m = dim(E−) ≥ k. On one hand, from
(2.3), (3.1), (3.3) and Lemma 2.1, for any u ∈ E1, we have

J(u) ≤ −1
2

max{a, 1}‖u−‖2 +
b

4

(∫
RN
|∇u|2

)2

+
1
2
V̄

∫
RN

u2

−
∫

RN
F (x, u)

≤ −1
2

max{a, 1}‖u−‖2 +
b

4

(∫
RN
|∇u|2

)2

+
1
2
V̄

∫
RN

u2

≤ −1
2

max{a, 1}‖u−‖2 +
b

4

(∫
RN
|∇u|2 + u2

)2

+
1
2
V̄ ‖u‖22

≤ −1
2

max{a, 1}‖u−‖2 +
b

4
‖u‖4H1(RN ) +

1
2
V̄ ‖u‖22

≤ −1
2

max{a, 1}‖u−‖2 + C1‖u‖4 + C2‖u‖22.

(3.15)

Since E1 is a finite dimensional subspace and all norms on a finite dimensional
space are equivalent, we deduce from (3.15) that

J(u) ≤ −1
2

max{a, 1}‖u−‖2 + C1‖u−‖4 − C2‖u−‖2,

which implies that J(u) ≤ 0, if ‖u‖ small.
On the other hand, for any u ∈ E2, (3.4) shows that

J(u) ≥ 1
2

min{a, 1}‖u+‖2,

which implies that J(u) > 0, if ‖u‖ is small.
The above arguments shows that J has a local linking at 0 with respect to E =

E− ⊕ E+. Clearly, it follows from (3.1) that J(0) = 0. Therefore, by Proposition
2.3, we get that there exists m ∈ N such that Cm(J, 0) 6∼= 0. That is, 0 is a
homological nontrivial critical point of J . The proof is complete. �

Proof of Theorem 1.1. From Lemmas 3.1 and 3.2, we know that J is bounded from
below and satisfies (PS)-condition. Lemma 3.3 shows that 0 ∈ E is a homologically
nontrivial critical point of J but not a minimizer. Then by virtue of Proposition 2.5,
we get that problem (1.1) has two nontrivial solutions. The proof is complete. �

Proof of Theorem 1.2. By (A4) and (3.1), one can easily check that functional J is
even and satisfies J(0) = 0. Lemma 3.1 and Lemma 3.2 show that J is bounded
from below in E and satisfies the (PS)-condition. For any m ∈ N and m ≥ k,
ρm > 0, let Sρm = {u ∈ X : ‖u‖ = ρm}. Then for any u ∈ Sρm , it deduces from
(A3) that

J(u) ≤ 1
2

max{a, 1}
(
‖u−‖2 − ‖u−‖2

)
+
b

4
‖u‖4H1(RN ) +

1
2
V̄ ‖u‖22. (3.16)

Note that E− := Xm is a m−dimensional subspace of E. Since all norms are
equivalent on a finite dimensional space, for u ∈ Xm ∩ Sρm , it follows from (3.16)
that

sup
Xm∩Sρm

J(u) ≤ −1
2

max{a, 1}‖u−‖2 + C3‖u−‖4 − C4‖u−‖2, (3.17)
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which implies that
sup

Xm∩Sρm
J(u) < 0,

if ρm > 0 is sufficiently small. Moreover, if there exists r > 0 such that for any
0 < a < r with ‖u‖ = a, then (3.16) implies that J(u) 6≡ 0. Therefore, by
Proposition 2.6, we get that problem (1.1) has infinitely many solutions {um} such
that ‖um‖ → 0, as m→∞. The proof is complete. �
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