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BASICITY IN Lp OF ROOT FUNCTIONS FOR DIFFERENTIAL
EQUATIONS WITH INVOLUTION

LEONID V. KRITSKOV, ABDIZHAHAN M. SARSENBI

Abstract. We consider the differential equation

αu′′(−x)− u′′(x) = λu(x), −1 < x < 1,

with the nonlocal boundary conditions u(−1) = 0, u′(−1) = u′(1) where

α ∈ (−1, 1). We prove that if r =
p

(1− α)/(1 + α) is irrational then the

system of its eigenfunctions is complete and minimal in Lp(−1, 1) for any
p > 1, but does not constitute a basis. In the case of a rational value of r we

specify the way of choosing the associated functions which provides the system

of all root functions of the problem forms a basis in Lp(−1, 1).

1. Introduction and statement of results

This article continues the research started in [19] where a full spectral analysis
in L2(−1, 1) is given to the problem

αu′′(−x)− u′′(x) = λu(x), −1 < x < 1,

u(−1) = 0, u′(−1) = u′(1).
(1.1)

The differential expression in (1.1) contains the involution transform of the argu-
ment x while the parameter α belongs to (−1, 1).

When α equals zero the problem (1.1) becomes the known Samarskii-Ionkin
problem [13] which gives the classical example of a boundary-value problem with
regular, but not strongly regular boundary conditions. It has an infinite number of
associated functions, and these functions could be tuned to produce (together with
eigenfunctions) an unconditional basis in L2(−1, 1).

Such problems have a typical instability. Both the basicity of root functions
and the equiconvergence of the related spectral decomposition with the Fourier
trigonometric series could disappear at either of the following situations: (a) after
a small change of associated functions in their root subspaces [12]; (b) after a
perturbation of the differential expression by adding subordinate terms a1(x)u′(x)+
a2(x)u(x) with sufficiently small coefficients [11, 21]; (c) after a small shift of the
boundary conditions; e.g., of the form u′(0) = u′(1)+εu(1), ε ∈ (0, 1) [12]. Vladimir
A. Il’in called such instability the essential nonself-adjointness of the problem.
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The considered boundary-value problem (1.1) for the differential equation with
involution encapsulates the same instability but with respect to its parameter α.

Proposition 1.1 ([19]). Denote

r =
√

(1− α)/(1 + α). (1.2)

Then

(1) for any positive r, the system of root functions of (1.1) is complete and
minimal in L2(−1, 1);

(2) if r is irrational then there are no associated functions while the eigenfunc-
tions of (1.1) do not constitute a basis in L2(−1, 1);

(3) if r is rational then there is an infinite number of associated functions which
could be chosen to make the whole system of root functions of (1.1) an
unconditional basis in L2(−1, 1).

In this paper we obtain an analogous result in any Lebesgue space Lp(−1, 1),
1 < p <∞. We prove the following results.

Theorem 1.2. Let r in (1.2) be a positive irrational number. Then the system of
eigenfunctions of (1.1) is complete and minimal in Lp(−1, 1), 1 < p < ∞, but is
not uniformly minimal, and therefore does not constitute a basis in Lp(−1, 1).

Theorem 1.3. Let r be rational. Then the system of root functions of (1.1) is
complete and minimal in Lp(−1, 1), 1 < p <∞, and the associated functions could
be chosen in such a way that the whole system forms a basis in Lp(−1, 1).

The functional-differential equations with involutions evoked interest of mathe-
maticians in early 1940s. Since 1970s the qualitative theory of first-order differen-
tial equations with involution is cultivated rather extensively (see, e.g., books by
Przeworska-Rolewicz [26], Wiener [34] and the recent research by Watkins [33]).
Boundary-value problems for second and higher order equations have been studied
in [9, 25, 26, 34]. Cabada and Tojo added a new element in the previous studies: the
construction of the Green function [6, 7]. Spectral topics (the basicity of root func-
tions, equiconvergence of spectral expansions) for first- and second-order operators
which contain involution in their main terms are discussed in [16, 17, 18, 27, 28].

Since the pioneering paper by Ionkin [13] for the heat flow equation and the
introduction of a new approach to these problems by Il’in, there have been many
research papers on non-local boundary value problems (see the overview in [12]).
Among the recent ones – the papers of Aleroev, Kirane and Malik [1], Ashyralyev
and Sarsenbi [3], Furati, Iyiola and Kirane [10], Kerimov [15], Makin [22], Mokin
[24], Sarsenbi [29], Sarsenbi and Tengaeva [30].

For non-Hilbert spaces, the spectral properties of conventional differential oper-
ators were considered in [2, 5, 8, 20, 31].

2. The case of irrational number r

As in [19], one can easily calculate the spectrum of (1.1):

σ = {0;π2(1± α)n2, n ∈ N} (2.1)
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and the corresponding eigenfunctions:

λ0 = 0 : u0(x) = x+ 1, λ′l = π2(1 + α)l2 : u(1)
l (x) = sin(πlx),

λ′′k = π2(1− α)k2 : u(2)
k (x) = cos(πkx) +

cosπk
sin(πrk)

sin(πrkx), l, k ∈ N.
(2.2)

The dual system is formed by eigenfunctions of the adjoint problem

αv′′(−x)− v′′(x) = λv(x), −1 < x < 1,

v(−1) = v(1), αv′(−1) = −v′(1),
(2.3)

namely,

λ0 = 0 : v0(x) = 1/2, λ′′k = π2(1− α)k2 : v(2)
k (x) = cos(πkx),

λ′l = π2(1 + α)l2 : v(1)
l (x) = sin(πlx) +

cosπl
r sin(πl/r)

cos
(πlx
r

)
, l, k ∈ N.

(2.4)

Recall that the system {en} in a Banach space B is called complete in B if it
spans B and is minimal if neither element in this system belongs to the span of
others.

It is known [14, pp. 6–8] that

• the system {en} is minimal in B if and only if it has the dual system {e∗n}
in B∗;
• if B is reflexive then the system {en} is complete in B if and only if it is

total, i.e. the relations e∗(en) = 0 for all n with a given e∗ ∈ B∗ yield
e∗ = 0.

Lemma 2.1. Both systems (2.2) and (2.4) are complete and minimal in Lp(−1, 1)
for any p > 1.

Proof. The minimality of the systems (2.2) and (2.4) is provided by their mutual
biorthogonality. Their completeness follows from totality. For instance, consider
a function f ∈ Lq(−1, 1), q−1 + p−1 = 1, which is orthogonal to each function in
(2.2). Then, as f(x) is orthogonal to the functions u(1)

k (x), and due to the fact
that the trigonometric system forms a basis in Lq [14, p.128], the function f(x) a.e.
coincides with an even function. Thus, we have

0 =
∫ 1

−1

f(x)u(2)
k (x)dx = sin(πrk)

∫ 1

−1

f(x) cos(πkx)dx

and, since r 6∈ Q, f(x) is orthogonal to cos(πkx), k ∈ N, and therefore, it is a.e.
a constant function on [−1, 1]. The relation

∫ 1

−1
f(x)u0(x)dx = 0 provides f(x)

vanishes a.e. on [−1, 1]. The proof is complete. �

The system {en} ⊂ B is called uniformly minimal in B [23] if its dual system
{e∗n} ⊂ B∗ satisfies the relation

sup
n

(
‖en‖ · ‖e∗n‖

)
<∞. (2.5)

Lemma 2.2. Neither system (2.2) nor (2.4) is uniformly minimal in Lp(−1, 1),
p > 1.
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Proof. Let us consider the system (2.2) in the space Lp(−1, 1). Taking into account
that the Lq(−1, 1)-norms of functions v(2)

k (x) in (2.4) (q−1 + p−1 = 1) satisfy the
estimates

21/q ≥ ‖v(2)
k ‖q ≥ 2−1/p‖v(2)

k ‖1 ≥ 2−1/p, (2.6)

we show that there exists such a sequence kn of positive integers such that the norm
‖u(2)

kn
‖p tends to infinity. Evaluating the L1-norm of the function u

(2)
k (x):∫ 1

−1

|u(2)
k (x)|dx ≥ 1

| sin(πrk)|

∫ 1

−1

| sin(πrkx)|dx− 2

≥ 1
| sin(πrk)|

(
1− sin(2πkr)

2πkr

)
− 2

(2.7)

one notes (see [32, p.25]) that the inequality | 1r −
k
s | < 1/s2 has infinitely many

solutions k = kn, s = sn ∈ N. Hence |πrkn − πsn| < πr/sn and | sin(πrkn)| <
| sin(πr/sn)|. Therefore, the right-hand side of inequality (2.7) blows up as k =
kn →∞ which means that the norm

‖u(2)
kn
‖p ≥ 2(1−p)/p‖u(2)

kn
‖1

also tends to infinity.
Together with estimate (2.6), this shows that the condition of uniform minimality

(2.5) is not valid for the functions u(2)
kn

(x) and v
(2)
kn

(x). The proof is complete. �

A system {en} ⊂ B is called a basis in B if, for any f ∈ B, there exists a
unique convergent to f series:

∑∞
n=1 αnen = f . In this case the series is called the

biorthogonal series for f and αn = e∗n(f) for any n. Any basis in B is a uniformly
minimal system [23].

It follows from Lemma 2.2 that the systems (2.2) and (2.4) do not form bases in
Lp(−1, 1) whatever 1 < p <∞. Then the proof of Theorem 1.2 is complete.

3. The case of rational number r

Now let r be equal to the irreducible fraction m1
m2

(m1,m2 ∈ N). Then the
spectrum (2.1) of problem (1.1) contains two subsequences that glue to each other:

λ∗n ≡ λ′m1n = λ′′m2n ∀n ∈ N. (3.1)

These eigenvalues have multiplicity 2 and there are one eigenfunction and one as-
sociated function corresponding to them in each problem (1.1) and (2.3). The
straightforward calculation shows that the biorthogonal pairs are formed by the
functions (we use notation from (2.2) and (2.4))

u0(x), u
(1)
l (x), l 6≡ 0 (mod m1),

u
(2)
k (x), k 6≡ 0 (mod m2),

u∗n(x) = sin(πm1nx),

u∗n,1(x) =
x cos(πm1nx) + (−1)(m1+m2)n cos(πm2nx)

2(1 + α)πm1n
+ anu

∗
n(x), n ∈ N,

(3.2)
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for problem (1.1), and

v0(x), v
(1)
l (x), l 6≡ 0 (mod m1),

v
(2)
k (x), k 6≡ 0 (mod m2),

v∗n(x) = 2(1 + α)πm1n(−1)(m1+m2)n cos(πm2nx),

v∗n,1(x) = −r−1(−1)(m1+m2)nx sin(πm2nx) + sin(πm1nx)− anv∗n(x), n ∈ N,
(3.3)

for problem (2.3). The functions u∗n(x), u∗n,1(x) in (3.2) and v∗n(x), v∗n,1(x) in (3.3)
for each n ∈ N are the eigen- and associated functions which correspond to the
sequence {λ∗n} in (3.1). The constants an ∈ R could be taken arbitrarily.

Lemma 3.1. Systems (3.2) and (3.3) are complete and minimal in Lp(−1, 1),
p > 1.

The proof of Lemma 3.1 mimics the proof of Lemma 2.1, with minor changes.
We omit it.

Lemma 3.2. If an = O(1/n), n → ∞, then the systems (3.2) and (3.3) are
uniformly minimal in Lp(−1, 1), p > 1. If limn→∞ nan = ∞ then these systems
are not uniformly minimal and, therefore, do not form bases.

Proof. We start with eigenfunctions of the biorthogonal pair u(1)
l (x) and v

(1)
l (x),

l 6≡ 0 (mod m1). Their norms satisfy the estimates:

‖u(1)
l ‖p ≤ 21/p, ‖v(1)

l ‖q ≤ 21/q
(

1 +
(
r| sin(πl/r)|

)−1)
.

The right-hand part of the second estimate is bounded because for l 6≡ 0 (mod m1)
the number l/r = lm2/m1 is not integer and hence | sin(πl/r)| ≥ sin(π/m1).

Similarly one can prove the boundedness of ‖u(2)
k ‖p ·‖v

(2)
k ‖q for k 6≡ 0 (mod m2).

In the case λ = λ∗n the biorthogonal pairs are formed by the functions u∗n(x), v∗n,1(x)
and u∗n,1(x), v∗n(x). For all n ∈ N the relations

c1 ≤ ‖u∗n‖p ≤ c2, c1n ≤ ‖v∗n‖q ≤ nc2 (3.4)

are valid with some positive constants c1, c2.
If an = O(1/n) then

‖u∗n,1‖p ≤
c3
n
, ‖v∗n,1‖q ≤ c3,

and, by virtue of (3.4), the uniform minimality condition (2.5) is satisfied.
If limn→∞ nan =∞ then we come to the estimates

‖u∗n,1‖p ≥ c4|an| > 0, ‖v∗n,1‖q ≥ c4|an|n > 0,

which mean that ‖u∗n‖p · ‖v∗n,1‖q and ‖u∗n,1‖p · ‖v∗n‖q disagree with (2.5). The proof
is complete. �

Further we consider the uniformly minimal systems (3.2) and (3.3) and for sim-
plicity suppose that an ≡ 0 for any n. Since the natural normalization of the
functions u∗n,1(x) and v∗n(x) makes these systems uniformly bounded on [−1, 1], the
known result of Gaposhkin [23] provides they could form only conditional bases in
Lp(−1, 1) for p 6= 2. Therefore, in order to study their basis properties we should
specify the order of root functions in (3.2) and (3.3). In L2(−1, 1) the order of root
functions is irrelevant since they form an unconditional basis [19].
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The proposed order will correspond to the order of functions in the classical
trigonometric system. The biorthogonal system which consists of root functions of
the problem (1.1) and the related root functions of the adjoint problem (2.3) starts
with the pair [

u0(x)
v0(x)

]
=
[
x+ 1
1/2

]
,

which is followed by the juxtaposed blocks (k = 1, 2, . . .) of coupled pairs[
u

(1)
k (x) u

(2)
k (x)

v
(1)
k (x) v

(2)
k (x)

]

=

[
sin(πkx) cos(πkx) + cosπk

sinπrk sin(πrkx)
sin(πkx) + cosπk

r sin πk
r

cos(πkxr ) cos(πkx)

]
.

However if k ≡ 0 (mod m1) then the first column of the block should be replaced
by the column [

sin(πkx)
sin(πkx)− r−1(−1)(1+r)k/rx sin(πkxr )

]
;

if k ≡ 0 (mod m2) then the second column is also replaced by the column[
(2(1 + α)πkr)−1

[
(−1)(1+r)k cos(πkx) + x cos(πkrx)

]
2(1 + α)πkr(−1)(1+r)k cos(πkx)

]
.

Hence the partial sums of the biorthogonal series with respect to the root func-
tions of the problem (1.1) take the form (we use the notation K1 = m1N and
K2 = m2N)

SN (x, f) = (f, v0)u0(x) +
∑

1≤k≤N
k 6∈K1

(f, v(1)
k )u(1)

k (x) +
∑

1≤k≤N
k 6∈K2

(f, v(2)
k )u(2)

k (x)

+
∑

1≤k≤N
k∈K1

(
f(t), sin(πkt)− r−1(−1)(1+r)k/rt sin

(πkt
r

))
sin(πkx)

+
∑

1≤k≤N
k∈K2

(
f(t), cos(πkt)

)[
cos(πkx) + (−1)(1+r)kx cos(πkrx)

]
.

(3.5)

This sum evidently contains the partial sum of the Fourier trigonometric series:

S
(0)
N (x, f)

= (f, 1/2) +
N∑
k=1

{
(f(t), cos(πkt)) cos(πkx) + (f(t), sin(πkt)) sin(πkx)

}
,

(3.6)

the remaining items group into the following sums:

S
(1)
N (x, f) =

∑
1≤k≤N
k 6∈K1

cosπk
r sin πk

r

(
f(t), cos

(πkt
r

))
sin(πkx),

S
(2)
N (x, f) =

∑
1≤k≤N
k 6∈K2

cosπk
sin(πkr)

(
f(t), cos(πkt)

)
sin(πkrx),
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S
(3)
N (x, f) = −

∑
1≤k≤N
k∈K1

r−1(−1)(1+r)k/r
(
f(t), t sin

(πkt
r

))
sin(πkx),

S
(4)
N (x, f) =

∑
1≤k≤N
k∈K2

(−1)(1+r)k
(
f(t), cos(πkt)

)
x cos(πkrx). (3.7)

To analyze these four sums, we decompose f(x) into the sum of its even and odd
components

f(x) = f+(x) + f−(x) ≡ f(x) + f(−x)
2

+
f(x)− f(−x)

2

and note that for the odd component f−(x) all the sums in (3.7) vanish.
In S(3)

N (x, f+) we make the substitution k = m1n and for simplicity suppose that
m1 +m2 is even. Then this sum takes the form

S
(3)
N (x, f+) = −r−1

∑
1≤k≤N
k=m1n

∫ 1

0

f+(t)t sin(πm2nt)dt · sin(πm1nx)

and further substitutions τ = m2t, y = m1x transform it into the sum

S
(3)
N (x, f+) = −(rm2

2)−1
∑

1≤k≤N
k=m1n

∫ m2

0

f+

( τ

m2

)
τ sin(πnτ)dτ · sin(πny).

It could be easily interpreted as a sum of m2 partial sums of Fourier trigonometric
series for functions which Lp-norms are O(1)‖f‖p. A similar conclusion could be
made about S(4)

N (x, f+).
The sum S

(2)
N (x, f+) naturally splits into m2 − 1 items in accordance with the

remainder k1 = k (mod m2), k1 = 1,m2 − 1. We suppose, for simplicity, that k1

and m1 +m2 are even. Then the corresponding parts of the sum equal

S
(2,k1)
N (x, f+) =

1
sin(πk1r)

∑
1≤k≤N

k=k1+m2n

{∫ 1

0

f(t) cos(πk1t) cos(πm2nt)dt

×
[
cos(πm1nx) sin(πk1rx) + sin(πm1nx) cos(πk1rx)

]
−
∫ 1

0

f(t) sin(πk1t) sin(πm2nt)dt

×
[
cos(πm1nx) sin(πk1rx) + sin(πm1nx) cos(πk1rx)

]}
.

Similar to S(3)
N (x, f+) this expression consists of four items which are combina-

tions of the partial sums of Fourier trigonometric series for functions which Lp-
norms are O(1)‖f‖p, and of the partial sums of conjugate trigonometric series
which converge in Lp(0, 1) to functions which Lp-norms are also O(1)‖f‖p by Riesz
theorem [4, p. 566]. The remaining sum S

(1)
N (x, f+) is considered similarly.

It is known [4, pp.593–594] that if F (x) ∈ Lp then the partial sums σN (x, F )
of its Fourier trigonometric series and the partial sums σ∗N (x, F ) of its conjugate
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series satisfy the estimate

‖σN (x, F )‖p ≤ c‖F‖p, ‖σ∗N (x, F )‖p ≤ c‖F‖p

uniformly with respect to N .
It follows from (3.5)–(3.7) that

‖SN (x, f)‖p ≤ ‖(f, 1/2)x‖p + ‖S(0)
N (x, f)‖p +

4∑
j=1

‖S(j)
N (x, f+)‖p = O(1)‖f‖p (3.8)

uniformly with respect to N .
The system of root functions of the problem (1.1) is complete and minimal

in Lp(−1, 1) (Lemma 3.1), therefore (see, e.g., [14, p. 11]) the estimate (3.8) is
sufficient for its basicity in Lp(−1, 1) for p > 1. Theorem 1.3 is proved.

Acknowledgments. This research was supported by the Committee of Science
of the Ministry for Education and Science of the Kazakhstan Republic (Grant N
0971/GF).

References

[1] T. S. Aleroev, M. Kirane, S. A. Malik; Determination of a source term for a time fractional

diffusion equation with an integral type over-determining condition, Electron. J. Differ. Equ.,

2013:270 (2013), 1–16.
[2] Z. S. Aliyev, N. B. Kerimov; Basis properties of a spectral problem with spectral parameter

in the boundary condition, Sbornik: Mathematics, 197, No.10 (2006), 1467–1487.
[3] A. Ashyralyev, A. M. Sarsenbi; Well–posedness of a parabolic equation with nonlocal boundary

condition, Boundary Value Problems, 2015, article ID 38, 1–11.

[4] N. K. Bari; A Treatise on trigonometric series, New York, 1964.
[5] H. E. Benzinger; The Lp behavior of eigenfunction expansions, Trans. Amer. Math. Soc.,

174 (1972), 333–344.

[6] A. Cabada, F. A. F. Tojo; Existence results for a linear equation with reflection, non-constant
coefficient and periodic boundary conditions, J. Math. Anal. Appl., 412, No.1 (2014), 529–

546.

[7] A. Cabada, F. A. F. Tojo; Solutions and Green’s function of the first order linear equation
with reflection and initial conditions, Boundary Value Problems, 2014:99 (2014).

[8] A. M. Gomilko, G. V. Radzievskii; Equivalence in Lp[0, 1] of the system ei2πkx (k =

0,±1, . . .) and the system of the eigenfunctions of an ordinary functional-differential op-
erator, Math. Notes, 49, No.1 (1991), 34–40.

[9] C. P. Gupta; Two-point boundary value problems involving reflection of the argument, Int.
J. Math. and Math. Sci., 10, No.2 (1987), 361–371.

[10] K. M. Furati, O. S. Iyiola, M. Kirane; An inverse problem for a generalized fractional diffu-
sion, Appl. Math. Comp., 249 (2014), 24–31.

[11] V. A. Il’in; Basis property and equiconvergence with the trigonometric series of root function
expansions and the form of boundary conditions for a nonself-adjoint differential operator,

Differ. Equ., 30, No.9 (1994), 1402–1413.
[12] V. A. Il’in and L. V. Kritskov; Properties of spectral expansions corresponding to nonself-

adjoint differential operators, J. Math. Sci. (NY), 116, No.5 (2003), 3489–3550.
[13] N. I. Ionkin; Solution of a boundary-value problem in heat conduction with a nonclassical

boundary condition, Differ. Equ., 13, No.2 (1977), 204–211.
[14] B. S. Kashin, A. A. Saakyan; Orthogonal series, Transl. of Math. Monographs, AMS, vol.75,

1989.
[15] N. B. Kerimov; On a boundary value problem of N. I. Ionkin type, Differ. Equ., 49, No.10

(2013), 1233–1245.
[16] A. P. Khromov, V. P. Kurdyumov; Riesz bases formed by root functions of a functional-

differential equation with a reflection operator, Differ. Equ., 44, No.2 (2008), 203–212.



EJDE-2015/278 BASICITY IN Lp OF ROOT FUNCTIONS 9

[17] A. A. Kopzhassarova, A. L. Lukashov, A. M. Sarsenbi; Spectral properties of non-self-adjoint

perturbations for a spectral problem with involution, Abstr. Appl. Anal., 2012, article ID

590781, 1–5.
[18] A. A. Kopzhassarova, A. M. Sarsenbi; Basis properties of eigenfunctions of second-order

differential operators with involution, Abstr. Appl. Anal., 2012, article ID 576843, 1–6.

[19] L. V. Kritskov, A. M. Sarsenbi; Spectral properties of a nonlocal problem for the differential
equation with involution, Differ. Equ., 51, No.8 (2015), 984–990.

[20] V. M. Kurbanov; On an analog of the Riesz theorem and the basis property of the system of

root functions of a differential operator in Lp, Differ. Equ., I: 49, No.1 (2013), 7–19; II: 49,
No.4 (2013), 437–449.

[21] A. S. Makin; A class of boundary value problems for the Sturm-Liouville operator, Differ.

Equ., 35, No.8 (1999), 1067–1076.
[22] A. S. Makin; A class of essentially nonself-adjoint boundary value problems, Dokl. Math.,

89, No.3 (2014), 351–353.
[23] V. D. Mil’man; Geometric theory of Banach spaces. Part I, Russian Math. Surveys, 25, No.3

(1970), 111–170.

[24] A. Yu. Mokin; On a family of initial-boundary value problems for the heat equation, Differ.
Equ., 45, No.1 (2009), 126–141.

[25] D. O’Regan; Existence results for differential equations with reflection of the argument, J.

Aust. Math. Soc., A 57, No.2 (1994), 237–260.
[26] D. Przeworska-Rolewicz; Equations with transformed argument. Algebraic approach. Elsevier

Sci. Publ.: Amsterdam, PWN: Warsawa, 1973.

[27] M. F. Sadybekov, A. M. Sarsenbi; Criterion for the basis property of the eigenfunction system
of a multiple differentiation operator with an involution, Differ. Equ., 48, No.8 (2012), 1112–

1118.

[28] M. F. Sadybekov, A. M. Sarsenbi; Mixed problem for a differential equation with involution
under boundary conditions of a general form, in: AIP Conf. Proc., 1470 (2012), 225–227.

[29] A. M. Sarsenbi; Unconditional bases related to a nonclassical second-order differential oper-
ator, Differ. Equ., 46, No.4 (2010), 509–514.

[30] A. M. Sarsenbi, A. A. Tengaeva; On the basis properties of root functions of two generalized

eigenvalue problems, Differ. Equ., 48, No.2 (2012), 306–308.
[31] V. Serov; Green’s function and convergence of Fourier series for elliptic differential operators

with potential from Kato space, Abstr. Appl. Anal., 2010, article ID 902638, 1–10.

[32] A. B. Shidlovskii; Transcendental numbers. Berlin, New York, 1989.
[33] W. Watkins; Asymptotic properties of differential equations with involutions, Int. J. Pure

Appl. Math., 44, No.4 (2008), 485–492.

[34] J. Wiener; Generalized solutions of functional differential equations. World Sci.: Singapore,
New Jersey, London, Hong Kong, 1993.

Leonid V. Kritskov

Lomonosov Moscow State University, Faculty of Computational Mathematics and Cy-
bernetics, 119899 Moscow, Russia

E-mail address: kritskov@cs.msu.ru

Abdizhahan M. Sarsenbi
Auezov South-Kazakhstan State University, Department of Mathematical Methods and

Modeling, 160012 Shymkent Kazakhstan.
Institute of Mathematics and Mathematical Modeling, 050010 Almaty, Kazakhstan

E-mail address: abzhahan@mail.ru


	1. Introduction and statement of results
	2. The case of irrational number r
	3. The case of rational number r
	Acknowledgments

	References

