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EXPONENT OF CONVERGENCE OF SOLUTIONS TO LINEAR
DIFFERENTIAL EQUATIONS IN THE UNIT DISC

NACERA BERRIGHI, SAADA HAMOUDA

Abstract. In this article, we study the exponent of convergence of f (i) − ϕ
where f 6≡ 0 is a solution of linear differential equations with analytic and

meromorphic coefficients in the unit disc and ϕ is a small function of f . From

this results we deduce the fixed points of f (i) by taking ϕ(z) = z. We will see
the similarities and differences between the complex plane and the unit disc.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distribution
theory of meromorphic function on the complex plane C and in the unit disc
D = {z ∈ C : |z| < 1} (see [10, 19]). In addition, we will use σ(f), σ2(f) and
τ(f) to denote respectively the order, hyper-order and type of a meromorphic func-
tion f(z) in D, that are defined respectively by

σ(f) = lim sup
r→1−

log+ T (r, f)
− log(1− r)

, σ2(f) = lim sup
r→1−

log+ log+ T (r, f)
− log(1− r)

,

τ(f) = lim sup
r→1−

(1− r)σT (r, f),

where T (r, f) is the Nevanlinna characteristic function of f , 0 < σ = σ(f) < +∞.
For an analytic function f(z) in D, we have also the definitions

σM (f) = lim sup
r→1−

log+ log+M(r, f)
− log(1− r)

, σM,2(f) = lim sup
r→1−

log+ log+ log+M(r, f)
− log(1− r)

,

τM (f) = lim sup
r→1−

(1− r)σM log+M(r, f),

where M(r, f) = max{|f(z)| : |z| = r}, 0 < σM = σM (f) < +∞.
M. Tsuji [16, p.205], shows that

σ(f) ≤ σM (f) ≤ σ(f) + 1. (1.1)
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For example, the function f(z) = exp{ 1
(1−z)µ }, (µ ≥ 1), satisfies σ(f) = µ− 1 and

σM (f) = µ. Obviously, we have

σ(f) <∞ if and only if σM (f) <∞.
Inequalities (1.1) are the best possible in the sense that there are analytic functions
g and h such that σM (g) = σ(g) and σM (h) = σ(h) + 1, see [7]. However, it follows
by [14, Prop. 2.2.2] that σM,2(f) = σ2(f).

We use λ(f), (λ(f)) to denote the exponent of convergence of the zero-sequence
(distinct zero-sequence) of meromorphic function f(z) and λ2(f), (λ2(f)) to denote
the hyper-exponent of convergence of zero-sequence (distinct zero-sequence) of f(z),
which are defined as follows:

λ(f) = lim sup
r→1−

logN(r, 1
f )

− log(1− r)
, λ(f) = lim sup

r→1−

logN(r, 1
f )

− log(1− r)
,

λ2(f) = lim sup
r→1−

log logN(r, 1
f )

− log(1− r)
, λ2(f) = lim sup

r→1−

log logN(r, 1
f )

− log(1− r)
.

Definition 1.1 ([11]). Let f be an analytic function in the unit disc D and let
q ∈ [0,∞). Then f is said to belong to the weighted Hardy space H∞q provided
that

sup
z∈D

(1− |z|2)q|f(z)| <∞.

And we say that f is an H-function when f ∈ H∞q for some q.

Definition 1.2 ([11]). A meromorphic function f in the unit disc D is called
admissible if

lim sup
r→1−

T (r, f)
− log(1− r)

=∞

and nonadmissible if

lim sup
r→1−

T (r, f)
− log(1− r)

<∞.

The complex oscillation and fixed points of solutions and their derivatives of
linear differential equations is an interesting area of research and have been inves-
tigated by many authors in the complex plane (see for example [1, 2, 3, 6]). In
2012, Xu, Tu and Zheng investigated the relationship between small function and
derivatives of solutions of the higher order differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = 0 (1.2)

where Aj(z) are entire or meromorphic functions in the complex plane, and obtained
the following results.

Theorem 1.3 ([18]). Let Aj(z) j = 0, 1, . . . , k − 1 be entire functions with finite
order and satisfy one of the following conditions:

(i) max{σ(Aj) : j = 1, 2, . . . , k − 1} < σ(A0) <∞;
(ii) 0 < σ(Ak−1) = . . . σ(A1) = σ(A0) < ∞ and max{τ(Aj) : j = 1, 2, . . . , k −

1} = τ1 < τ(A0) = τ ,
then for every solution f 6≡ 0 of (1.2) and for any entire function ϕ(z) 6≡ 0 satisfying
σ2(ϕ) < σ(A0), we have

λ2(f − ϕ) = λ2(f ′ − ϕ) = λ2(f ′′ − ϕ) = λ2(f (i) − ϕ) = σ2(f) = σ(A0) (i ∈ N).
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Theorem 1.4 ([18]). Let Aj(z) j = 1, 2, . . . , k − 1 be polynomials, A0(z) be a
transcendental entire function, then for every solution f 6≡ 0 of (1.2) and for any
entire function ϕ(z) of finite order, we have

(i) λ(f − ϕ) = λ(f − ϕ) = σ(f) =∞;
(ii) λ(f (i) − ϕ) = λ(f (i) − ϕ) = σ(f (i) − ϕ) =∞ (i ≥ 1, i ∈ N).

Theorem 1.5 ([18]). Let Aj(z) j = 0, 1, . . . , k−1 be meromorphic functions satis-
fying max{σ(Aj) : j = 1, 2, . . . , k − 1} < σ(A0) and δ(∞, A0) > 0. Then, for every
meromorphic solution f 6≡ 0 of (1.2) and for any meromorphic function ϕ(z) 6≡ 0
satisfying σ2(ϕ) < σ(A0), we have

λ2(f (i) − ϕ) = λ2(f (i) − ϕ) ≥ σ(A0) (i ∈ N),

where f (0) = f .

Recently, Xu and Tu improved some of these results by making use the notion
of [p, q]-order in the complex plane, see [17].

A natural question is how about the case of the unit disc? In this paper, we will
answer this question and we will see the similarities and differences between the
complex plane and the unit disc.

Theorem 1.6. Let Aj(z) j = 0, 1, . . . , k − 1 be analytic functions in the unit disc
D with finite order and satisfy one of the following conditions:

(1) max{σM (Aj) : j = 1, . . . , k − 1} < σM (A0) <∞;
(2) 0 < σM (Ak−1) = . . . σM (A1) = σM (A0) < ∞ and max{τM (Aj) : j =

1, 2, . . . , k − 1} = τ1 < τM (A0) = τ ,
then for every solution f 6≡ 0 of (1.2) and for any analytic function ϕ(z) 6≡ 0 in
the unit disc D satisfying σM,2(ϕ) < σM (A0), we have

λ2(f − ϕ) = λ2(f (i) − ϕ) = λ2(f (i) − ϕ) = σM,2(f) = σM (A0) (i ∈ N). (1.3)

Remark 1.7. We get the same result of Theorem 1.6 if some coefficients Aj(z)
j = 1, 2, . . . , k − 1, satisfy (1) and the others satisfy (2), i.e. there exists J ⊂
{1, . . . , k − 1} such that σ(Aj) < σ(A0) for j ∈ J and max{τ(Aj) : σ(Aj) =
σ(A0)} < τ(A0).

If we replace σM (Aj) and τM (Aj) by σ(Aj) and τ(Aj) in Theorem 1.6, we cannot
get the same result. For example, we can see the difference between [9, Theorem
3] and the following result.

Theorem 1.8. Let Aj(z) j = 0, 1, . . . , k−1 be analytic functions in the unit disc D
with finite order such that 0 < σ(A0) <∞, σ(Aj) = σ(A0) for j ∈ J ⊂ {1, . . . , k−1}
and

∑
j∈J τ(Aj) < τ(A0), and σ(Aj) < σ(A0) for j /∈ J . Then, every solution

f 6≡ 0 of (1.2) satisfies σ(A0) ≤ σ2(f) ≤ αM = max0≤j≤k−1{σM (Aj)}.

If we replace, in Theorem 1.8, the condition
∑
j∈J τ(Aj) < τ(A0) by max{τ(Aj) :

σ(Aj) = σ(A0)} < τ(A0), we cannot get the result, except for the second order
linear differential equations. Theorem 1.8 is also an improvement of [15, Theorem
2.1].

Corollary 1.9. Let Aj(z) j = 0, 1 be analytic functions in the unit disc D with
finite order and satisfy σ(A1) < σ(A0) < ∞ or 0 < σ(A1) = σ(A0) < ∞ and
τ(A1) < τ(A0). Then, for every solution f 6≡ 0 of the differential equation

f ′′ +A1(z)f ′ +A0(z)f = 0,
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satisfies σ(A0) ≤ σ2(f) ≤ max{σM (A0), σM (A1)}.

In Theorem 1.6, for k = 2, If we replace σM (Aj) and τM (Aj) by σ(Aj) and
τ(Aj), we can get the following result:

σ(A0) ≤ λ2(f − ϕ) = λ2(f (i) − ϕ) = σ2(f) ≤ max{σM (A0), σM (A1)}. (1.4)

But for k ≥ 3, (1.4) remains valid only for the condition (1).

Theorem 1.10. Let Aj(z) j = 1, 2, . . . , k−1 be H- functions while A0(z) is analytic
not being an H- function. Then for every solution f 6≡ 0 of (1.2) and for any
analytic function ϕ(z) 6≡ 0 of finite order, we have

(1) λ(f − ϕ) = λ(f − ϕ) = σ(f) =∞;
(2) λ(f (i) − ϕ) = σ(f (i) − ϕ) =∞ (i ≥ 1, i ∈ N).

Theorem 1.11. Let Aj(z) j = 0, 1, . . . , k−1 be meromorphic functions in the unit
disc D satisfying max{σ(Aj) : j = 1, 2, . . . , k − 1} < σ(A0) and δ(∞, A0) > 0.
Then, for every meromorphic solution f 6≡ 0 of (1.2) and for any meromorphic
function ϕ(z) 6≡ 0 in the unit disc D satisfying σ2(ϕ) < σ(A0), we have

λ2(f (i) − ϕ) = λ2(f (i) − ϕ) = σ2(f) ≥ σ(A0) (i ∈ N), (1.5)

where f (0) = f .

2. Preliminaries

Throughout this paper, we use the following notation that are not necessarily
the same at each occurrence:
E ⊂ (0, 1) is a set of finite logarithmic measure, that is

∫
E

dr
1−r <∞.

F ⊂ (0, 1) is a set of infinite logarithmic measure, that is
∫
F

dr
1−r =∞.

c > 0, ε > 0, σ ≥ 0, σ1 ≥ 0, τ ≥ 0, τ1 ≥ 0, are real constants.

Lemma 2.1 ([18]). Assume that f 6≡ 0 is a solution of (1.2). Set g = f − ϕ; then
g satisfies the equation

g(k) +Ak−1g
(k−1) + · · ·+A0g = −[ϕ(k) +Ak−1ϕ

(k−1) + · · ·+A0ϕ]. (2.1)

Lemma 2.2 ([18]). Assume that f 6≡ 0 is a solution of (1.2). Set gi = f (i) − ϕ,
(i ∈ N− {0}); then gi satisfies

g
(k)
i + U ik−1g

(k−1)
i + · · ·+ U i0gi = −[ϕ(k) + U ik−1ϕ

(k−1) + · · ·+ U i0ϕ], (2.2)

where

U ij = (U i−1
j+1)′ + U i−1

j − (U i−1
0 )′

U i−1
0

U i−1
j+1, (2.3)

j = 0, 1, . . . , k − 1, U0
j = Aj and U ik ≡ 1.

The next lemma is a consequence of [7, Theorem 3.1].

Lemma 2.3. Let f be a meromorphic function in the unit disc D such that f (j)

does not vanish identically. Let ε > 0 be a constant; k and j be integers satisfying
k > j ≥ 0 and d ∈ (0, 1). Then, we have

|f
(k)(z)
f (j)(z)

| ≤
(( 1

1− |z|
)(2+ε) max{log

1
1− |z|

, T (s(|z|), f)}
)k−j

, |z| /∈ E,
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where s(|z|) = 1− d(1− |z|). As a particular case, if σ1(f) <∞, then

|f
(k)(z)
f (j)(z)

| ≤
( 1

1− |z|

)(k−j)(σ1+2+ε)

, |z| /∈ E. (2.4)

Lemma 2.4 ([9]). Let f(z) be an analytic function in the unit disc D with σM (f) =
σ, τM (f) = τ , 0 < σ <∞, 0 < τ <∞, then for any given 0 < β < τ , there exists a
set F ⊂ (0, 1) that has infinite logarithmic measure such that for all r ∈ F we have

log+M(r, f) >
β

(1− r)σ
.

By the same method of the proof of Lemma 2.4, we obtain the followings two
lemmas.

Lemma 2.5. Let f(z) be an analytic function in the unit disc D with σM (f) = σ,
0 < σ < ∞, then for any given 0 < β < σ, there exists a set F ⊂ (0, 1) that has
infinite logarithmic measure such that for all r ∈ F we have

log+M(r, f) >
1

(1− r)β
.

Lemma 2.6. Let f(z) be meromorphic function in the unit disc D with σ(f) = σ,
τ(f) = τ , 0 < σ <∞, 0 < τ <∞, then for any given 0 < β < τ , there exists a set
F ⊂ (0, 1) that has infinite logarithmic measure such that for all r ∈ F we have

T (r, f) >
β

(1− r)σ
.

Lemma 2.7. Let Aj(z) j = 0, 1, . . . , k− 1 be analytic functions in the unit disc D
with finite order and satisfy 0 < σM (Aj) ≤ σM (A0) = σ for all j = 1, . . . , k − 1,
and max{τM (Aj) : j 6= 0} = τ1 < τM (A0) = τ , and U ij (j = 0, 1, . . . , k) (i ∈ N) be
stated as in (2.3). Then, for any given ε (0 < 2ε < τ − τ1), there exists a set F of
infinite logarithmic measure such that for r ∈ F , we have

|U i0| ≥ exp{ τ − ε
(1− r)σ

} and |U ij | ≤ exp{ τ1 + ε

(1− r)σ
}, (2.5)

where j = 1, 2, . . . , k − 1.

Proof. If we want to prove (2.5) for i = m ∈ N− {0, 1}, we start by

|A0| ≥ exp{τ − ε/2
m

(1− r)σ
} and |Aj | ≤ exp{τ1 + ε/2m

(1− r)σ
}.

We have U1
j = A′j+1 + Aj − A′0

A0
Aj+1 = Aj + Aj+1(A

′
j+1

Aj+1
− A′0

A0
) (j = 0, 1, . . . , k − 1)

and Ak ≡ 1. So

|U1
0 | ≥ |A0| − |A1|

(
|A
′
1

A1
|+ |A

′
0

A0
|
)
, (2.6)

|U1
j | ≤ |Aj |+ |Aj+1|(|

A′j+1

Aj+1
|+ |A

′
0

A0
|). (2.7)
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By Lemma 2.3, Lemma 2.4 and (2.6)-(2.7), there exists a set F with infinite loga-
rithmic measure such that

|U1
0 | ≥ exp{τ − ε/2

m

(1− r)σ
} − 2 exp{τ1 + ε/2m

(1− r)σ
} 1

(1− r)c

≥ exp{τ − ε/2
m−1

(1− r)σ
},

(2.8)

|U1
j | ≤ exp{τ1 + ε/2m

(1− r)σ
}+ 2 exp{τ1 + ε/2m

(1− r)σ
} 1

(1− r)c

≤ exp{τ1 + ε/2m−1

(1− r)σ
}, j 6= 0,

(2.9)

where c > 0 is a constant. Now for i = 2 in (2.3), we have

|U2
0 | ≥ |U1

0 | − |U1
1 |
(
| (U

1
1 )′

U1
1

|+ | (U
1
0 )′

U1
0

|
)
, (2.10)

|U2
j | ≤ |U2

j |+ |U2
j+1|

(
|
(U2

j+1)′

U2
j+1

|+ | (U
2
0 )′

U2
0

|
)
, j 6= 0. (2.11)

From (2.8)-(2.11), we obtain

|U2
0 | ≥ exp{τ − ε/2

m−2

(1− r)σ
} and |U2

j | ≤ exp{τ1 + ε/2m−2

(1− r)σ
}. (2.12)

By (2.12) and for i = 3 in (2.3), we obtain

|U3
0 | ≥ exp{τ − ε/2

m−3

(1− r)σ
} and |U3

j | ≤ exp{τ1 + ε/2m−3

(1− r)σ
}.

By the same method until i = m, we obtain

|U i0| ≥ exp{ τ − ε
(1− r)σ

} and |U ij | ≤ exp{ τ1 + ε

(1− r)σ
}.

Thus, the proof is complete. �

Lemma 2.8. Let Hj(z) j = 0, 1, . . . , k − 1 be meromorphic functions in the unit
disc D of finite order satisfying max{|Hj(z)|, j = 1, . . . , k − 1} ≤ exp{ β1

(1−r)σ } and

|H0(z)| ≥ exp{ β
(1−r)σ } where 0 < β1 < β, σ > 0 and |z| = r ∈ F ⊂ (0, 1) with

F is of infinite logarithmic measure. Then, every meromorphic solution f of the
differential equation

f (k) +Hk−1(z)f (k−1) + · · ·+H1(z)f ′ +H0(z)f = 0 (2.13)

satisfies σ2(f) ≥ σ.

Proof. Let f 6≡ 0 be a meromorphic solution of (2.13) of finite order σ(f) = σ <∞.
From (2.13), we obtain

|H0(z)| ≤ |f
(k)

f
|+

k−1∑
j=1

|Hj(z)||
f (j)

f
|. (2.14)

By Lemma 2.3, for a given ε > 0 there exists a set E ⊂ [0, 1) of finite logarithmic
measure such that for all z ∈ D satisfying |z| /∈ E, we have

|f
(j)(z)
f(z)

| ≤ 1
(1− |z|)j(σ+2+ε)

, (j = 1, . . . , k). (2.15)
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From (2.14)-(2.15) and the assumptions of Lemma 2.8, we obtain

exp{ β

(1− r)σ
} ≤ c

(1− r)k(σ+2+ε)
exp{ β1

(1− r)σ
}, (2.16)

where c > 0 is a constant. Since β1 < β, a contradiction follows from (2.16) as
r → 1−. So, σ(f) =∞; and by Lemma 2.3, we obtain

|f
(j)(z)
f(z)

| ≤ 1
(1− r)j(2+ε)

(T (s(r), f))j , r /∈ E. (2.17)

From (2.14), (2.17) and the assumptions of Lemma 2.8, we obtain

exp{ β

(1− r)σ
} ≤ c

(1− r)k(2+ε)
(T (s(r), f))k exp{ β1

(1− r)σ
}. (2.18)

Set s(r) = R. We have 1− r = 1
d (1−R) and ( 2.18) becomes

(
1−R
d

)k(2+ε) exp{ (β − β1)dσ

(1−R)σ
} ≤M(T (R, f))k, R /∈ E. (2.19)

From (2.19), we conclude that σ2(f) ≥ σ. �

By the same reasoning of Lemma 2.7 and using Lemma 2.5, we obtain the fol-
lowing lemma.

Lemma 2.9. Let Aj(z) j = 0, 1, . . . , k− 1 be analytic functions in the unit disc D
with finite order and satisfy max{σM (Aj) : j = 1, 2, . . . , k−1} < σM (A0) = σ <∞,
and (U ij) (j = 0, 1, . . . , k) (i ∈ N) be sequences of functions satisfying (2.3). Then,
for any given ε (0 < 2ε < σ − σ1), there exists a set F of infinite logarithmic
measure such that for r ∈ F , we have

|U i0| ≥ exp{ 1
(1− r)σ−ε

} and |U ij | ≤ exp{ 1
(1− r)σ1+ε

}. (2.20)

By using the same method of the proof of Lemma 2.8, we obtain the following
lemma.

Lemma 2.10. Let Hj(z) j = 0, 1, . . . , k − 1 be meromorphic functions of finite
order in the unit disc D satisfying max{|Hj(z)|, j = 1, . . . , k − 1} ≤ exp{ 1

(1−r)σ1 }
and |H0(z)| ≥ exp{ 1

(1−r)σ } where 0 < σ1 < σ and |z| = r ∈ F ⊂ (0, 1) with F is
of infinite logarithmic measure. Then, every meromorphic solution f 6≡ 0 of (2.13)
satisfies σ2(f) ≥ σ.

Lemma 2.11. Let f(z) be an admissible meromorphic function in the unit disc
D with σ(f) = σ ≥ 0, then there exists a set F ⊂ (0, 1) with infinite logarithmic
measure such that for all r ∈ F , we have

lim
r→1−

log T (r, f)
− log(1− r)

= σ.

Proof. By the definition of σ(f), there exists an increasing sequence {rm} → 1−

satisfying 1− (1− 1
m )(1− rm) < rm+1 and

lim
rm→1−

log T (rm, f)
− log(1− rm)

= σ.
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Then, there exists m0 such that for all m ≥ m0 and r ∈ Im = [rm, 1− (1− 1
m )(1−

rm)], we have

log T (rm, f)
− log[(1− 1

m )(1− rm)]
≤ log T (r, f)
− log(1− r)

≤
log T (1− (1− 1

m )(1− rm), f)
− log(1− rm)

. (2.21)

The limit of both sides of (2.21), when rm → 1−, is equal to σ; so for r ∈ Im, we
have

lim
r→1−

log T (r, f)
− log(1− r)

= σ.

Set F = ∪∞m=m0
Im. Then

ml(F ) =
∞∑

m=m2

∫
Im

dr

1− r
=

∞∑
m=m2

log
( m

m− 1
)

=∞.

�

Lemma 2.12. Let Hj(z) j = 0, 1, . . . , k − 1 be meromorphic functions in the unit
disc D with max{σ(Hj), j = 1, . . . , k − 1} = σ1 < σ(H0) = σ and δ(∞, H0) > 0.
Then, every meromorphic solution f of (2.13) satisfies σ2(f) ≥ σ.

Proof. Let f be a meromorphic solution of (2.13). From (2.13) and the logarithmic
derivative lemma, we have

m(r,H0) ≤ m
(
r,
f (k)

f

)
+m

(
r,
f (k−1)

f

)
+ · · ·+m

(
r,
f ′

f

)
+
k−1∑
j=1

m(r,Hj) + log(k + 1)

≤ c
(

log+ T (r, f) + log
1

1− r
)

+
k−1∑
j=1

m(r,Hj), r /∈ E,

(2.22)

where E ⊂ (0, 1) of finite logarithmic measure and c > 0. By Lemma 2.11, there
exists a set F of infinite logarithmic measure such that for all r ∈ F , we have

lim
r→1−

log T (r,H0)
− log(1− r)

= σ. (2.23)

Since δ(∞, A0) = lim infr→+∞
m(r,H0)
T (r,H0)

> 0, then by (2.23), for given ε (0 < 2ε <
σ − σ1) and for all r ∈ F , we have

m(r,H0) ≥ 1
(1− r)σ−ε

.

From (2.22) and (2.23), for r ∈ F − E, we have

1
(1− r)σ−ε

≤ c
(

log+ T (r, f) + log
1

1− r
)

+ (k − 1)
1

(1− r)σ1+ε
. (2.24)

From (2.24), we obtain σ2(f) ≥ σ. �

Lemma 2.13. Let Aj(z), j = 0, 1, . . . , k − 1 be meromorphic functions in the
unit disc D satisfying max{σ(Aj) : j = 1, 2, . . . , k − 1} = σ1 < σ(A0) = σ and
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δ(∞, A0) > 0 and U ij (j = 0, 1, . . . , k) (i ∈ N) be stated as in (2.3). Then, for any
given ε satisfying 0 < 2ε < σ − σ1, we have

m(r, U ij) ≤
1

(1− r)σ1+ε
, (j = 1, 2, . . . , k − 1), r /∈ E,

m(r, U i0) ≥ 1
(1− r)σ−ε

, r ∈ F.

By using the same reasoning as above we can get the conclusion of this lemma;
so we omit the proof here.

Lemma 2.14. Let G 6≡ 0, Hj(z) j = 0, 1, . . . , k − 1 be meromorphic functions in
the unit disc D. If f is a meromorphic solution of the differential equation

f (k) +Hk−1(z)f (k−1) + · · ·+H1(z)f ′ +H0(z)f = G(z), (2.25)

satisfying max{σn(G), σn(Hj); j = 0, 1, . . . , k − 1} < σn(f) = σn, then λn(f) =
λn(f) = σn(f), (n ∈ N− {0}).

Proof. The same reasoning of the proof of Lemma 3.5 in [4] when G 6≡ 0, Hj(z) j =
0, 1, . . . , k − 1 are analytic in the unit disc D. �

Lemma 2.15 ([9, Thm. 3]). Let n ∈ N−{0}. If the coefficients A0(z), . . . , Ak−1(z)
are analytic in D such that σM,n(Aj) ≤ σM,n(A0) for all j = 1, . . . , k − 1, and

max{τM,n(Aj) : σM,n(Aj) = σM,n(A0)} < τM,n(A0),

then all solutions f 6≡ 0 of (1.2) satisfy σM,n+1(f) = σM,n(A0).

3. Proofs of theorems

Proof of Theorem 1.6. Case (1). max{σM (Aj) : j = 1, . . . , k−1} < σM (A0) <∞.
Suppose that f 6≡ 0 is a solution of (1.2) and ϕ(z) 6≡ 0 is an analytic function in
the unit disc D satisfying σ2(ϕ) < σ(A0). We start to prove (1.3) for i = 0, i.e.
λ2(f − ϕ) = λ2(f − ϕ) = σ2(f) = σM (A0). From [5], we have σ2(f) = σM (A0).
Set g = f − ϕ. Since σ2(ϕ) < σ(A0), then σ2(g) = σ2(f). By Lemma 2.1, g
satisfies (2.1). Set G(z) = ϕ(k) + Ak−1ϕ

(k−1) + · · · + A0ϕ. If G ≡ 0, then by
[5] we have σ2(ϕ) = σ(A0), a contradiction; thus G 6≡ 0. Now, since σ2(g) =
σ2(f) = σ(A0) > max{σ2(G), σ2(Aj)}, then the assumption of Lemma 2.14 is
hold for n = 2, and then we have λ2(g) = λ2(g) = σ2(g). Then, we conclude
that λ2(f − ϕ) = λ2(f − ϕ) = σ2(f) = σM (A0). Now we prove (1.3) for i ≥ 1.
Set gi = f (i) − ϕ. Since σ2(f (i)) = σ2(f) = σ(A0) and σ2(ϕ) < σ(A0), then
we have σ2(gi) = σ2(f) = σ(A0). By Lemma 2.2, gi satisfies (2.2). Set Gi =
ϕ(k) + U ik−1ϕ

(k−1) + · · · + U i0ϕ. If Gi ≡ 0, by Lemma 2.9 and Lemma 2.10, we
obtain σ2(ϕ) ≥ σ(A0), a contradiction with σ2(ϕ) < σ(A0); so Gi 6≡ 0. Now, by
Lemma 2.14, for n = 2, we obtain λ2(gi) = λ2(gi) = σ2(gi) i.e. λ2(f (i) − ϕ) =
λ2(f (i) − ϕ) = σ2(f) = σM (A0).
Case (2). 0 < σ(A0) < ∞, σ(Aj) = σ(A0) for all j ∈ {1, . . . , k − 1} and
max{τM,n(Aj) : j 6= 0} < τM,n(A0). Assume that f 6≡ 0 is a solution of (1.2)
and ϕ(z) 6≡ 0 is an analytic function in the unit disc D satisfying σ2(ϕ) < σ(A0).
As above, we start to prove (1.3) for i = 0, i.e. λ2(f − ϕ) = λ2(f − ϕ) = σ2(f) =
σM (A0). From Lemma 2.15, we have σ2(f) = σM (A0). Set g = f − ϕ. We
have σ2(g) = σ2(f). As above, g satisfies (2.1). If G ≡ 0, then by Lemma 2.15
we have σ2(ϕ) = σ(A0), a contradiction; thus G 6≡ 0. Now by Lemma 2.14, we
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obtain λ2(g) = λ2(g) = σ2(g). So, we conclude that λ2(f − ϕ) = λ2(f − ϕ) =
σ2(f) = σM (A0). Now we prove (1.3) for i ≥ 1. Set gi = f (i) − ϕ. We have
σ2(gi) = σ2(f), and gi satisfies (2.2). If Gi ≡ 0, by Lemma 2.7 and Lemma
2.8, we obtain σ2(ϕ) ≥ σ(A0), a contradiction with σ2(ϕ) < σ(A0); so Gi 6≡ 0.
As above, by Lemma 2.14, for n = 2, we obtain λ2(gi) = λ2(gi) = σ2(gi) i.e.
λ2(f (i) − ϕ) = λ2(f (i) − ϕ) = σ2(f) = σM (A0). �

Proof of Theorem 1.8. The inequality σ2(f) ≤ αM follows by [12, Theorem 5.1].
From (1.2) we obtain

m(r,A0) ≤ m
(
r,
f (k)

f

)
+m

(
r,
f (k−1)

f

)
+ · · ·+m

(
r,
f ′

f

)
+
k−1∑
j=1

m(r,Aj) + log(k+ 1),

and then

m(r,A0) ≤ c
(

log+ T (r, f) + log
1

1− r
)

+
k−1∑
j=1

m(r,Aj), r /∈ E. (3.1)

Set
∑
j∈J τ(Aj) = τ∗, max{σ(Aj) : j ∈ J ′} = σ∗, τ(A0) = τ and σ(A0) = σ. By

(3.1), the assumptions of Theorem 1.8 and Lemma 2.6, there exists a set F ⊂ (0, 1)
of infinite logarithmic measure such that for all r ∈ F − E, we have

τ − ε
(1− r)σ

≤ c
(

log+ T (r, f) + log
1

1− r
)

+
k − 1

(1− r)σ∗+ε
+

τ∗ + ε

(1− r)σ
, (3.2)

where 0 < 2ε < min(τ−τ∗, σ−σ∗). From (3.2), we obtain that σ(A0) ≤ σ2(f). �

Proof of Theorem 1.10. Suppose that f 6≡ 0 is a solution of (1.2) and ϕ(z) 6≡ 0 is
an analytic function in the unit disc D of finite order. By [11], we have σ(f) =∞.
If G ≡ 0, then by [11] we have σ(ϕ) = ∞, a contradiction; thus G 6≡ 0; and by
Lemma 2.14 we obtain the result (1). Now for i ≥ 1, if Gi ≡ 0, then by taking into
account that if Aj(z) j = 1, 2, . . . , k − 1 are an H-functions and A0(z) is analytic
not being an H-function then U ij (j = 1, . . . , k) are non admissible functions while
U i0 are admissible, (i ∈ N); so we obtain that σ(ϕ) = ∞, a contradiction; thus
Gi 6≡ 0; and by Lemma 2.14 we obtain the result (2). �

Proof of Theorem 1.11. Suppose that f 6≡ 0 is a meromorphic solution of (1.2) and
ϕ(z) 6≡ 0 is a meromorphic function in the unit disc D satisfying σ2(ϕ) < σ(A0).
By Lemma 2.12, we have σ2(f) ≥ σ(A0). If G ≡ 0, then by Lemma 2.12 we have
σ2(ϕ) ≥ σ(A0), a contradiction; thus G 6≡ 0; and by Lemma 2.14 we obtain the
result (1.5) for i = 0. Now for i ≥ 1, if Gi ≡ 0, then by Lemma 2.12 and Lemma
2.13 we have σ2(ϕ) ≥ σ(A0), a contradiction; thus Gi 6≡ 0; and by Lemma 2.14 we
obtain (1.5). �
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