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EXPONENTIAL P -STABILITY OF STOCHASTIC ∇-DYNAMIC
EQUATIONS ON DISCONNECTED SETS

HUU DU NGUYEN, THANH DIEU NGUYEN, ANH TUAN LE

Abstract. The aim of this article is to consider the existence of solutions,
finiteness of moments, and exponential p-stability of stochastic ∇-dynamic

equations on an arbitrary closed subset of R, via Lyapunov functions. This

work can be considered as a unification and generalization of works dealing
with random difference and stochastic differential equations.

1. Introduction

The direct method has become the most widely used tool for studying the ex-
ponential stability of stochastic equations. For differential equations, we mention
the very interesting book by Khas’minskii [12] in which author uses the Lyapunov
functions to study stability. Foss and Konstantopoulos [8] presented an overview of
stochastic stability methods, mostly motivated by stochastic network applications.
Socha [24] considered the exponential p-stability of singularly perturbed stochastic
systems for the “slow” and “fast” components of the full-order system. Govindan
[9] proved the existence and uniqueness of a mild solution under two sets of hy-
potheses and considered the exponential second moment stability of the solution
process for stochastic semilinear functional differential equations in a Hilbert space.
We also refer to [15, 16] in which authors considered stochastic asymptotic stability
and boundedness for stochastic differential equations with respect to semimartin-
gale via multiple Lyapunov functions. The long-time behavior of densities of the
solutions is studied in [20] by using Khas’minskii function. For random difference
systems, we can refer the reader to [18, 22, 23], for stability of nonlinear systems.

Recently, a method for the unified analysis of equations of motion in continuous
and discrete cases within the framework of the theory of time scales has drawn a
lot attention. For deterministic cases, in [4], author used the Lyapunov function of
quadratic form to study the stability of linear dynamic equations. Hoffacker and
Tisdell examined the stability and instability of the equilibrium point of nonlinear
dynamic equations [13]. Martynyuk presented systematically the stability theory
of dynamic equations in [17].

While the stability of deterministic dynamic equations on time scales has been
investigated for a long time, as far as we know, there is not much in mathematical
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literature for the stochastic case, and no work dealing with the stability of sto-
chastic dynamic equations. Here, we mention some of the first attempts on this
direction. In [11], the authors developed the theory of Brownian motion. Sanyal
in his Ph. D. Dissertation [21] tries to define stochastic integral and stochastic dy-
namic equations on time scale with the positive graininess. Lungan and Lupulescu
in [14] consider random dynamical systems with random ∆-integral. Gravagne and
Robert deal with the bilateral Laplace transforms in [10]. The Doob-Meyer de-
composition theorem and definition of stochastic ∇-integral with respect to square
integrable martingale on any arbitrary time scale also Itô’s formula are studied in
[6, 7]. Recently, Bohner et al [3] investigate stochastic dynamic equations on time
scale by considering an integral with respect to the restriction of a standard Wiener
process on time scale. However, this way can not be applied to define the stochastic
integral in general case since when one deals with a martingale defined on time scale
and we do not know whenever it can be extended to a regular martingale on R.

The aim of this article is to use Lyapunov functions to consider the existence,
finiteness of moments, and long term behavior of solutions for∇-stochastic dynamic
equations on arbitrary closed subset of R. We study

d∇X(t) = f(t,X(t−))d∇t+ g(t,X(t−))d∇M(t)

X(a) = xa ∈ Rd, t ∈ Ta,

where (Mt)t∈Ta is a R-valued square integrable martingale and f : Ta × R → R
and g : Ta × R → R are two Borel functions. We emphasis that martingale M is
defined only on Ta. This work can be considered as a unification and generalization
of works dealing with these areas of stochastic difference and differential equations.

In working on stochastic multi-dimensional dynamic equations with respect to
discontinuous martingale on time scales, it rises many difficulties, especially the
complicated calculations and they require some improvements. Besides, some es-
timates of stochastic calculus for continuous time are not automatically valid on
arbitrary time scale and we need to change them into a suitable form to obtain
similar results.

The organization of this paper is as follows. We introduce some basic notion
and definitions for time scale and for square integrable martingales in Section 2.
Section 3 deals with the existence and the finiteness of moments of solutions for
stochastic dynamic equations with respect to a square integrable martingale in
case the coefficients satisfy locally Lipschitz conditions. Section 4 is concerned
with necessary and sufficient conditions for the exponential p-stability of stochastic
dynamic equations.

2. Preliminaries

Let T be a closed subset of R, enclosed with the topology inherited from the
standard topology on R. Let σ(t) = inf{s ∈ T : s > t}, µ(t) = σ(t) − t and ρ(t) =
sup{s ∈ T : s < t}, ν(t) = t−ρ(t) (supplemented by sup ∅ = inf T, inf ∅ = sup T). A
point t ∈ T is said to be right-dense if σ(t) = t, right-scattered if σ(t) > t, left-dense
if ρ(t) = t, left-scattered if ρ(t) < t and isolated if t is simultaneously right-scattered
and left-scattered. The set kT is defined to be T if T does not have a right-scattered
minimum; otherwise it is T without this right-scattered minimum. Similarly, Tk
is defined to be T if T does not have a left-scattered maximum; otherwise it is
T without this left-scattered maximum. A function f defined on T is regulated if
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there exist the left-sided limit at every left-dense point and right-sided limit at every
right-dense point. A regulated function is called ld-continuous if it is continuous
at every left-dense point. Similarly, one has the notion of rd-continuous. For every
a, b ∈ T, by [a, b], we mean the set {t ∈ T : a ≤ t ≤ b}. Denote Ta = {t ∈ T : t ≥ a}
and by R (resp. R+) the set of all rd-continuous and regressive (resp. positive
regressive) functions. For any function f defined on T, we write fρ for the function
f ◦ ρ; i.e., fρt = f(ρ(t)) for all t ∈k T and limσ(s)↑t f(s) by f(t−) or ft− if this limit
exists. It is easy to see that if t is left-scattered then ft− = fρt . Let

I = {t : t is left-scattered}.

Clearly, the set I of all left-scattered points of T is at most countable.
Throughout of this paper, we suppose that the time scale T has bounded grain-

iness, that is ν∗ = sup{ν(t) : t ∈k T} <∞.
Let A be an increasing right continuous function defined on T. We denote by

µA∇ the Lebesgue ∇-measure associated with A. For any µA∇-measurable function
f : T→ R we write

∫ t
a
fτ∇Aτ for the integral of f with respect to the measures µA∇

on (a, t]. It is seen that the function t→
∫ t
a
fτ∇Aτ is cadlag. It is continuous if A

is continuous. In case A(t) ≡ t we write simply
∫ t
a
fτ∇τ for

∫ t
a
fτ∇Aτ . For details,

we can refer to [5].
In general, there is no relation between the ∆-integral and ∇-integral. However,

in case the integrand f is regulated one has∫ b

a

f(τ−)∇τ =
∫ b

a

f(τ)∆τ ∀a, b ∈ Tk,

Indeed, by [5, Theorem 6.5],∫ b

a

f(τ)∆τ =
∫

[a;b)

f(τ)dτ +
∑
a≤s<b

f(s)µ(s)

=
∫

(a,b]

f(τ−)dτ +
∑
a<s≤b

f(s−)ν(s) =
∫ b

a

f(τ−)∇τ.

Therefore, if p ∈ R then the exponential function ep(t, t0), defined by [2, Definition
2.30, pp. 59], is solution of the initial value problem

y∇(t) = p(t−)y(t−), y(t0) = 1, t > t0. (2.1)

Also if p ∈ R, e	p(t, t0) is the solution of the equation

y∇(t) = −p(t−)y(t), y(t0) = 1, t > t0,

where 	p(t) = −p(t)
1+µ(t)p(t) . Later, we need the following lemma.

Lemma 2.1 ([2, 7]). Let u(t) be a regulated function and ua, α ∈ R+. Then, the
inequality

u(t) ≤ ua + α

∫ t

a

u(τ−)∇τ ∀t ∈ Ta

implies
u(t) ≤ uaeα(t, a) ∀t ∈ Ta.
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Let (Ω,F , {Ft}t∈Ta ,P) be a probability space with filtration {Ft}t∈Ta satisfying
the usual conditions (i.e., {Ft}t∈Ta is increasing and ∩{Fρ(s) : s ∈ T, s > t} = Ft
for all t ∈ Ta while Fa contains all P -null sets). Denote byM2 the set of the square
integrable Ft-martingales and by Mr

2 the subspace of the space M2 consisting of
martingales with continuous characteristics. For any M ∈M2, set

M̂t = Mt −
∑
s∈(a,t]

(Ms −Mρ(s)).

It is clear that M̂t is an Ft-martingale and M̂t = M̂ρ(t) for any t ∈ T. Further,

〈M̂〉t = 〈M〉t −
∑
s∈(a,t]

(〈M〉s − 〈M〉ρ(s)). (2.2)

Therefore, M ∈ Mr
2 if and only if M̂ ∈ Mr

2. In this case, M̂ can be extended to a
regular martingale defined on R.

Denote by B the class of Borel sets in R whose closure does not contain the
point 0. Let δ(t, A) be the number of jumps of the M on the (a, t] whose values
fall into the set A ∈ B. Since the sample functions of the martingale M are
cadlag, the process δ(t, A) is defined with probability 1 for all t ∈ Ta, A ∈ B.
We extend its definition over the whole Ω by setting δ(t, A) ≡ 0 if the sample
t → Mt(ω) is not cadlag. Clearly the process δ(t, A) is Ft-adapted and its sample
functions are nonnegative, monotonically nondecreasing, continuous from the right
and take on integer values. We also define δ̂(t, A) for M̂t by a similar way. Let
δ̃(t, A) = ]{s ∈ (a, t] : Ms −Mρ(s) ∈ A}. It is evident that

δ(t, A) = δ̂(t, A) + δ̃(t, A). (2.3)

Further, for fixed t, δ(t, ·), δ̂(t, ·) and δ̃(t, ·) are measures.
The functions δ(t, A), δ̂(t, A) and δ̃(t, A), t ∈ Ta are Ft-regular submartingales for

fixed A. By Doob-Meyer decomposition, each process has a unique representation
of the form

δ(t, A) = ζ(t, A) + π(t, A), δ̂(t, A) = ζ̂(t, A) + π̂(t, A),

δ̃(t, A) = ζ̃(t, A) + π̃(t, A),

where π(t, A), π̂(t, A) and π̃(t, A) are natural increasing integrable processes and
ζ(t, A), ζ̂(t, A), ζ̃(t, A) are martingales. We find a version of these processes such
that they are measures when t is fixed. By denoting

M̂ c
t = M̂t − M̂d

t ,

where

M̂d
t =

∫ t

a

∫
R
uζ̂(∇τ, du),

we obtain

〈M̂〉t = 〈M̂ c〉t + 〈M̂d〉t, 〈M̂d〉t =
∫ t

a

∫
R
u2π̂(∇τ, du). (2.4)

Throughout this article, we suppose that 〈M〉t is absolutely continuous with respect
to Lebesgue measure µ∇, i.e., there exists Ft-adapted progressively measurable
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process Kt such that

〈M〉t =
∫ t

a

Kτ∇τ. (2.5)

Further, for any T ∈ Ta,
P{ sup

a≤t≤T
|Kt| ≤ N} = 1, (2.6)

where N is a constant (possibly depending on T ).
The relations (2.2), (2.4) imply that 〈M̂ c〉t and 〈M̂d〉t are is absolutely con-

tinuous with respect to µ∇ on T. Thus, there exists Ft-adapted, progressively
measurable bounded process K̂c

t and K̂d
t satisfying

〈M̂ c〉t =
∫ t

a

K̂c
τ∇τ, 〈M̂d〉t =

∫ t

a

K̂d
τ∇τ,

and the following relation holds

P{ sup
a≤t≤T

K̂c
t + K̂d

t ≤ N} = 1.

Moreover, it is easy to show that π̂(t, A) is absolutely continuous with respect to
µ∇ on T, that is, it can be expressed as

π̂(t, A) =
∫ t

a

Υ̂(τ,A)∇τ, (2.7)

with an Ft-adapted, progressively measurable process Υ̂(t, A). Since B is generated
by a countable family of Borel sets, we can find a version of Υ̂(t, A) such that the
map t → Υ̂(t, A) is measurable and for t fixed, Υ̂(t, ·) is a measure. Hence, from
(2.4) we see that

〈M̂d〉t =
∫ t

a

∫
R
u2Υ̂(τ, du))∇τ.

This means that

K̂d
t =

∫
R
u2Υ̂(t, du)).

For the process π̃(t, A) we can write

π̃(t, A) =
∑
s∈(a,t]

E[1A(Ms −Mρ(s))
∣∣Fρ(s)].

Putting

Υ̃(t, A) =

{E[1A(Mt−Mρ(t))|Fρ(t)]
ν(t) if ν(t) > 0,

0 if ν(t) = 0
yields

π̃(t, A) =
∫ t

a

Υ̃(τ,A)∇τ. (2.8)

Further, by the definition if ν(t) > 0 we have∫
R
uΥ̃(t, du) =

E[Mt −Mρ(t)

∣∣Fρ(t)]
ν(t)

= 0, (2.9)

and ∫
R
u2Υ̃(t, du) =

E[(Mt −Mρ(t))2
∣∣Fρ(t)]

ν(t)
=
〈M〉t − 〈M〉ρ(t)

ν(t)
.
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Let Υ(t, A) = Υ̂(t, A) + Υ̃(t, A). From (2.3) we see that

π(t, A) =
∫ t

a

Υ(τ,A)∇τ.

Denote by Lloc
1 (Ta,R) the family of real valued, Ft-progressively measurable pro-

cesses f(t) with
∫ T
a
|f(τ)|∇τ < +∞ a.s. for every T > a and by L2(Ta;M) the

space of all real valued, Ft-predictable processes φ(t) satisfying E
∫ T
a
φ2(τ)∇〈M〉τ <

∞, for any T > a. Consider a d-tuple of semimartingales X(t) = (X1(t), . . . , Xd(t))
defined by

Xi(t) = Xi(a) +
∫ t

a

fi(τ)∇τ +
∫ t

a

gi(τ)∇Mτ ,

where fi ∈ Lloc
1 (Ta,R) and gi ∈ L2(Ta;M) for i = 1, d. For any twice differentiable

function V , put

AV (t, x)

=
d∑
i=1

∂V (t, x)
∂xi

(1− 1I(t))fi(t) +
(
V (t, x+ f(t)ν(t))− V (t, x)

)
Φ(t)

+
1
2

∑
i,j

∂2V (t, x)
∂xixj

gi(t)gj(t)K̂c
t −

d∑
i=1

∂V (t, x)
∂xi

gi(t)
∫

R
uΥ̂(t, du)

+
∫

R
(V
(
t, x+ f(t)ν(t) + g(t)u

)
− V (t, x+ f(t)ν(t)))Υ(t, du),

(2.10)

with f = (f1, f2, . . . , fd); g = (g1, g2, . . . , gd) and

Φ(t) =

{
0 if t is left-dense
1/ν(t) if t is left-scattered.

Let C1,2(Ta ×Rd; R) be the set of all functions V (t, x) defined on Ta ×Rd, having
continuous ∇-derivative in t and continuous second derivative in x. Using the Itô’s
formula in [7] we see that for any V ∈ C1,2(Ta × Rd; R+)

V (t,X(t))− V (a,X(a))−
∫ t

a

(
V ∇τ (τ,X(τ−)) +AV (τ,X(τ−))

)
∇τ (2.11)

is a locally integrable martingale, where V ∇t is partial ∇-derivative of V (t, x) in t.

3. Existence of solutions and finiteness of moments for stochastic
dynamic equations

Consider a ∇-stochastic dynamic equations on T of the form

d∇X(t) = f(t,X(t−))d∇t+ g(t,X(t−))d∇M(t)

X(a) = xa ∈ Rd, t ∈ Ta,
(3.1)

where f : Ta × Rd → Rd and g : Ta × Rd → Rd are two Borel functions. Under
the global Lipschitz and linear growth rate conditions of the coefficients f, g, there
exists uniquely a solution for Cauchy problem (3.1) (see: [7]). We now consider the
case where the coefficients are locally Lipschitz.
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Theorem 3.1. Suppose that for any k > 0 and T > a, there exists a constant
LT,k > 0 such that

‖f(t, x)− f(t, y)‖2 ∨ ‖g(t, x)− g(t, y)‖2 ≤ LT,k‖x− y‖2, (3.2)

for all x, y ∈ Rd with ‖x‖ ∨ ‖y‖ ≤ k and t ∈ [a, T ]. Further, there are positive
constants c = c(T ); b = b(T ) and a nonnegative function V ∈ C1,2([a, T ]× Rd; R+)
satisfying

V ∇t(t, x) +AV (t, x) ≤ cV (t−, x) + b ∀(t, x) ∈ [a, T ]× Rd, (3.3)

and limx→∞ inft∈[a,T ] V (t, x) = ∞. Then, (3.1) has a unique solution Xa,xa(t)
defined on Ta. In addition, if there exists a positive constant c1 = c1(T ) such that

c1‖x‖p ≤ V (t, x) ∀(t, x) ∈ [a, T ]× Rd, (3.4)

then

E‖Xa,xa(t)‖p ≤ 1
c1

(V (a, xa) +
b

c
)ec(t, a) ∀t ∈ [a, T ].

Proof. For each k ≥ k0 = [‖xa‖] + 1, define the truncation function

fk(t, x) =

{
f(t, x) if ‖x‖ ≤ k
f(t, kx‖x‖ ) if ‖x‖ > k,

and gk(t, x) is defined by a similar way. The functions fk and gk satisfy the global
Lipschitz condition and the linear growth rate condition. Hence, by [7, Theorem
3.2] there exists a unique solution Xk(·) to the equation

d∇X(t) = fk(t,X(t−))d∇t+ gk(t,X(t−))d∇M(t)

X(a) = xa ∈ Rd, ∀t ∈ [a, T ].
(3.5)

Define the stopping time

θk = inf{t ∈ [a, T ] : |Xk(t)| ≥ k}, θk0 = a.

It is easy to see that θk is increasing and

Xk(t) = Xk+1(t) if a ≤ t ≤ θk. (3.6)

Let θ∞ = limk→∞ θk and the process Xa,xa(t) = X(t), a ≤ t ≤ θ∞ be given by

X(t) = Xk(t), θk−1 ≤ t < θk, k ≥ k0.

Using (3.6) one gets X(t ∧ θk) = Xk(t ∧ θk). It follows from (3.5) that

X(t ∧ θk) = xa +
∫ t∧θk

a

fk(τ,X(τ−))∇τ +
∫ t∧θk

a

gk(τ,X(τ−))∇Mτ

= xa +
∫ t∧θk

a

f(τ,X(τ−))∇τ +
∫ t∧θk

a

g(τ,X(τ−))∇Mτ ,

for any t ∈ [a, T ] and k ≥ 1. We show that limk→∞ θk = T a.s. Indeed, by (2.11)
it yields

E[V (θk ∧ t,X(θk ∧ t))] = V (a, xa) + E
∫ t∧θk

a

(
V ∇τ (τ,X(τ−)) +AV (τ,X(τ−))

)
∇τ

≤ V (a, xa) +
∫ t

a

(cEV (θk ∧ τ−, X(θk ∧ τ−)) + b)∇τ.
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Using Lemma 2.1 with the function u(t) = E[V (θk ∧ t,X(θk ∧ t))] + b
c gets

EV (θn ∧ t,X(θn ∧ t)) ≤
(
V (a, xa) +

b

c

)
ec(t, a).

On the other hand, on the set {θ∞ < T} we have lim supt→θ∞ ‖X(t)‖ =∞. There-
fore, the assumption limx→∞ inft∈[a,T ] V (t, x) = ∞ follows P{θ∞ < T} = 0, i.e.,
the solution Xa,xa(t) is defined on Ta.

The uniqueness follows immediately from the uniqueness of solutions of (3.5).
When the condition (3.4) is satisfied we see that

c1E‖Xa,xa(t ∧ θn)‖p ≤ E[V (t ∧ θn, Xa,xa(t ∧ θn))] ≤ (V (a, xa) +
b

c
)ec(t, a).

Letting n→∞ yields

c1E‖Xa,xa(t)‖p ≤ (V (a, xa) +
b

c
)ec(t, a)

or

E‖Xa,xa(t)‖p ≤ 1
c1

(V (a, xa) +
b

c
)ec(t, a).

The proof is complete. �

Corollary 3.2. Suppose that the conditions (2.5); (2.6) and (3.2) hold and the
linear growth condition

‖f(t, x)‖2 ∨ ‖g(t, x)‖2 ≤ G(1 + ‖x‖2) ∀(t, x) ∈ [a, T ]× Rd, (3.7)

is satisfied. We suppose further that
∫

R |u|Υ̂(t, du) ≤ m1 a.s where m1 is a constant.
Then (3.1) has a unique solution Xa,xa(t) defined on Ta satisfying

E‖Xa,xa(t)‖2 ≤ (1 + ‖xa‖2)ec(t, a),

where c is a constant.

Proof. From (2.4), (2.7), it follows that
∫

R u
2Υ(t, du) < N for all t ∈ [a, T ]. Using

the Lyapunov function V (t, x) = 1 + ‖x‖2 gets

AV (t, x)

= 2(1− 1I(t))xT f(t, x) + ‖g(t, x)‖2K̂c
t

+ (‖x+ f(t, x)ν(t)‖2 − ‖x‖2)Φ(t)− 2xT g(t, x)
∫

R
uΥ̂(t, du)

+
∫

R
(‖x+ f(t, x)ν(t) + g(t, x)u

∥∥2 − ‖x+ f(t, x)ν(t)‖2)Υ(t, du)

= 2xT f(t, x) + 2xT g(t, x)
∫

R
uΥ̃(t, du) + 2ν(t)f(t, x)T g(t, x)

∫
R
uΥ̂(t, du)

+ ‖g(t, x)‖2K̂c
t + ‖f(t, x)‖2ν(t) + ‖g(t, x)‖2

∫
R
u2Υ(t, du)

≤ (1 +G(1 + 2N + 2m1ν∗ + ν∗))(1 + ‖x‖2) = cV (x),

where c = 1 +G(1 + 2N + 2m1ν∗ + ν∗). Moreover, ‖x‖2 ≤ 1 + ‖x‖2 = V (x). Thus,
(3.3) and (3.4) are satisfied. Using Theorem 3.1 we can complete the proof. �



EJDE-2015/285 EXPONENTIAL P -STABILITY 9

We note that in the continuous case, if the linear growth rate condition (3.7) holds
and the boundedness conditions (2.5), (2.6) of characteristic 〈M〉t are satisfied, then
all moments of the solutions are finite. This property may no longer valid on time
scale as it is shown in the following example.

Example 3.3. Consider two random variables ξ1, ξ2 valued in Z \ {0} with

P{ξ1 = ±i} =
k

|i|5
, P[ξ2 = j | ξ1 = i] = Ci|j|−(4+ 1

|i| ).

It is seen that 8/3 ≥
∑
j∈Z\{0} |j|−4 > C−1

i >
∑
j∈Z\{0} |j|−5 > 1 and E[ξ2 | ξ1] = 0.

Therefore, the sequence M1 = ξ1 and M2 = ξ1 + ξ2 is a martingale. Further,

E[ξ2
2 | ξ1 = i] =

∑
j∈Z\{0}

j2P[ξ2 = j | ξ1 = i]

= Ci
∑

j∈Z\{0}

j2

|j|4+ 1
|i|
≤ Ci

∑
j∈Z\{0}

1
|j|2

.

Thus 〈M〉t is bounded. On the other hand,

E|ξ2|3 =
∑

i,j∈Z\{0}

|j|3P[ξ2 = j | ξ1 = i]P{ξ1 = i}

= k
∑

i,j∈Z\{0}

Ci
1

|j|(1+ 1
|i| )|i|5

≤ 4k
∑

i∈Z\{0}

1
i4
<∞,

which implies
E|M1|3 <∞, E|M2|3 ≤ 4(Eξ3

1 + Eξ3
2) <∞.

Consider the dynamic equation on the time scale T = {1, 2}

d∇Xt = −Xt−d
∇t+Xt−d

∇Mt

X1 = ξ1.

This equation has a unique solution X1 = ξ1 and X2 = ξ1ξ2. However,

E|X2|3 = E|ξ1ξ2|3 =
∑

i,j∈Z\{0}

|ij|3P[ξ2 = j | ξ1 = i]P{ξ1 = i}

≥ 3k
8

∑
i,j∈Z\{0}

1

i2|j|1+ 1
|i|

≥ 3k
8

∑
i∈Z\{0}

|i| 1
i2

=∞.

In the following we give conditions ensuring the finiteness of p-moment of the
solution of (3.1).

Theorem 3.4. Suppose that linear growth condition (3.7) and the conditions (2.5),
(2.6) hold. Further, there are two constants m1,mp such that∫

R
|u|Υ̂(t, du) ≤ m1,

∫
R
|u|pΥ(t, du) ≤ mp ∀t ∈ [a, T ] (3.8)
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almost surely. Then, the solution Xa,xa(t) of (3.1) starting in xa satisfies the
estimate

E‖Xa,xa(t)‖p ≤ (‖xa‖p + 1)eH(t, a), a ≤ t ≤ T (3.9)
where H is a constant.

Proof. Since
∫

R |u|
2Υ(t, du) = 〈M〉t ≤ N := m2, we can suppose that p ≥ 2.

Applying (2.10) to the Lyapunov function V (t, x) = ‖x‖p we have

AV (t, x) = p‖x‖p−2(1− 1I(t))xT f(t, x) + (‖x+ f(t, x)ν(t)‖p − ‖x‖p)Φ(t)

+
p

2
‖x‖p−2‖g(t, x)‖2K̂c

t +
p(p− 2)

2
‖x‖p−4|xT g(t, x)|2K̂c

t

+
∫

R
[‖x+ f(t, x)ν(t) + g(t, x)u‖p − ‖x+ f(t, x)ν(t)‖p]Υ(t, du)

− p‖x‖p−2xT g(t, x)
∫

R
uΥ̂(t, du).

Using Taylor’s expansion for the function ‖x+ y‖p at y = 0 obtains

‖x+ f(t, x)ν(t)‖p − ‖x‖p

= p‖x‖p−2x>f(t, x)ν(t) +
p

2
‖x+ θf(t, x)ν(t)‖p−2‖f(t, x)‖2ν(t)2

+
p(p− 2)

2
‖x+ θf(t, x)ν(t)‖p−4|(x+ θf(t, x)ν(t))>f(t, x)|2ν(t)2.

where 0 ≤ θ ≤ 1. It is seen that

‖x+ θf(t, x)ν(t)‖p−2‖f(t, x)‖2 ≤ (‖x‖+ ‖f(t, x)ν(t)‖)p−2‖f(t, x)‖2

≤ (
√

1 + ‖x‖2 +
√
G(1 + ‖x‖2)ν∗)p−2G(1 + ‖x‖2)

= G(1 +
√
Gν∗)p−2(1 + ‖x‖2)p/2,

and

‖x+ θf(t, x)ν(t)‖p−4|(x+ θf(t, x)ν(t))>f(t, x)|2

≤ ‖x+ θf(t, x)ν(t)‖p−2‖f(t, x)‖2

≤ G(1 +
√
Gν∗)p−2(1 + ‖x‖2)p/2.

Similarly, the Taylor’s expansion of the function ‖x + f(t, x)ν(t) + y‖p at y = 0
leads us

‖x+ f(t, x)ν(t) + g(t, x)u‖p − ‖x+ f(t, x)ν(t)‖p

= p‖x+ f(t, x)ν(t)‖p−2(x+ f(t, x)ν(t))>g(t, x)u

+
p

2
‖x+ f(t, x)ν(t) + ηg(t, x)u‖p−2‖g(t, x)u‖2

+
p(p− 2)

2
‖x+ f(t, x)ν(t) + ηg(t, x)u‖p−4

× |(x+ f(t, x)ν(t) + ηg(t, x)u)>g(t, x)u|2,

where 0 ≤ η ≤ 1. By defining cp = 2p−1 if p > 1 and cp = 1 if p ≤ 1 we have

‖x+ f(t, x)ν(t)‖p−2(x+ f(t, x)ν(t))>g(t, x)u

≤ ‖x+ f(t, x)ν(t)‖p−1‖g(t, x)u‖

≤
√
G(1 +

√
Gν∗)p−1|u|(1 + ‖x‖2)p/2,
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and

‖x+ f(t, x)ν(t) + ηg(t, x)u‖p−2‖g(t, x)u‖2

≤ cp−2(‖x+ f(t, x)ν(t)‖p−2 + (‖g(t, x)‖u)p−2)‖g(t, x)u‖2

≤ cp−2(G(1 +
√
Gν∗)p−2u2 +Gp/2|u|p)(1 + ‖x‖2)p/2.

Further,

‖x+ f(t, x)ν(t) + ηg(t, x)u‖p−4|(x+ f(t, x)ν(t) + ηg(t, x)u)>g(t, x)u|2

≤ ‖x+ f(t, x)ν(t) + ηg(t, x)u‖p−2‖g(t, x)u‖2

≤ cp−2(G(1 +
√
Gν∗)p−2u2 +Gp/2|u|p)(1 + ‖x‖2)p/2.

Therefore, by using (2.9), (3.8) we obtain

AV (t, x)

= p‖x‖p−2(1− 1I(t))xT f(t, x)

+ (p‖x‖p−2x>f(t, x)ν(t) +
p

2
‖x+ θf(t, x)ν(t)‖p−2‖f(t, x)‖2ν(t)2

+
p(p− 2)

2
‖x+ θf(t, x)ν(t)‖p−4|(x+ θf(t, x)ν(t))>f(t, x)|2ν(t)2)Φ(t)

+
p

2
‖x‖p−2‖g(t, x)‖2K̂c

t +
p(p− 2)

2
‖x‖p−4|xT g(t, x)|2K̂c

t

+ p

∫
R
‖x+ f(t, x)ν(t)‖p−2(x+ f(t, x)ν(t))>g(t, x)uΥ̃(t, du)

+ p

∫
R
‖x+ f(t, x)ν(t)‖p−2(x+ f(t, x)ν(t))>g(t, x)uΥ̂(t, du)

+
p

2

∫
R
‖x+ f(t, x)ν(t) + ηg(t, x)u‖p−2‖g(t, x)u‖2Υ(t, du)

+
p(p− 2)

2

∫
R
‖x+ f(t, x)ν(t) + ηg(t, x)u‖p−4|(x+ f(t, x)ν(t)

+ ηg(t, x)u)>g(t, x)u|2Υ(t, du)− p‖x‖p−2xT g(t, x)
∫

R
uΥ̂(t, du)

≤
{
p
√
G(1 +m1) +

p(p− 1)
2

G(N + (1 +
√
Gν∗)p−2(ν∗ + cp−2N))

+ p
√
G(1 +

√
Gν∗)p−1m1 + cp−2

p(p− 1)
2

Gp/2mp

}
(1 + ‖x‖2)p/2

≤ HV (x)

where H is defined

H = cp/2

{
p
√
G(1 +m1) +

p(p− 1)
2

G
(
N + (1 +

√
Gν∗)p−2(ν∗ + cp−2N)

)
+ p
√
G(1 +

√
Gν∗)p−1m1 + cp−2

p(p− 1)
2

Gp/2mp

}
.

(3.10)

By Theorem 3.1, we obtain

E‖Xa,xa(t)‖p ≤ (‖xa‖p + 1)eH(t, a), a ≤ t ≤ T.

The proof is complete. �
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4. Exponential p-stability

By (2.1), the ∆-exponential function ep is also a solution of a ∇-dynamic equa-
tions. Therefore, in the following, instead of using êp, we use ep to define the
exponential stability although we are working with stochastic ∇-dynamic equa-
tions. Let the process Kt be bounded on Ta, i.e., the constant N in (2.5) does
not depend on T > a. Suppose that for any s ≥ a;xs ∈ Rd, the solution Xs,xs(t)
with initial condition Xs,xs(s) = xs of (3.1) exists uniquely and it is defined on Ts.
Further,

f(t, 0) ≡ 0; g(t, 0) ≡ 0. (4.1)
This assumption implies that (3.1) has the trivial solution Xs,0(t) ≡ 0.

Definition 4.1. The trivial solution of (3.1) is said to be exponentially p-stable if
there is a positive constant α such that for any s > a there exists Γ = Γ(s) > 1,
such that

E‖Xs,xs(t)‖p ≤ Γ‖xs‖pe	α(t, s) on t ≥ s, (4.2)
holds for all xs ∈ Rd.

If one can choose Γ independent of s, the trivial solution of (3.1) is said to be
uniformly exponentially p-stable.

Remark 4.2. Since 	α(t) ≤ − α
1+αν∗

for all t ∈ T, 0 < e	α(t, s) ≤ e− α
1+αν∗

(t, s)
and e− α

1+αν∗
(t, s) → 0 as t → ∞. Thus, if α > 0 then limt→∞ e	α(t, s) = 0. The

advantage of using e	α(t, s) is that the requirement −α ∈ R+ is not necessary.

Theorem 4.3. Suppose that there exist a function V (t, x) ∈ C1,2(Ta × Rd; R+),
positive constants α1, α2, α3 such that

α1‖x‖p ≤ V (t, x) ≤ α2‖x‖p, (4.3)

V ∇t(t, x) +AV (t, x) ≤ −α3V (t−, x) ∀(t, x) ∈ Ta × Rd, (4.4)

where the differential operator Ais defined with respect to (3.1). Then, the trivial
solution x ≡ 0 of (3.1) is uniformly exponentially p-stable.

Proof. Let α be a positive number satisfying α
1+αν(t) < α3 for all t ∈ T and let

s ≥ a, xs ∈ Rd. To simplify notations, we write X(t) for Xs,xs(t). For each
n > ‖xs‖, define the stopping time

θn = inf{t ≥ s : ‖X(t)‖ ≥ n}.
Obviously, θn → ∞ as n → ∞ almost surely. By (4.13), calculating expectations
we obtain

E[eα(t ∧ θn, s)V (t ∧ θn, X(t ∧ θn))]

= V (s, xs) + E
∫ t∧θn

s

eα(θn ∧ τ−, s)
[
αV (τ−, X(τ−))

+ (1 + αν(τ))(V ∇τ (τ,X(τ−)) +AV (τ,X(τ−)))
]
∇τ.

Using (4.4) and the inequality α
1+αν(t) < α3 obtains

αV (τ−, X(τ−)) + (1 + αν(τ))
(
V ∇τ (τ,X(τ−)) +AV (τ,X(τ−))

)
≤ 0.

Therefore,

α1eα(t ∧ θn, s)E‖X(t ∧ θn)‖p ≤ E[eα(t ∧ θn, s)V (t ∧ θn, X(t ∧ θn))]
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≤ V (s, xs) ≤ α2‖xs‖p.
Letting n→∞ yields

α1eα(t, s)E‖X(t)‖p ≤ α2‖xs‖p.
Hence,

E‖Xs,xs(t)‖p ≤
α2

α1
‖xs‖pe	α(t, s).

The proof is complete. �

We now consider the inverse problem by showing that if the trivial solution
of (3.1) is uniformly exponentially p-stable then such a Lyapunov function exits.
Firstly, we study the differentiability of solutions with respect to the initial condi-
tions and the continuity with respect to coefficients.

Lemma 4.4 (Burkholder inequality on time scales). For any p ≥ 2 there exist
positive constants Bp such that if {Mt}t∈Ta is an Ft-martingale with E|Mt|p < ∞
and Ma = 0 then

E sup
a≤s≤t

|Ms|p ≤ Bp
(
E〈M〉p/2t + E

∑
a≤s≤t

|∇∗Ms|p
)
,

where ∇∗Ms = Ms −Ms− .

Proof. By Doob’s inequality, we have

E sup
a≤s≤t

|Ms|p ≤
( p

p− 1

)p
E|Mt|p.

Otherwise, we see that the martingale M̂t can be extended to a regular martingale
on [a;∞)R. Therefore, by using proof of [19, Lemma 5] we obtain

E|M̂t|p ≤ B̂p
(
E〈M̂〉p/2t + E

∑
a≤s≤t

|∇∗M̂s|p
)
,

for a constant B̂p. Further, the martingale M̃t is a sum of random variables. Then,
applying [1, Theorem 13.2.15, pp.416] yields

E|M̃t|p ≤ B̃p
(
E〈M̃〉p/2t + E

∑
a≤s≤t

|∇∗M̃s|p
)
.

Consequently,

E sup
a≤s≤t

|Ms|p ≤ 2p−1
( p

p− 1

)p(
E|M̂t|p + E|M̃t|p

)
≤ 2p−1

( p

p− 1

)p[
B̂p

(
E〈M̂〉p/2t + E

∑
a≤s≤t

|∇∗M̂s|p
)

+ B̃p

(
E〈M̃〉p/2t

+ E
∑
a≤s≤t

|∇∗M̃s|p
)]

≤ Bp
(
E(〈M̂〉t + 〈M̃〉t)p/2 + E

∑
a≤s≤t

(|∇∗M̂s|p + |∇∗M̃s|p)
)

= Bp

(
E〈M〉p/2t + E

∑
a≤s≤t

|∇∗Ms|p
)

where Bp = 2p( p
p−1 )p max

{
B̂p, B̃p

}
. The proof is complete. �
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Theorem 4.5. Let p ≥ 2,M ∈M2 such that the conditions (2.5), (2.6) and (3.8)
hold and let g ∈ L2((a, T ];M) with∫ t

a

E|g(τ)|p∇τ <∞ ∀t ∈ Ta.

Then

E sup
a≤t≤T

∣∣∣ ∫ t

a

g(τ)∇Mτ

∣∣∣p ≤ Cp ∫ T

a

E|g(τ)|p∇τ,

where Cp = Bp{(T − a)
p
2−1Np/2 +mp}.

Proof. Set

xt =
∫ t

a

g(τ)∇Mτ , t ∈ [a, T ].

The process xt is a square martingale with the characteristic

〈x〉t =
∫ t

a

|g(τ)|2∇〈M〉τ .

Since 〈M〉t is continuous, so is 〈x〉t. Applying Lemma 4.4 to the martingale (xt)
obtains

E sup
a≤r≤t

|xr|p

≤ Bp
{

E〈x〉p/2t + E
∑
a≤s≤t

|∇∗xs|p
}

= Bp

{
E〈x〉p/2t + E

∫ t

a

∫
R
|g(τ)u|pδ(∇τ, du)

}
= Bp

{
E
[ ∫ t

a

|g(τ)|2∇〈M〉τ
]p/2

+ E
∫ t

a

∫
R
|g(τ)u|pπ(∇τ, du)

}
≤ Bp

{
(t− a)

p
2−1Np/2

∫ t

a

E|g(τ)|p∇τ + E
∫ t

a

|g(τ)|p
∫

R
|u|pΥ(τ, du)∇τ

}
≤ Bp

{
(t− a)

p
2−1Np/2 +mp

}∫ t

a

E|g(τ)|p∇τ.

By putting Cp = Bp
[
(T − a)

p
2−1Np/2 +mp

]
we complete the proof. �

Lemma 4.6. Let T, s ∈ Ta;T > s and p ≥ 2 fixed. Suppose that the condition
(3.8) holds and process ζ(t) is the solution of the stochastic equation

ζ(t) = ϕ(t) +
∫ t

s

ψ(τ)ζ(τ−)∇τ +
∫ t

s

χ(τ)ζ(τ−)∇Mτ , ∀t ∈ [s, T ]. (4.5)

We assume that the functions ϕ(t), ψ(t) and χ(t) are Ft-adapted and that there
exists a constant K > 0 such that with probability 1, ‖ψ(t)‖ ≤ K and ‖χ(t)‖ ≤ K.
Then

E sup
s≤t≤T

‖ζ(t)‖p ≤ 3p−1E sup
s≤t≤T

‖ϕ(t)‖peH1(T, s), (4.6)

where H1 = 3p−1Kp((T − s)p−1 + Cp).
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Proof. For any n > 0 denote θn = inf{t > s : ‖ζ(t)‖ > n}. From (4.5) we have

E sup
s≤r≤t

‖ζ(r ∧ θn)‖p

≤ 3p−1
(
E sup
s≤r≤T

‖ϕ(r)‖p + E sup
s≤r≤t

∥∥∥∫ r∧θn

s

ψ(τ)ζ(τ−)∇τ
∥∥∥p

+ E sup
s≤r≤t

∥∥∥∫ r∧θn

s

χ(τ)ζ(τ−)∇Mτ

∥∥∥p)
≤ 3p−1

(
E sup
s≤r≤T

‖ϕ(r)‖p +Kp(T − a)p−1

∫ t∧θn

s

E‖ζ(τ−)‖p∇τ

+ CpK
p

∫ t∧θn

s

E‖ζ(τ−)‖p∇τ
)

(by Theorem 4.5)

= 3p−1
(
E sup
s≤r≤T

‖ϕ(r)‖p +Kp
(

(T − a)p−1 + Cp

)∫ t∧θn

s

E‖ζ(τ−)‖p∇τ
)

= 3p−1E sup
s≤r≤T

‖ϕ(r)‖p +H1

∫ t

s

sup
s≤r≤τ−

E‖ζ(r ∧ θn)‖p∇τ,

where H1 = 3p−1Kp((T − s)p−1 + Cp). Using Lemma 2.1 one gets

E sup
s≤t≤T

‖ζ(t ∧ θn)‖p ≤ 3p−1E sup
s≤t≤T

‖ϕ(t)‖peH1(T, s).

Letting n→∞ yields (4.6). The proof is complete. �

Lemma 4.7. Suppose that the coefficients of (3.1) are continuous in s, x and they
have continuous bounded first and second partial derivatives and condition (3.8)
holds for p ≥ 4. Then, the solution Xs,x(t), s ≤ t ≤ T , with initial condition
Xs,x(s) = x of (3.1) is twice differentiable with respect to x. Further, the derivatives

∂

∂xi
(Xs,x(t)),

∂2

∂xi∂xj
(Xs,x(t))

are continuous in x in mean square.

Proof. Suppose that the derivatives f ′x(t, x), g′x(t, x), f ′′xx(t, x), g′′xx(t, x) are bounded
by a constant λ. To simplify notations we put Ys,∆x(t) = Xs,x+∆x(t) − Xs,x(t).
Using Lagrange theorem we see that for any i = 1, 2, . . . , d, there exists θi, ξi ∈ [0; 1]
such that

fi(t,Xs,x(t−) + Ys,∆x(t−))− fi(t,Xs,x(t−))

=
d∑
j=1

∂fi
∂xj

(t,Xs,x(t−) + θiYs,∆x(t−))Yi,s,∆x(t−),

gi(t,Xs,x(t−) + Ys,∆x(t−))− gi(t,Xs,x(t−))

=
d∑
j=1

∂gi
∂xj

(t,Xs,x(t−) + ξiYs,∆x(t−))Yi,s,∆x(t−).

(4.7)

Let As,∆x(t) be the matrix with entries aijs,∆x(t) = ∂fi
∂xj

(t,Xs,x(t−) + θiYs,∆x(t−)),

and let Bs,∆x(t) be the matrix with entries bijs,∆x(t) = ∂gi
∂xj

(t,Xs,x(t−)+ξiYs,∆x(t−)).
Then (4.7) can be rewritten

f(t,Xs,x(t−) + Ys,∆x(t−))− f(t,Xs,x(t−)) = As,∆x(t)Ys,∆x(t−),
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g(t,Xs,x(t−) + Ys,∆x(t−))− g(t,Xs,x(t−)) = Bs,∆x(t)Ys,∆x(t−).

Hence,

Ys,∆x(t) = ∆x+
∫ t

s

As,∆x(τ)Ys,∆x(τ−)∇τ +
∫ t

s

Bs,∆x(τ)Ys,∆x(τ−)∇Mτ .

Since As,∆x(t) and Bs,∆x(t) are bounded by a constant λ, by using Lemma 4.6 one
has

E sup
s≤t≤T

‖Ys,∆x(t)‖2 ≤ 3‖∆x‖2eH2(T, s), (4.8)

where H2 = 3λ2(T − s + C2). As a consequence, E sups≤t≤T ‖Ys,∆x(t)‖2 → 0 as
‖∆x‖ → 0 in probability. Let ζs,x(t) be the solution of the variation dynamic
equation

ζs,x(t) = I +
∫ t

s

f ′x(τ,Xs,x(τ−))ζs,x(τ−)∇τ +
∫ t

s

g′x(τ,Xs,x(τ−)ζs,x(τ−)∇Mτ ,

for all s ≤ t ≤ T . Since f ′x and g′x are bounded by constant λ,

E sup
s≤t≤T

‖ζs,x(t)‖4 ≤ 27eH3(T, s), (4.9)

where H3 = 27λ4((T − s)3 + C4). Define

ζ∆x(t) = Ys,∆x(t)− ζs,x(t)∆x ∀ s ≤ t ≤ T.

The process ζ∆x(t) satisfies Equation

ζ∆x(t) = φ∆x(t) +
∫ t

s

As,∆x(τ)ζ∆x(τ−)∇τ +
∫ t

s

Bs,∆x(τ)ζ∆x(τ−)∇Mτ ,

where,

φ∆x(t) =
∫ t

s

[(As,∆x(τ)− f ′x(τ,Xs,x(τ−)))ζs,x(τ−)∆x]∇τ

+
∫ t

s

[(Bs,∆x(τ)− g′x(τ,Xs,x(τ−)))ζs,x(τ−)∆x]∇Mτ .

Applying Lemma 4.6 again one gets

E sup
s≤t≤T

‖ζ∆x(t)‖2 ≤ 3E sup
s≤t≤T

‖φ∆x(t)‖2eH2(T, s). (4.10)

Since f ′x(t, x), g′x(t, x) are continuous and E sups≤t≤T ‖Ys,∆x(t)‖2 → 0 as ‖∆x‖ → 0
in probability,

lim
∆x→0

(‖As,∆x(t)− f ′x(t,Xs,x(t−))‖+ ‖Bs,∆x(t)− g′x(t,Xs,x(t−))‖) = 0

in probability. Hence, by the boundedness of A,B, f ′, g′, we obtain

E
[

sup
s≤t≤T

‖φ∆x(t)‖2

‖∆x‖2
]

≤ 2(T − s)
∫ T

s

E‖As,∆x(τ)− f ′x(τ,Xs,x(τ−))ζs,x(τ−)‖2∇τ

+ 8
∫ T

s

E‖Bs,∆x(τ)− g′x(τ,Xs,x(τ−))ζs,x(τ−)‖2∇〈M〉τ → 0

(4.11)



EJDE-2015/285 EXPONENTIAL P -STABILITY 17

as ‖∆x‖ → 0. Thus, (4.10) and (4.11) imply

E sup
t≤s≤T

‖ζ∆x(s)‖
‖∆x‖

= 0 as ∆x→ 0.

This means
ζs,x(t) =

∂

∂x
Xs,x(t) ∀s ≤ t ≤ T.

The mean square continuity of ζs,x(t) with respect to x again follows from the
continuity of f ′x(t,Xs,x(t)) and g′x(t,Xs,x(t)).

We prove the existence of ∂2Xs,x(t)
∂x2 . To simplify notations, if F is a bilinear

mapping, we write Fh2 for F (h, h). Let bilinear mapping ηs,x(t) be the solution of
the second variation dynamic equation

ηs,x(t) =
∫ t

s

f
′′

xx(τ,Xs,x(τ−))ζ2
s,x(τ−)∇τ +

∫ t

s

f ′x(τ,Xs,x(τ−))ηs,x(τ−)∇τ

+
∫ t

s

g
′′

xx(τ,Xs,x(τ−))ζ2
s,x(τ−)∇Mτ +

∫ t

s

g′x(τ,Xs,x(τ−))ηs,x(τ−)∇Mτ ,

for all s ≤ t ≤ T . Using Lemma 4.6 and (4.9) we see that

E sup
s≤t≤T

‖ηs,x(t)‖2 ≤ ∞. (4.12)

Define

η∆x(t) = ζs,x+∆x(t)∆x− ζs,x(t)∆x− ηs,x(t)(∆x)2, s ≤ t ≤ T.
The process η∆x(t) satisfies the equation

η∆x(t) = ψ∆x(t) +
∫ t

s

f ′x(τ,Xs,x+∆x(τ−))η∆x(τ−)∇τ

+
∫ t

s

g′x(τ,Xs,x+∆x(τ−))η∆x(τ−)∇Mτ ,

(4.13)

where,

ψ∆x(t) =
∫ t

s

[(
f ′x(τ,Xs,x+∆x(τ−))− f ′x(τ,Xs,x(τ−))

− f ′′xx(τ,Xs,x(τ−)
)
ζs,x(τ−)∆x

)
ζs,x(τ−)∆x

+ (f ′x(τ,Xs,x+∆x(τ−))− f ′x(τ,Xs,x(τ−)))ηs,x(τ−)(∆x)2
]
∇τ

+
∫ t

s

[(
g′x(τ,Xs,x+∆x(τ−))− g′x(τ,Xs,x(τ−))

− g′′xx(τ,Xs,x(τ−))ζs,x(τ−)∆x
)
ζs,x(τ−)∆x

+
(
g′x(τ,Xs,x+∆x(τ−))− g′x(τ,Xs,x(τ−))

)
ηs,x(τ−)(∆x)2

]
∇Mτ .

Using Lemma 4.6 one obtains

E‖η∆x(t)‖2 ≤ E sup
s≤t≤T

‖ψ∆x(t)‖2eH2(T, s), (4.14)

where H2 = 3λ2(T − s+ 4N). It is easy to see that

E sup
s≤t≤T

∥∥∫ t

s

[(
f ′x(τ,Xs,x+∆x(τ−))− f ′x(τ,Xs,x(τ−))− f ′′xx(τ,Xs,x(τ−))
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× ζs,x(τ−)∆x
)
ζs,x(τ−)∆x

]
∇τ
∥∥2

≤ 2(T − s)E
∫ T

s

∥∥(f ′x(τ,Xs,x+∆x(τ−))

− f ′x(τ,Xs,x(τ−))− f ′′xx(τ,Xs,x(τ−))Ys,∆x(τ−)
)
ζs,x(τ−)∆x

∥∥2∇τ

+ 2(T − s)E
∫ T

s

∥∥f ′′xx(τ,Xs,x(τ−))(Ys,∆x(τ−)− ζs,x(τ−)∆x)

× ζs,x(τ−)∆x‖2∇τ = o(‖∆x‖4);∫ T

s

E
∥∥∥(f ′x(τ,Xs,x+∆x(τ−))− f ′x(τ,Xs,x(τ−))

)
ηs,x(τ−)(∆x)2

∥∥∥2

∇τ

= o(‖∆x‖4);

E sup
s≤t≤T

∥∥∥ ∫ t

s

[(
g′x(τ,Xs,x+∆x(τ−))− g′x(τ,Xs,x(τ−))− g′′xx(τ,Xs,x(τ−))

× ζs,x(τ−)∆x
)
ζs,x(τ−)∆x

]
∇Mτ

∥∥∥2

≤ 4NE
∫ T

s

∥∥(g′x(τ,Xs,x+∆x(τ−))

− g′x(τ,Xs,x(τ−))− g′′xx(τ,Xs,x(τ−))Ys,∆x(τ−)
)
ζs,x(τ−)∆x

∥∥2∇τ

+ 4NE
∫ T

s

∥∥g′′xx(τ,Xs,x(τ−))(Ys,∆x(τ−)− ζs,x(τ−)∆x)ζs,x(τ−)∆x‖2∇τ

= o(‖∆x‖4);

E sup
s≤t≤T

∥∥∥∫ t

s

[(
g′x(τ,Xs,x+∆x(τ−))− g′x(τ,Xs,x(τ−))

)
ηs,x(τ−)(∆x)2

]
∇Mτ

∥∥∥2

≤ 4NE
∫ T

s

∥∥(g′x(τ,Xs,x+∆x(τ−))− g′x(τ,Xs,x(τ−)))ηs,x(τ−)(∆x)2
∥∥2∇τ

= o(‖∆x‖4).

Combining these results we obtain E sups≤t≤T ‖ψ∆(t)‖2 = o(‖∆x‖4), which implies
that

E‖η∆x(t)‖2 = o(‖∆x‖4).

Thus, ‖η∆x(t)‖
‖∆x‖2 = 0, or

∂2

∂x2
Xs,x(t) = ηs,x(t).

The proof is complete. �

Lemma 4.8. Let p ≥ 4 and 2 ≤ β ≤ p. Then, the map F (φ) : φ → E|φ|β from
Lp(Ω,F ,P) to R is twice differentiable at every φ0 6= 0 and

F ′(φ0)(φ) = βE[|φ0|β−1φ]; F ′′(φ0)(φ, ψ) = β(β − 1)E[|φ0|β−2φψ].

Proof. We have ∣∣F (φ0 + ∆φ)− F (φ0)− βE|φ0|β−1∆φ
∣∣
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=
∣∣E|φ0 + ∆φ|β − E|φ0|β − βE|φ0|β−1∆φ

∣∣
= β(β − 1)E[|η|β−2(∆φ)2]

≤ β(β − 1)[E|η|m(β−2)]1/m[E|∆φ|p]2/p,

where η ∈ (φ0, φ0 + ∆φ) if φ0 + ∆φ > φ0 and η ∈ (φ0 + ∆φ, φ0) if φ0 + ∆φ < φ0.
Hence, with 1

m + 2
p = 1 we have∣∣F (φ0 + ∆φ)− F (φ0)− βE|φ0|β−1∆φ

∣∣
≤ β(β − 1)[E|η|m(β−2)]1/m[E|∆φ|p]2/p

≤ β(β − 1)[E max{|φ0|, |φ0 + ∆φ|}m(β−2)]1/m[E|∆φ|p]2/p.

The relation 1
m+ 2

p = 1 implies m(β−2) < p. Thus, E max{|φ0|, |φ0+∆φ|}m(β−2) <

∞. Therefore,

|F (φ0 + ∆φ)− F (φ0)− βE|φ0|β−1∆φ|

≤ β(β − 1)[E|η|m(β−2)]1/m[E(∆φ)p]2/p

= O(1)|∆φ|2p as |∆φ|p → 0.

This means F ′(φ0)(φ) = βE|φ0|β−1φ. The existence and continuity of the second
derivative F ′′ con be proved by a similar way. �

Lemma 4.9. Let the coefficients of (3.1) be continuous in t, x and satisfy the
conditions (4.1). Suppose also that conditions of Lemma 4.7 are satisfied and 2 ≤
β ≤ p. Then, for fixed t > a, the function u(s, x) = E‖Xs,x(t)‖β ; a < s < t is twice
continuously differentiable with respect to x except perhaps at x = 0.

Proof. The map x → Xs,x(t) is twice differentiable in x by Lemma 4.7. The map
X → ‖X‖ from Rd to R and the map F (φ) = E|φ|β from Lp(Ω,F ,P) to R are
also twice differentiable. Therefore by chain rule, the map u(s, x) = E‖Xs,x(t)‖β is
twice differentiable. Further,

u′x(s, x)h = βE[‖Xs,x(t)‖β−2 < Xs,x(t), ζs,x(t)h >] (4.15)

u′′xx(s, x)h2 = βE
[
(β − 2)‖Xs,x(t)‖β−4〈Xs,x(t), ζs,x(t)h〉2

+ ‖Xs,x(t)‖β−2‖ζs,x(t)h‖2 + ‖Xs,x(t)‖β−2〈Xs,x(t), ηs,x(t)h2〉
].

The proof is complete. �

Theorem 4.10. Let M have independent increments and the conditions of Lemma
4.7 hold and 2 ≤ β ≤ p. Suppose further that AV (t, x) is ld-continuous in (t, x) for
all V ∈ C1,2(Ta × Rd; R). Then, the function u(s, x) = E‖Xs,x(t)‖β, a < s < t is
∇-differentiable in s, twice continuously differentiable with respect to x and satisfies
the equation

u∇s(s, x) +Au(s, x) = 0. (4.16)

Proof. By Lemma 4.7, u(s, x) is twice differentiable in x. From (4.2), (4.8), (4.9),
(4.12) and (4.15), it follows that

∫ t
s
Au(h,Xs,x(τ−))∇τ is integrable. Therefore,

u(h,Xρ(s),x(r))− u(h, x)−
∫ r

ρ(s)

Au(h,Xρ(s),x(τ−))∇τ, s ≤ r ≤ h ≤ t
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is an Fr-martingale. In particular,

Eu(h,Xρ(s),x(h))− u(h, x) =
∫ h

ρ(s)

EAu(h,Xρ(s),x(τ−))∇τ.

Since Mt has independent increments, Xh,y(t) is independent of Xρ(s),x(h) when
s ≤ h ≤ t and y ∈ Rd, which implies that Eu(h,Xρ(s),x(h)) = u(ρ(s), x). Thus,

u(ρ(s), x)− u(h, x)
ρ(s)− h

=
1

ρ(s)− h

∫ h

ρ(s)

EAu(h,Xρ(s),x(τ−))∇τ.

If s is left-scattered, then

u∇s(s, x) = − 1
ν(s)

∫ s

ρ(s)

Au(s,Xρ(s),x(τ−))∇τ = −Au(s, x).

In the s is left-dense we let h→ s to obtain

u∇s(s, x) = −Au(s, x).

The proof is complete. �

Theorem 4.11. Let the conditions in Theorem 4.10 hold. Suppose that for any
fixed T > 0, there exist a function γT : T → T with γ(T, s) ≥ s + T for all
s ∈ T such that γ(T, s) and ∇-derivatives γ∇s(T, s) are bounded. If the trivial
solution of (3.1) is uniformly exponentially β-stable, then there exists a function
V (s, x) ∈ C1,2(Ta × Rd; R+) satisfying inequalities (4.3), (4.4) (with the power β).

Proof. By Lemma 4.9 and Theorem 4.10, the function

V (s, x) =
∫ γ(T,s)

s

E‖Xs,x(τ−)‖β∇τ, (4.17)

is in class C1,2(Ta × Rd; R+). From (4.2),

V (s−, x) ≤
∫ γ(T,s−)

s−

Γ‖x‖βe	α(τ−, s−)∇τ ≤ α1‖x‖β ,

where α1 = Γ(1+ν∗α)
α . By assumptions, the trivial solution of (3.1) is uniformly

exponentially β-stable and γ∇s(T, s) is bounded, we can choose T > 0 such that

E‖Xs,x(γ(T, s))‖β < 1
2
‖x‖β , E‖Xs,x(γ(T, s))‖βγ∇s(T, s) < 1

2
‖x‖β . (4.18)

Since f and g have bounded partial derivatives and f(t, 0) = 0, g(t, 0) = 0,

‖f(t, x)‖ ≤ G‖x‖, ‖g(t, x)‖ ≤ G‖x‖, t ≥ a, x ∈ Rd.

Therefore,
‖A[‖x‖β ](s, x)‖ < c1‖x‖β , (4.19)

for a certain constant c1. Applying Itô’s formula to the function ‖x‖β and using
(4.19) yields

E‖Xs,x(γ(T, s))‖β − ‖x‖β =
∫ γ(T,s)

s

EA(‖Xs,x(τ−)‖β)∇τ

≥ −c1
∫ γ(T,s)

s

E‖Xs,x(τ−)‖β∇τ = −c1V (s, x).
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Combining with (4.18) we obtain the inequality V (s, x) > α2‖x‖β with α2 = 1
2c1

.
Thus, the function V satisfies condition (4.3). Using [2, Theorem 5.80] to calculate
∇-differential of V with respect s and applying Theorem 4.10 we obtain

V ∇s(s, x) +AV (s, x) = E‖Xs−,x(γ(T, s−))‖βγ∇s(T, s−)− ‖x‖β .

Using (4.18) again we have

V ∇s(s, x) +AV (s, x) ≤ −1
2
‖x‖β ≤ − 1

2α1
V (s−, x).

Thus, the function V satisfies all conditions (4.3), (4.4) with α3 = α
2Γ(1+ν∗α) . The

proof is complete. �

Example 4.12. Consider the linear stochastic dynamic equation

d∇X(t) = aX(t−)d∇t+ bX(t−)d∇M(t) ∀t ∈ Ts
X(s) = x,

(4.20)

where a, b are two constants, a is regressive and M is a square integrable martingale
having independent increment. By direct calculation we have

EX2
s,x(t) = x2 +

∫ t

s

q(τ)EX2
s,x(τ−)∇τ, (4.21)

where

q(t) = 2a+ b2K̂c
t + a2ν(t) + 2b(1 + aν(t))

∫
R
uΥ(t, du)

+ b2
∫

R
u2Υ(t, du)− 2b

∫
R
uΥ̂(t, du)

= 2a+ b2K̂c
t + a2ν(t) + 2b

∫
R
uΥ̃(t, du)

+ b2
∫

R
u2Υ(t, du) + aν(s)

∫
R
uΥ(t, du).

Since
∫

R uΥ̃(t, du) = E[Mt −Mρ(t)|Fρ(t)] = 0 and ν(t)
∫

R uΥ(t, du) = 0,

q(t) = 2a+ b2K̂c
t + a2ν(t) + b2

∫
R
u2Υ(t, du). (4.22)

We define the function q̄(t) = limρ(s)↓t q(s). It is seen that q̄ is rd-continuous
and q̄(t) = q(σ(t)) if t is right scattered. Since {t : µ(t) > 0} is countable and
meas{t : EX2

s,x(t−) 6= EX2
s,x(t)} = 0,∫ t

s

q(τ)EX2
s,x(τ−)∇τ =

∫
(s,t]

q(τ)EX2
s,x(τ−) dτ +

∑
s<τ≤t

q(τ)EX2
s,x(τ−)ν(τ)

=
∫

[s,t)

q̄(τ)EX2
s,x(τ) dτ +

∑
s≤τ<t

q(σ(τ))EX2
s,x(τ)µ(τ)

=
∫ t

s

q(τ)EX2
s,x(τ)∆τ,

from which it follows that

EX2
s,x(t) = x2eq(t, s), t ≥ s. (4.23)
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Further, it is known that

0 < eq(t, s) = exp
{∫ t

s

lim
h↘µ(τ)

ln(1 + q(τ)h)
h

∆τ
}
.

Then, condition (4.2) implies∫ t

s

lim
h↘µ(τ)

ln(1 + q(τ)h)
h

∆τ ≤ ln Γ− θ(t− s) ∀t > s.

Choose T > 0 such that ln Γ− θT
2 < 0 we obtain∫ t

s

lim
h↘µ(τ)

ln(1 + q(τ)h)
h

∆τ ≤ −θ(t− s)
2

∀t > s+ T.

Thus, the exponential square stability of (4.20) implies

sup
{ 1
t− s

∫ t

s

lim
h↘µ(τ)

ln(1 + q(τ)h)
h

∆τ : t > s+ T
}
< 0. (4.24)

Conversely, supposing that (4.24) holds, there are α > 0,K∗ > 0 such that
0 < eq̄(t, s) ≤ K∗e−α(t, s). By using (4.23) we see that the trivial solution of
is exponentially square stable. To illustrate the argument in the proof of Theorem
4.11 to construct a Lyapunov function we put

V (s, x) = x2

∫ ∞
s

eq̄(τ−, s)∇τ = x2Q(s).

By direct calculation we have

Q∇s(s) = −1− q(s)Q(s).

Hence,
V ∇s(s, x) +AV (s, x) = Q∇s(s)x2 + q(s)Q(s)x2

= (−q(s)Q(s)− 1)x2 + q(s)Q(s)x2 = −x2.
(4.25)

Using (4.21) and the fact limt→∞ EX2
s,x(t) = 0 we can show that V (s, x) ≥ α1x

2

with α1 = (supt |q(t)|)−1. Further, eq̄(t, s) ≤ K∗e−α(t, s). Thus, V (s, x) ≤ K∗

α x2.
Combining (4.25) and these inequalities obtains

V ∇s(s, x) +AV (s, x) ≤ − α

K∗
V (s−, x).

Thus, the conditions of Theorem 4.3 are satisfied. The proof is complete.
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