SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS VIA COUPLED FIXED POINT

HOJJAT AFSHARI, SABILEH KALANTARI, ERDAL KARAPINAR

Abstract

In this article, we investigate the existence and uniqueness of a solution for the fractional differential equation by introducing some new coupled fixed point theorems for the class of mixed monotone operators with perturbations in the context of partially ordered complete metric space.

1. Introduction and preliminaries

In the previous decade, one of the most attractive research subject is to investigate the existence and uniqueness of a fixed point of certain operator in the setting of complete metric space endowed with a partial order (see e.g. [1]-24] and related reference therein). Recently, CB. Zhai [20] proved some results on a class of mixed monotone operators with perturbations. The aim of this article is to propose a method for the existence and uniqueness of a solution of certain fractional differential equations by following the paper by Zhai [20]. For this purpose, we shall consider some coupled fixed point theorems for a class of mixed monotone operators with perturbations on ordered Banach spaces with the different conditions that was introduced by Zhai [20]. On the other hand, our result are finer than the results of Zhai [20] since we obtain the existence and uniqueness of coupled fixed points without assuming continuity of compactness of the operator.

For the sake of completeness of the paper, we present here some basic definitions, notations and known results.

Suppose $(E,\|\cdot\|)$ is a Banach space which is partially ordered by a cone $P \subseteq E$, that is, $x \leq y$ if and only if $y-x \in P$. If $x \neq y$, then we denote $x<y$ or $x>y$. We denote the zero element of E by θ. Recall that a non-empty closed convex set $P \subset E$ is a cone if it satisfies (i) $x \in P, \lambda \geq 0 \Longrightarrow \lambda x \in P$; (ii) $x \in P,-x \in P \Longrightarrow x=\theta$. A cone P is called normal if there exists a constant $N>0$ such that $\theta \leq x \leq y$ implies $\|x\| \leq N\|y\|$. Also we define the order interval $\left[x_{1}, x_{2}\right]=\left\{x \in E \mid x_{1} \leq x \leq x_{2}\right\}$ for all $x_{1}, x_{2} \in E$. We say that and operator $A: E \rightarrow E$ is increasing whenever $x \leq y$ implies $A x \leq A y$. For all $x, y \in E$, the notation $x \sim y$ means that there exist $\lambda>0$ and $\mu>0$, such that $\lambda x \leq y \leq \mu x$. Clearly, \sim is an equivalent relation. Given

[^0]$e>\theta$, we denote by P_{e} the set $P_{e}=\{x \in E \mid x \sim e\}$. It is easy to see that $P_{e} \subset P$ is convex and $\lambda P_{e}=P_{e}$ for all $\lambda>0$. If $P \neq \phi$ and $e \in P$, it is clear that $P_{e}=P$.
Definition 1.1 (8,9$]$). $A: P \times P \rightarrow P$ is said to be a mixed monotone operator if $A(x, y)$ is increasing in x and decreasing in y, i.e., $u_{i}, v_{i}(i=1,2) \in P, u_{1} \leq u_{2}$, $v_{1} \geq v_{2}$ imply $A\left(u_{1}, v_{1}\right) \leq A\left(u_{2}, v_{2}\right)$. The element $x \in P$ is called a fixed point of A if $A(x, x)=x$.

The following conditions were was assumed in [21]:
(A1) there exists $h \in P$ with $h \neq \theta$ such that $A(h, h) \in P_{h}$,
(A2) for any $u, v \in P$ and $t \in(0,1)$, there exists $\varphi(t) \in(t, 1]$ such that

$$
\begin{equation*}
A\left(t u, t^{-1} v\right) \geq \varphi(t) A(u, v) \tag{1.1}
\end{equation*}
$$

Lemma 1.2 (21). Assume that (A1), (A2) hold. Then $A: P_{h} \times P_{h} \rightarrow P_{h}$; and there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r v_{0} \leq u_{0}<v_{0}, \quad u_{0} \leq A\left(u_{0}, v_{0}\right) \leq A\left(v_{0}, u_{0}\right) \leq v_{0}
$$

Definition $1.3([20])$. An operator $A: P \rightarrow P$ is said to be sub-homogeneous if it satisfies

$$
A(t x) \geq t A(x), \quad \forall t \in(0,1), x \in P
$$

The following result can be found in Zhai and Zhang [21].
Theorem 1.4 ([21]). Let P be a normal cone in E. Assume that $T: P \times P \rightarrow P$ is a mixed monotone operator and satisfies:
(A3) there exists $h \in P$ with $h \neq \theta$ such that $T(h, h) \in P_{h}$;
(A4) for any $u, v \in P$ and $t \in(0,1)$, there exists $\varphi(t) \in(t, 1]$ such that

$$
\begin{equation*}
T\left(t u, t^{-1} v\right) \geq \varphi(t) T(u, v) \tag{1.2}
\end{equation*}
$$

Then
(1) $T: P_{h} \times P_{h} \rightarrow P_{h}$;
(2) there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that $r v_{0} \leq u_{0}<v_{0}, u_{0} \leq$ $T\left(u_{0}, v_{0}\right) \leq T\left(v_{0}, u_{0}\right) \leq v_{0} ;$
(3) T has a unique fixed point x^{*} in P_{h};
(4) for any initial values $x_{0}, y_{0} \in P_{h}$, constructing successively the sequences

$$
x_{n}=T\left(x_{n-1}, y_{n-1}\right), \quad y_{n}=T\left(y_{n-1}, x_{n-1}\right), \quad n=1,2 \ldots
$$

we have $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.

2. Main Result

In this section, we state and prove our main results. First, we consider the mixed monotone operator $A: P \times P \rightarrow P$. The following conditions will be assumed:
(A5) there exists $h \in P$ with $h \neq \theta$ such that $A(h, h) \in P_{h}$,
(A6) for any $u, v \in P$ and $s, t \in(0,1)$ such that $s \leq t$, there exists $\varphi(t) \in\left(t^{2}, 1\right]$ and φ is decreasing such that

$$
\begin{equation*}
A\left(t u, t^{-1} v\right)+A\left(t u, s^{-1} v\right) \geq 2 \frac{\varphi(t)}{t} A(u, v) \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Assume (A5), (A6) hold. Then $A: P_{h} \times P_{h} \rightarrow P_{h}$; and there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r v_{0} \leq u_{0}<v_{0}, u_{0} \leq A\left(u_{0}, v_{0}\right) \leq A\left(v_{0}, u_{0}\right) \leq v_{0}
$$

Proof. For $s \leq t$ from condition (A6) we obtain

$$
\begin{equation*}
A\left(t^{-1} x, t y\right) \leq \frac{1}{2 \frac{\varphi(t)}{t}}\left(A(x, y)+A\left(x, \frac{t}{s} y\right)\right), \quad \forall s, t \in(0,1), x, y \in P \tag{2.2}
\end{equation*}
$$

For any $u, v \in P_{h}$, there exist $\mu_{1}, \mu_{2} \in(0,1)$, such that

$$
\mu_{1} h \leq u \leq \frac{1}{\mu_{1}} h, \mu_{2} h \leq v \leq \frac{1}{\mu_{2}} h
$$

Let $\mu=\min \left\{\mu_{2}, \mu_{1}\right\}$. Then $\mu \in(0,1)$. From (2.2) and the mixed monotone properties of operator A and regarding $0<\mu$, there exists $0<\mu^{\prime}<\mu$ such that

$$
\begin{aligned}
A(u, v) & \leq A\left(\frac{1}{\mu_{1}} h, \mu_{2} h\right) \leq A\left(\frac{1}{\mu} h, \mu h\right) \\
& \leq \frac{1}{2\left(\frac{\varphi(\mu)}{\mu}\right)}\left(A(h, h)+A\left(h, \frac{\mu}{\mu^{\prime}} h\right)\right) \\
& \leq \frac{1}{2\left(\frac{\varphi(\mu)}{\mu}\right)}(A(h, h)+A(h, h)) \\
& =\frac{1}{\left(\frac{\varphi(\mu)}{\mu}\right)}(A(h, h)) \leq \frac{1}{\varphi(\mu)} A(h, h)
\end{aligned}
$$

Regarding the inequality

$$
A(u, v) \geq A\left(\mu_{1} h, \frac{1}{\mu_{2}} h\right) \geq A\left(\mu h, \frac{1}{\mu} h\right)
$$

we derive that

$$
\begin{aligned}
2 A(u, v) & \geq A\left(\mu h, \frac{1}{\mu} h\right)+A\left(\mu h, \frac{1}{\mu} h\right) \\
& \geq 2\left(\frac{\varphi(\mu)}{\mu}\right)(A(h, h)+A(h, h)) \\
& =2\left(\frac{\varphi(\mu)}{\mu}\right)(A(h, h)) \geq 2 \varphi(\mu) A(h, h)
\end{aligned}
$$

Tehrefore, we obtain

$$
A(u, v) \geq \varphi(\mu) A(h, h)
$$

It follows from $A(h, h) \in P_{h}$ that $A(u, v) \in P_{h}$. Hence we have $A: P_{h} \times P_{h} \rightarrow P_{h}$. Since $A(h, h) \in P_{h}$, we can choose a sufficiently small number $t_{0} \in(0,1)$ such that

$$
\begin{equation*}
t_{0} h \leq A(h, h) \leq \frac{1}{t_{0}} h \tag{2.3}
\end{equation*}
$$

For $k>2$ we have

$$
\begin{equation*}
t_{0}^{k} h \leq A(h, h) \leq \frac{1}{t_{0}^{k}} h \tag{2.4}
\end{equation*}
$$

Put $u_{0}=t_{0}{ }^{k} h$ and $v_{0}=\frac{1}{t_{0}^{k}} h$. Evidently, $u_{0}, v_{0} \in P_{h}$ and $u_{0}=t_{0}{ }^{2 k} v_{0}<v_{0}$. Take any $r \in\left(0, t_{0}{ }^{2 k}\right]$, then $r \in(0,1)$ and $u_{0} \geq r v_{0}$. By the mixed monotone properties of A, we have $A\left(u_{0}, v_{0}\right) \leq A\left(v_{0}, u_{0}\right)$. Because $t_{0} \in(0,1)$, then there exists $s_{0} \in(0,1)$ such that $0<s_{0} \leq t_{0}$. Further, combining condition (A2) with 2.3), and since $s_{0} \leq t_{0}$ we have

$$
A\left(u_{0}, v_{0}\right)=A\left(t_{0}^{k} h, \frac{1}{t_{0}^{k}} h\right)
$$

$$
\begin{aligned}
& \geq 2\left(\frac{\varphi\left(t_{0}^{k}\right)}{t_{0}^{k}}\right) A(h, h)-A(h, h) \\
& \geq\left(2\left(\frac{\varphi\left(t_{0}\right)}{t_{0}^{2}}\right)-1\right) A(h, h)>A(h, h) \\
& \geq t_{0}^{k} h=u_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
A\left(v_{0}, u_{0}\right) & =A\left(\frac{1}{t_{0}^{k}} h, t_{0}^{k} h\right) \\
& \leq \frac{1}{2\left(\frac{\varphi\left(t_{0}^{k}\right)}{t_{0}^{k}}\right)}\left(A(h, h)+A\left(h, \frac{t_{0}^{k}}{s_{0}^{k}} h\right)\right) \\
& \leq \frac{1}{2\left(\frac{\varphi\left(t_{0}^{k}\right)}{t_{0}^{k}}\right)} 2 A(h, h) \\
& \leq A(h, h) \leq \frac{1}{t_{0}^{k}} h=v_{0}
\end{aligned}
$$

Consequently, we have $u_{0} \leq A\left(u_{0}, v_{0}\right) \leq A\left(v_{0}, u_{0}\right) \leq v_{0}$.
Corollary 2.2. If in (2.1) put $s=t$ then we obtain 1.2. Consequently the Lemma 2.1 yields the Lemma 1.2.

Theorem 2.3. Suppose that P is a normal cone of E, and (A5), (A6) hold. Then operator A has a unique fixed point x^{*} in P_{h}. Moreover, for any initial $x_{0}, y_{0} \in P_{h}$, constructing successively the sequences

$$
x_{n}=A\left(x_{n-1}, y_{n-1}\right), \quad y_{n}=A\left(y_{n-1}, x_{n-1}\right) \quad n=1,2, \ldots,
$$

we have $\left\|x_{n}-x^{*}\right\| \rightarrow 0,\left\|y_{n}-x^{*}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Proof. From Lemma 2.1, there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r v_{0} \leq u_{0}<v_{0}, u_{0} \leq A\left(u_{0}, v_{0}\right) \leq A\left(v_{0}, u_{0}\right) \leq v_{0}
$$

Construct recursively the sequences

$$
u_{n}=A\left(u_{n-1}, v_{n-1}\right), \quad v_{n}=A\left(v_{n-1}, u_{n-1}\right), \quad n=1,2, \ldots
$$

Evidently $u_{1} \leq v_{1}$. By the mixed monotone properties of A, we obtain

$$
u_{n} \leq v_{n}, n=1,2, \ldots
$$

It also follows from Lemma 2.1 and the mixed monotone properties of A that

$$
\begin{equation*}
u_{0} \leq u_{1} \leq \ldots \leq u_{n} \leq \ldots \leq v_{n} \leq \ldots \leq v_{1} \leq v_{0} \tag{2.5}
\end{equation*}
$$

Note that $u_{0} \geq r v_{0}$. We can get $u_{n} \geq u_{0} \geq r v_{0} \geq r v_{n}, n=1,2, \ldots$. Let

$$
t_{n}=\sup \left\{t>0 \mid u_{n} \geq t v_{n}\right\}, \quad s_{n}=\sup \left\{s>0 \mid u_{n} \geq s v_{n}\right\}, \quad s_{n} \leq t_{n} n=1,2, \ldots
$$

Thus we have $u_{n} \geq t_{n} v_{n}, u_{n} \geq s_{n} v_{n}, n=1,2, \ldots$, then $u_{n} \geq t_{n} v_{n} \geq s_{n} v_{n}$, also $u_{n+1} \geq u_{n} \geq t_{n} v_{n} \geq t_{n} v_{n+1} \geq s_{n} v_{n+1}, n=1,2, \ldots$ Therefore, $t_{n+1} \geq t_{n}$, i.e., t_{n} is increasing with $t_{n} \subset(0,1]$. Suppose $t_{n} \rightarrow t^{*}$ as $n \rightarrow \infty$, then $t^{*}=1$. Otherwise, $0<$ $t^{*}<1$. Then from condition (A2) and $t_{n} \leq t^{*}$, we have $A\left(u_{n}, v_{n}\right) \geq A\left(t_{n} v_{n}, \frac{1}{t_{n}} u_{n}\right)$ and $A\left(u_{n}, v_{n}\right) \geq A\left(t_{n} v_{n}, \frac{1}{s_{n}} u_{n}\right)$, so

$$
u_{n+1}=A\left(u_{n}, v_{n}\right)
$$

$$
\begin{aligned}
& \geq \frac{1}{2}\left(A\left(t_{n} v_{n}, \frac{1}{t_{n}} u_{n}\right)+A\left(t_{n} v_{n}, \frac{1}{s_{n}} u_{n}\right)\right) \\
& \geq \frac{\varphi\left(t_{n}\right)}{t_{n}} A\left(v_{n}, u_{n}\right) \geq \frac{\varphi\left(t^{*}\right)}{t_{n}} A\left(v_{n}, u_{n}\right) \\
& =\frac{\varphi\left(t^{*}\right)}{t_{n}} v_{n+1}
\end{aligned}
$$

By the definition of $t_{n}, t_{n+1} \geq \frac{\varphi\left(t^{*}\right)}{t_{n}}$. Let $n \rightarrow \infty$, we obtain $t^{* 2} \geq \varphi\left(t^{*}\right)>t^{* 2}$, which is a contradiction. Thus, $\lim _{n \rightarrow \infty} t_{n}=1$. For any natural number p we have

$$
\begin{aligned}
& \theta \leq u_{n+p}-u_{n} \leq v_{n}-u_{n} \leq v_{n}-t_{n} v_{n} \\
&=\left(1-t_{n}\right) v_{n} \leq\left(1-t_{n}\right) v_{0} \\
& \theta \leq v_{n}-v_{n+p} \leq v_{n}-u_{n} \leq\left(1-t_{n}\right) v_{0}
\end{aligned}
$$

Since the cone P is normal, we have

$$
\begin{aligned}
\left\|u_{n+p}-u_{n}\right\| & \leq M\left(1-t_{n}\right)\left\|v_{0}\right\| \\
\left\|v_{n}-v_{n+p}\right\| & \leq M\left(1-t_{n}\right)\left\|v_{0}\right\|
\end{aligned}
$$

as $n \rightarrow \infty$, where M is the normality constant of P. So we can claim that u_{n} and v_{n} are Cauchy sequences. Since E is complete, there exist u^{*}, v^{*} such that $u_{n} \rightarrow u^{*}, v_{n} \rightarrow v^{*}$, as $n \rightarrow \infty$. By 2.5 , we know that $u_{n} \leq u^{*} \leq v^{*} \leq v_{n}$ with $u^{*}, v^{*} \in P_{h}$ and

$$
\theta \leq v^{*}-u^{*} \leq v_{n}-u_{n} \leq\left(1-t_{n}\right) v_{0}
$$

Further

$$
\left\|v^{*}-u^{*}\right\| \leq M\left(1-t_{n}\right)\left\|v_{0}\right\| \rightarrow 0 \quad(n \rightarrow \infty)
$$

and thus $u^{*}=v^{*}$. Let $x^{*}:=u^{*}=v^{*}$ and then we obtain

$$
u_{n+1}=A\left(u_{n}, v_{n}\right) \leq A\left(x^{*}, x^{*}\right) \leq A\left(v_{n}, u_{n}\right)=v_{n+1}
$$

Let $n \rightarrow \infty$, then we obtain $x^{*}=A\left(x^{*}, x^{*}\right)$. That is, x^{*} is a fixed point of A in P_{h}. Next we shall prove that x^{*} is the unique fixed point of A in P_{h}. In fact, suppose \bar{x} is a fixed point of A in P_{h}. Since $x^{*}, \bar{x} \in P_{h}$, there exists positive numbers $\bar{\mu}_{1}, \bar{\mu}_{2}, \bar{\lambda}_{1}, \bar{\lambda}_{2}>0$ such that

$$
\bar{\mu}_{1} h \leq x^{*} \leq \bar{\lambda}_{1}, \quad \bar{\mu}_{2} h \leq \bar{x} \leq \bar{\lambda}_{2} h
$$

Then we obtain

$$
\bar{x} \leq \bar{\lambda}_{2} h=\frac{\bar{\lambda}_{2}}{\bar{\mu}_{1}} \bar{\mu}_{1} h \leq \frac{\bar{\lambda}_{2}}{\bar{\mu}_{1}} x^{*}, \quad \bar{x} \geq \bar{\mu}_{2} h=\frac{\bar{\mu}_{2}}{\bar{\lambda}_{1}} \bar{\lambda}_{1} h \geq \frac{\bar{\mu}_{2}}{\bar{\lambda}_{1}} x^{*} .
$$

Let $e_{1}=\sup \left\{t>0 \mid t x^{*} \leq \bar{x} \leq t^{-1} x^{*}\right\}$. Evidently, $0<e_{1} \leq 1, e_{1} x^{*} \leq \bar{x} \leq \frac{1}{e_{1}} x^{*}$. Next we prove $e_{1}=1$. If $0<e_{1}<1$, then $\bar{x}=A(\bar{x}, \bar{x}) \geq A\left(e_{1} x^{*}, \frac{1}{e_{1}} x^{*}\right)$, then

$$
\begin{aligned}
2 A(\bar{x}, \bar{x}) & \geq 2 A\left(e_{1} x^{*}, \frac{1}{e_{1}} x^{*}\right)=A\left(e_{1} x^{*}, \frac{1}{e_{1}} x^{*}\right)+A\left(e_{1} x^{*}, \frac{1}{e_{1}} x^{*}\right) \\
& \geq 2\left(\frac{\varphi\left(e_{1}\right)}{e_{1}}\right) A\left(x^{*}, x^{*}\right)
\end{aligned}
$$

So we have

$$
A(\bar{x}, \bar{x}) \geq\left(\frac{\varphi\left(e_{1}\right)}{e_{1}}\right) A\left(x^{*}, x^{*}\right) \geq \frac{\varphi\left(e_{1}\right)}{e_{1}} A\left(x^{*}, x^{*}\right) \geq \varphi\left(e_{1}\right) A\left(x^{*}, x^{*}\right)
$$

Since $\varphi\left(e_{1}\right)>e_{1}$, this contradicts the definition of e_{1}. Hence $e_{1}=1$, and we obtain $\bar{x}=x^{*}$. Therefore, A has a unique fixed point x^{*} in P_{h}. Note that $\left[u_{0}, v_{0}\right] \subset P_{h}$, then we know that x^{*} is the unique fixed point of A in $\left[u_{0}, v_{0}\right]$.

Now we construct the sequences recursively as follows:

$$
x_{n}=A\left(x_{n-1}, y_{n-1}\right), \quad y_{n}=A\left(y_{n-1}, x_{n-1}\right), \quad n=1,2, \ldots
$$

for any initial points $x_{0}, y_{0} \in P_{h}$. Since $x_{0}, y_{0} \in P_{h}$ we can choose small numbers $e_{2}, e_{3} \in(0,1)$ such that

$$
e_{2} h \leq x_{0} \leq \frac{1}{e_{2}} h, \quad e_{3} h \leq y_{0} \leq \frac{1}{e_{3}} h .
$$

Let $e^{*}=\min \left\{e_{2}, e_{3}\right\}$. Then $e^{*} \in(0,1)$ and

$$
e^{*} h \leq x_{0}, \quad y_{0} \leq \frac{1}{e^{*}} h
$$

We can choose a sufficiently large positive integer m such that

$$
\left[\frac{\varphi\left(e^{*}\right)}{e^{*}}\right]^{m} \geq \frac{1}{e^{*}}
$$

Put $\bar{u}_{0}=e^{* m} h, \bar{v}_{0}=\frac{1}{e^{* m}} h$, it easy to see that $\bar{u}_{0}, \bar{v}_{0} \in P_{h}$ and $\bar{u}_{0}<x_{0}, y_{0}<\bar{v}_{0}$. Let

$$
\bar{u}_{n}=A\left(\bar{u}_{n-1}, \bar{v}_{n-1}\right), \quad \bar{v}_{n}=A\left(\bar{v}_{n-1}, \bar{u}_{n-1}\right), \quad n=1,2, \ldots
$$

Analogously, it follows that there exists $y^{*} \in P_{h}$ such that $A\left(y^{*}, y^{*}\right)=y^{*}$ and $\lim _{n \rightarrow \infty} \bar{u}_{n}=\lim _{n \rightarrow \infty} \bar{v}_{n}=y^{*}$. By the uniqueness of fixed point of operator A in P_{h}. We get $x^{*}=y^{*}$ and by induction $\bar{u}_{n} \leq x_{n}, y_{n} \leq \bar{v}_{n}, n=1,2, \ldots$. Since cone P is normal we have $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=x^{*}$.

Theorem 2.4. Let $\alpha \in(0,1), A: P \times P \rightarrow P$ be a mixed monotone operator satisfying

$$
\begin{equation*}
A\left(t x, t^{-1} y\right)+A\left(t x, s^{-1} y\right) \geq 2 t^{2 \alpha-1} A(x, y), \quad s, t \in(0,1), s \leq t x, y \in P \tag{2.6}
\end{equation*}
$$

Suppose that $B: P \rightarrow P$ is an in increasing sub-homogeneous operator. Assume also that
(i) there is $h_{0} \in P_{h}$ such that $A\left(h_{0}, h_{0}\right) \in P_{h}$ and $B h_{0} \in P_{h}$;
(ii) there exists a constant $\delta_{0}>0$ such that $A(x, y) \geq \delta_{0} B x$ for all $x, y \in P$.

Then

(1) $A: P_{h} \times P_{h} \rightarrow P_{h}, B: P_{h} \rightarrow P_{h}$;
(2) there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r v_{0} \leq u_{0}<v_{0}, \quad u_{0} \leq A\left(u_{0}, v_{0}\right)+B u_{0} \leq A\left(v_{0}, u_{0}\right)+B v_{0} \leq v_{0}
$$

(3) the operator $A(x, x)+B x=x$ has a unique solution x^{*} in P_{h};
(4) for any initial values $x_{0}, y_{0} \in P_{h}$, constructing successively the sequences

$$
\begin{aligned}
x_{n}= & A\left(x_{n-1}, y_{n-1}\right)+B x_{n-1}, \quad y_{n}=A\left(y_{n-1}, x_{n-1}\right)+B y_{n-1}, \quad n=1,2, \ldots, \\
& \text { we have } x_{n} \rightarrow x^{*} \text { and } y_{n} \rightarrow x^{*} \text { as } n \rightarrow \infty .
\end{aligned}
$$

Proof. Notice that from (2.6) and Definition 1.3. we have

$$
\begin{equation*}
A\left(\frac{1}{t} x, t y\right) \leq \frac{1}{2 t^{2 \alpha-1}}\left(A(x, y)+A\left(x, \frac{t}{s} y\right)\right) \tag{2.7}
\end{equation*}
$$

and $B\left(\frac{1}{t} x\right) \leq \frac{1}{t} B x$ for $s, t \in(0,1), x, y \in P$ and $s \leq t$.
Since $A\left(h_{0}, h_{0}\right), B h_{0} \in P_{h}$, there exist constants $\lambda_{1}, \lambda_{2}, \nu_{1}, \nu_{2}>0$ such that

$$
\lambda_{1} h \leq A\left(h_{0}, h_{0}\right) \leq \lambda_{2} h, \quad \nu_{1} h \leq B h_{0} \leq \nu_{2} h
$$

Also from $h_{0} \in P_{h}$, there exists a constant $t_{0} \in(0,1)$ such that $t_{0} h \leq h_{0} \leq \frac{1}{t_{0}} h$, and let $s_{0} \in(0,1)$ such that $s_{0} \leq t_{0}$, then we have

$$
s_{0} h \leq t_{0} h \leq h_{0} \leq \frac{1}{t_{0}} h \leq \frac{1}{s_{0}} h
$$

From $s_{0} \leq t_{0}, 2.6,2.7$ and the mixed monotone properties of operator A, we have

$$
A(h, h) \geq A\left(t_{0} h_{0}, \frac{1}{t_{0}} h_{0}\right), \quad A(h, h) \geq A\left(t_{0} h_{0}, \frac{1}{s_{0}} h_{0}\right)
$$

So we have

$$
2 A(h, h) \geq 2 t_{0}^{2 \alpha-1} A\left(h_{0}, h_{0}\right)
$$

By combining the inequalities above, we have

$$
A(h, h) \geq t_{0}^{2 \alpha-1} A\left(h_{0}, h_{0}\right) \geq t_{0}^{2 \alpha} A\left(h_{0}, h_{0}\right) \geq \lambda_{1} t_{0}^{2 \alpha} h
$$

and

$$
\begin{aligned}
A(h, h) & \leq A\left(\frac{1}{t_{0}} h_{0}, t_{0} h_{0}\right) \leq \frac{1}{2 t_{0}^{2 \alpha-1}}\left(A\left(h_{0}, h_{0}\right)+A\left(h_{0}, \frac{t_{0}}{s_{0}} h_{0}\right)\right) \\
& \leq \frac{1}{t_{0}^{2 \alpha}} A\left(h_{0}, h_{0}\right) \leq \frac{\lambda_{2}}{t_{0}^{\alpha}} h
\end{aligned}
$$

Noting that $\frac{\lambda_{2}}{t_{0}^{2 \alpha}}, \lambda_{1} t_{0}^{2} \alpha>0$, we can get $A(h, h) \in P_{h}$. By Definition 1.3 and the monotone property of operator B, we have

$$
B h \leq B\left(\frac{1}{t_{0}} h_{0}\right) \leq \frac{1}{t_{0}} B h_{0} \leq \frac{\nu_{2}}{t_{0}} h, \quad B h \geq B\left(t_{0} h_{0}\right) \geq t_{0} B h_{0} \geq \nu_{1} t_{0} h
$$

Next we show $B: P_{h} \rightarrow P_{h}$. For any $x \in P_{h}$, we can choose a sufficiently small number $\mu \in(0,1)$ such that

$$
\mu h \leq x \leq \frac{1}{\mu} h .
$$

Consequently,

$$
B x \leq B\left(\frac{1}{\mu} h\right) \leq \frac{1}{\mu} \frac{\nu_{2}}{t_{0}} h, \quad B x \geq B(\mu h) \geq \mu t_{0} \nu_{1} h
$$

Evidently, we have $\frac{\nu_{2}}{\mu t_{0}}, \mu t_{0} \nu_{1}>0$. Thus $B x \in P_{h}$; that is, $B: P_{h} \rightarrow P_{h}$. So the conclusion (1) holds. Now we define an operator $T=A+B$ by $T(x, y)=A(x, y)+$ $B x$. Then $T: P \times P \rightarrow P$ is a mixed monotone operator and $T(h, h) \in P_{h}$. In the following we show that there exists $\varphi(t) \in(t, 1]$ with respect to $s, t \in(0,1), s \leq t$ such that

$$
T\left(t x, t^{-1} y\right)+T\left(t x, s^{-1} y\right) \geq 2\left(\frac{\varphi(t)}{t}\right) A(x, y), \quad \forall, x, y \in P
$$

Consider the function

$$
f(t)=\frac{t^{2 \beta-1}-t}{t^{2 \alpha-1}-t^{2 \beta-1}}
$$

for $t \in(0,1)$, where $\beta \in(\alpha, 1)$. It is easy to prove that f is increasing in $(0,1)$ and

$$
\lim _{t \rightarrow 0^{+}} f(t)=0, \quad \lim _{t \rightarrow 1^{-}} f(t)=\frac{1-\beta}{\beta-\alpha}
$$

Further, fixing $t \in(0,1)$, we have

$$
\lim _{\beta \rightarrow 1^{-}} f(t)=\lim _{\beta \rightarrow 1^{-}} \frac{t^{2 \beta-1}-t}{t^{2 \alpha-1}-t^{2 \beta-1}}=0
$$

So there exists $\beta_{0}(t) \in(0,1)$ with respect to t such that

$$
\frac{t^{2 \beta_{0}(t)-1}-t}{t^{2 \alpha-1}-t^{2 \beta_{0}(t)-1}} \leq \delta_{0}, \quad t \in(0,1)
$$

Hence we have

$$
A(x, y) \geq \delta_{0} B x \geq \frac{t^{2 \beta_{0}(t)-1}-t}{t^{2 \alpha-1}-t^{2 \beta_{0}(t)-1}} B x, \quad \forall t \in(0,1), x, y \in P
$$

Then we obtain

$$
t^{2 \alpha-1} A(x, y)+t B x \geq t^{2 \beta_{0}(t)-1}[A(x, y)+B x], \quad \forall t \in(0,1), x, y \in P
$$

Consequently, for any $t \in(0,1)$ and $x, y \in P$,

$$
\begin{aligned}
T\left(t x, t^{-1} y\right)+T\left(t x, s^{-1} y\right) & =A\left(t x, t^{-1} y\right)+B(t x)+A\left(t x, s^{-1} y\right)+B(t x) \\
& \geq 2 t^{2 \alpha-1} A(x, y)+2 t B x \\
& \geq 2 t^{2 \beta_{0}(t)-1}(A(x, y)+B x) \\
& =2 t^{2 \beta_{0}(t)-1} T(x, y)
\end{aligned}
$$

Let $\varphi(t)=t^{2 \beta_{0}(t)}, t \in(0,1)$. Then $\varphi(t) \in\left(t^{2}, 1\right]$ and

$$
T\left(t x, t^{-1} y\right)+T\left(t x, s^{-1} y\right) \geq 2\left(\frac{\varphi(t)}{t}\right) A(x, y)
$$

for any $s, t \in(0,1)$ and $x, y \in P$. Hence the condition (A2) in Lemma 2.1 is satisfied. By Lemma 2.1 we conclude that: (a) there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that $r v_{0} \leq u_{0}<v_{0}, u_{0} \leq T\left(u_{0}, v_{0}\right) \leq T\left(v_{0}, u_{0}\right) \leq v_{0}$; (b) T has a unique fixed point x^{*} in P_{h}; (c) for any initial values $x_{0}, y_{0} \in P_{h}$, constructing successively the sequences

$$
x_{n}=T\left(x_{n-1}, y_{n-1}\right), \quad y_{n}=T\left(y_{n-1}, x_{n-1}\right), \quad n=1,2, \ldots
$$

we have $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. That is, conclusions (2)-(4) hold.
Corollary 2.5. Let $\alpha \in(0,1), A: P \times P \rightarrow P$ is a mixed monotone operator. Assume (2.6) holds and there is $h_{0}>\theta$ such that $A\left(h_{0}, h_{0}\right) \in P_{h}$. Then
(1) $A: P_{h} \times P_{h} \rightarrow P_{h}$;
(2) there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r v_{0} \leq u_{0}<v_{0}, \quad u_{0} \leq A\left(u_{0}, v_{0}\right) \leq A\left(v_{0}, u_{0}\right) \leq v_{0}
$$

(3) the operator $A(x, x)=x$ has a unique solution x^{*} in P_{h};
(4) for any initial values $x_{0}, y_{0} \in P_{h}$, constructing successively the sequences

$$
x_{n}=A\left(x_{n-1}, y_{n-1}\right), \quad y_{n}=A\left(y_{n-1}, x_{n-1}\right), \quad n=1,2, \ldots,
$$

we have $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.

3. SOLUTION TO FRACTIONAL DIFFERENTIAL EQUATIONS

In this section, we shall propose a method for showing the existence and uniqueness of a solution for the fractional differential equation

$$
\begin{gather*}
\frac{D^{\alpha}}{D t} u(s, t)+f(s, t, u(s, t), v(s, t))=0 \tag{3.1}\\
0<\epsilon<T, \quad T \geq 1, \quad t \in[\epsilon, T], \quad 0<\alpha<1, \quad s \in[a, b]
\end{gather*}
$$

subject to the condition

$$
\begin{equation*}
u(s, \zeta)=u(s, T), \quad(s, \zeta) \in[a, b] \times(\epsilon, t) \tag{3.2}
\end{equation*}
$$

where D^{α} is the Riemann-Liouville fractional derivative of order α. We will suppose that $a, b \in(0, \infty), a<b$. Let

$$
E=C([a, b] \times[\epsilon, T])
$$

Consider the Banach space of continuous functions on $[a, b] \times[\epsilon, T]$ with sup norm and set

$$
P=\left\{y \in C([a, b] \times[\epsilon, T]): \min _{(s, t) \in[a, b] \times[\epsilon, T]} y(s, t) \geq 0\right\}
$$

Then P is a normal cone.
Lemma 3.1. Let $(s, t) \in[a, b] \times[\epsilon, T],(s, \zeta) \in[a, b] \times(\epsilon, t)$ and $0<\alpha<1$. Then the problem

$$
\frac{D^{\alpha}}{D t} u(s, t)+f(s, t, u(s, t), v(s, t))=0
$$

with the boundary value condition $u(s, \zeta)=u(s, T)$ has a solution u_{0} if and only if u_{0} is a solution of the fractional integral equation

$$
u(s, t)=\int_{\epsilon}^{T} G(t, \xi) f(s, \xi, u(s, \xi), v(s, t)) d \xi
$$

where

$$
G(t, \xi)= \begin{cases}\frac{t^{\alpha-1}(\zeta-\xi)^{\alpha-1}-t^{\alpha-1}(T-\xi)^{\alpha-1}}{\left(\zeta^{\alpha-1}-T^{\alpha-1}\right) \Gamma(\alpha)}-\frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)}, & \epsilon \leq \xi \leq \zeta \leq t \leq T \\ \frac{-t^{\alpha-1}-(T-\xi)^{\alpha-1}}{\left(\zeta^{\alpha-1}-T^{\alpha-1}\right) \Gamma(\alpha)}-\frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)}, & \epsilon \leq \zeta \leq \xi \leq t \leq T \\ \frac{-t^{\alpha-1}(T-\xi)^{\alpha-1}}{\left(\zeta^{\alpha-1}-T^{\alpha-1}\right) \Gamma(\alpha)}, & \epsilon \leq \zeta \leq t \leq \xi \leq T\end{cases}
$$

Proof. From $\frac{D^{\alpha}}{D t} u(s, t)+f(s, t, u(s, t), v(s, t))=0$ and the boundary condition, it is easy to see that $u(s, t)-c_{1} t^{\alpha-1}=-I_{\epsilon}^{\alpha} f(s, t, u(s, t), v(s, t))$. By the definition of a fractional integral, we obtain

$$
\begin{aligned}
u(s, t) & =c_{1} t^{\alpha-1}-\int_{\epsilon}^{\zeta} \frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)} f(s, \xi, u(s, \xi), v(s, \xi)) d \xi \\
u(s, \zeta) & =c_{1} T^{\alpha-1}-\int_{\epsilon}^{\zeta} \frac{(\zeta-\xi)^{\alpha-1}}{\Gamma(\alpha)} f(s, \xi, u(s, \xi), v(s, \xi)) d \xi \\
u(s, T) & =c_{1} T^{\alpha-1}-\int_{\epsilon}^{T} \frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)} f(s, \xi, u(s, \xi), v(s, \xi)) d \xi
\end{aligned}
$$

Since $u(s, \zeta)=u(s, T)$, we obtain

$$
\begin{aligned}
c_{1}= & \frac{1}{\zeta^{\alpha-1}-T^{\alpha-1}} \int_{\epsilon}^{\zeta} \frac{(\zeta-\xi)^{\alpha-1}}{\Gamma(\alpha)} f(s, \xi, u(s, \xi), v(s, \xi)) d \xi \\
& -\frac{1}{\zeta^{\alpha-1}-T^{\alpha-1}} \int_{\epsilon}^{T} \frac{(T-\xi)^{\alpha-1}}{\Gamma(\alpha)} f(s, \xi, u(s, \xi), v(s, \xi)) d \xi .
\end{aligned}
$$

Hence

$$
\begin{aligned}
u(s, t)= & \frac{t^{\alpha-1}}{\zeta^{\alpha-1}-T^{\alpha-1}} \int_{\epsilon}^{\zeta} \frac{(\zeta-\xi)^{\alpha-1}}{\Gamma(\alpha)} f(s, \xi, u(s, \xi), v(s, \xi)) d \xi \\
& -\frac{t^{\alpha-1}}{\zeta^{\alpha-1}-T^{\alpha-1}} \int_{\epsilon}^{T} \frac{(T-\xi)^{\alpha-1}}{\Gamma(\alpha)} f(s, \xi, u(s, \xi), v(s, \xi)) d \xi \\
& -\int_{\epsilon}^{t} \frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)} f(s, \xi, u(s, \xi), v(s, \xi)) d \xi
\end{aligned}
$$

$$
=\int_{\epsilon}^{T} G(t, \xi) f(s, \xi, u(s, \xi), v(s, \xi)) d \xi
$$

This completes the proof.
Theorem 3.2. Let $0<\epsilon<T$ and let $f(s, t, u(s, t), v(s, t))$ be function in the space $C([a, b],[\epsilon, T],[0, \infty],[0, \infty])$, that is increasing in u, decreasing in v, with positive values. Also assume that for any $u, v \in P$ and $c, c^{\prime} \in(0,1)$ with $c^{\prime} \leq c$, there exists $\varphi(c) \in\left(c^{2}, 1\right]$ and φ is decreasing such that

$$
\begin{aligned}
& \int_{\epsilon}^{T} G(t, \xi) f\left(s, \xi, c u(s, \xi), c^{-1} v(s, \xi)\right) d \xi+\int_{\epsilon}^{T} G(t, \xi) f\left(s, \xi, c u(s, \xi), c^{\prime-1} v(s, \xi)\right) d \xi \\
& \geq 2 \frac{\varphi(c)}{c} \int_{\epsilon}^{T} G(t, \xi) f(s, \xi, u(s, \xi), v(s, \xi)) d \xi
\end{aligned}
$$

and $f(s, t, u(s, t), v(s, t))=0$, whenever $G(s, t)<0$. Also assume that there exist $M_{1}>0, M_{2}>0$ and $h \neq \theta \in P$ such that

$$
M_{1} h(t) \leq \int_{\epsilon}^{T} G(t, \xi) f(s, \xi, u(s, \xi), v(s, \xi)) d \xi \leq M_{2} h(t)
$$

for all $t \in[\epsilon, T]$, where $G(t, s)$ is the green function defined in Lemma 3.1. Then problem (3.1) with the boundary value condition (3.2) has unique solution u^{*}.

Proof. By using Lemma (3.1), the problem is equivalent to the integral equation

$$
u(s, t)=\int_{\epsilon}^{T} G(t, \xi) f(s, \xi, u(s, \xi), v(s, \xi)) d \xi
$$

where

$$
G(t, \xi)= \begin{cases}\frac{t^{\alpha-1}(\eta-\xi)^{\alpha-1}-t^{\alpha-1}(T-\xi)^{\alpha-1}}{\left(\eta^{\alpha-1}-T^{\alpha-1}\right) \Gamma(\alpha)}-\frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)} & \epsilon \leq \xi \leq \eta \leq t \leq T \\ \frac{-t^{\alpha-1}-(T-\xi)^{\alpha-1}}{\left(\eta^{\alpha-1}-T^{\alpha-1}\right) \Gamma(\alpha)}-\frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)} & \epsilon \leq \eta \leq \xi \leq t \leq T \\ \frac{-t^{\alpha-1}(T-\xi)^{\alpha-1}}{\left(\eta^{\alpha-1}-T^{\alpha-1}\right) \Gamma(\alpha)} & \epsilon \leq \eta \leq t \leq \xi \leq T\end{cases}
$$

Define the operator $A: P \times P \rightarrow E$ by

$$
A(u(s, t), v(s, t))=\int_{\epsilon}^{T} G(t, \xi) f(s, \xi, u(s, \xi), v(s, \xi)) d \xi
$$

Then u is solution for the problem if and only if $u=A(u, u)$. It is easy to see to check that the operator A is increasing in u and decreasing in v on P. By assumptions of theorem we have;
(A7) there exists $h \in P$ with $h \neq \theta$ such that

$$
M_{1} h(t) \leq \int_{\epsilon}^{T} G(t, \xi) f(s, \xi, u(s, \xi), v(s, \xi)) d \xi \leq M_{2} h(t),
$$

thus $A(h, h) \in P_{h}$,
(A8) for any $u, v \in P$ and $c, c^{\prime} \in(0,1)$ such that $c^{\prime} \leq c$, there exists $\varphi(c) \in\left(c^{2}, 1\right]$ and φ is decreasing such that

$$
A\left(c u, c^{-1} v\right)+A\left(c u, c^{\prime-1} v\right) \geq 2 \frac{\varphi(c)}{c} A(u, v)
$$

Now by using theorem 2.3, the operator A has a unique fixed point u^{*} in P_{h}. Therefore the boundary value problem (3.1) has unique solution u^{*}.

References

[1] Agarwal. R. P,; El-Gebeily, M. A.; O'Regan, D; Generalized contractions in partially ordered metric spaces, Appl. Anal. 87(2008) 1-8.
[2] Baleanu, D.; Nazemi, S. Z.; Rezapour, S.; Attractivity for a k-dimensional system of fractional functional differential equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations. J. Inequal. Appl. 2014, 2014: 31, 14 pp.
[3] Baleanu, D.; Mohammadi, H.; Rezapour, S.; The existence of solutions for a nonlinear mixed problem of singular fractional differential equations. Adv. Difference Equ. 2013, 2013: 359, 12 pp.
[4] Berinde, V.; Borcut, M; Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Applied Mathematics and Computation 218 (10) (2012) 59295936.
[5] Burgic, Dz.; Kalabusic, S.; Kulenovic, M. R. S.; Global attractivity results for mixed monotone mappings in partially ordered complete metric spaces. Fixed Point Theory Appl. Article ID 762478 (2009).
[6] Drici, Z.; McRae, F. A.; Vasundhara Devi, J.; Fixed point theorems for mixed monotone operators with PPF dependence, Nonlinear Anal. TMA 69 632-636 (2008).
[7] Gnana Bhaskar, T.; Lakshmikantham, V; Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393.
[8] Guo, D; Lakskmikantham, V.; Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. (1987) 11 (5): 623-632.
[9] Guo. D.; Fixed points of mixed monotone operators with application, Appl. Anal. 34 (1988) 215-224.
[10] Guo, D.; Lakskmikantham, V.; Nonlinear Problems in Abstract Cones. Academic Press, New York, 1988.
[11] Guo, D.; Partial Order Methods in Nonlinear Analysis. Jinan, Shandong Science and Technology Press, 2000 (in Chinese).
[12] Harjani, J.; Lopez, B.; Sadarangani, K.; Fixed point theorems for mixed monotone operators and applications to integral equations. Nonlinear Anal. TMA 74 1749-1760 (2011).
[13] Liang, K.; Li, J.; Xiao, T. J.; New Existence and uniqueness theorems of positive fixed points for mixed monotone operators with perturbation, Comput. Math. Appl. 50(2005) 1569-1578. 215-224.
[14] Liang, Y. X.; Wu, Z. D.; Existence and uniqueness of fixed points for mixed monotone operators with applications. Nonlinear Anal. TMA 65 1913-1924 (2006).
[15] Nieto. J. J.; Rodriguez-Lopezm R; Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation, Order 22 (2005) 223-239.
[16] Nieto. J.J.; Rodriguez-Lopez, R; Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equation, Acta Math. Sin.(Engl.Ser.) (2007) 23 (12): 2205-2212.
[17] Ran, A. C. M.; Reurings, M. C. B,; A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
[18] Roldan, A.; Martinez-Moreno, J.; Roldan, C.; Karapinar, E.; Some remarks on multidimentional fixed point theorems, Fixed Point Theory, 15(2014) No.2, 545-558.
[19] Samet, B.; Karapinar, K.; Aydi, H.; Rajic, V.; Discussion on some coupled fixed point theorems, Fixed Point Theory and Applications, 2013, 2013:50 (10 March 2013).
[20] Zhai, C. B.; Hao, M. R.; Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value, Nonlinear Anal. 75 (2012), 2542-2551.
[21] Zhai, C. B.; Zhang, L. L.; New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems. J. Math. Anal. Appl. 382, 594-614 (2011).
[22] Zhang, S. S.; Coupled fixed points for mixed monotone condensing operators and an existence theorem of the solution for a class of functional equations arising in dynamic programming, J. Math. Anal. Appl. 160 468-479 (1991).
[23] Zhang, Z. T.; Wang, K. L.; On fixed point theorems of mixed monotone operators and applications, Nonlinear Anal. TMA 70, 3279-3284 (2009).
[24] Zhao, Z. Q.; Existence and uniqueness of fixed points for some mixed monotone operators, Nonlinear Anal. TMA 73, 1481-1490 (2010).

Hojuat Afshari
Faculty of Basic Sciences, University of Bonab, Iran
E-mail address: hojat.afshari@yahoo.com
Sabileh Kalantari
Faculty of Basic Sciences, University of Bonab, Iran
E-mail address: kalantari.math@gmail.com
Erdal Karapinar
Atilim University, Department of Mathematics, 06836, İncek, Ankara, Turkey.
Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, King Abdulaziz
University, 21589, Jeddah, Saudi Arabia
E-mail address: erdalkarapinar@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. Fixed point; mixed monotone operator; normal cone; sub-homogeneous operator.
 (C) 2015 Texas State University.

 Submitted June 25, 2015. Published November 16, 2015.

