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SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS VIA
COUPLED FIXED POINT

HOJJAT AFSHARI, SABILEH KALANTARI, ERDAL KARAPINAR

Abstract. In this article, we investigate the existence and uniqueness of a so-

lution for the fractional differential equation by introducing some new coupled

fixed point theorems for the class of mixed monotone operators with pertur-
bations in the context of partially ordered complete metric space.

1. Introduction and preliminaries

In the previous decade, one of the most attractive research subject is to investi-
gate the existence and uniqueness of a fixed point of certain operator in the setting
of complete metric space endowed with a partial order (see e.g. [1]-[24] and related
reference therein). Recently, CB. Zhai [20] proved some results on a class of mixed
monotone operators with perturbations. The aim of this article is to propose a
method for the existence and uniqueness of a solution of certain fractional differ-
ential equations by following the paper by Zhai [20]. For this purpose, we shall
consider some coupled fixed point theorems for a class of mixed monotone oper-
ators with perturbations on ordered Banach spaces with the different conditions
that was introduced by Zhai [20]. On the other hand, our result are finer than the
results of Zhai [20] since we obtain the existence and uniqueness of coupled fixed
points without assuming continuity of compactness of the operator.

For the sake of completeness of the paper, we present here some basic definitions,
notations and known results.

Suppose (E, ‖ · ‖) is a Banach space which is partially ordered by a cone P ⊆ E,
that is, x ≤ y if and only if y−x ∈ P . If x 6= y, then we denote x < y or x > y. We
denote the zero element of E by θ. Recall that a non-empty closed convex set P ⊂ E
is a cone if it satisfies (i) x ∈ P, λ ≥ 0 =⇒ λx ∈ P ; (ii) x ∈ P, −x ∈ P =⇒ x = θ. A
cone P is called normal if there exists a constant N > 0 such that θ ≤ x ≤ y implies
‖x‖ ≤ N‖y‖. Also we define the order interval [x1, x2] = {x ∈ E|x1 ≤ x ≤ x2} for
all x1, x2 ∈ E. We say that and operator A : E → E is increasing whenever x ≤ y
implies Ax ≤ Ay. For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0
and µ > 0, such that λx ≤ y ≤ µx. Clearly, ∼ is an equivalent relation. Given
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e > θ, we denote by Pe the set Pe = {x ∈ E|x ∼ e}. It is easy to see that Pe ⊂ P
is convex and λPe = Pe for all λ > 0. If P 6= φ and e ∈ P , it is clear that Pe = P .

Definition 1.1 ([8, 9]). A : P × P → P is said to be a mixed monotone operator
if A(x, y) is increasing in x and decreasing in y, i.e., ui, vi (i = 1, 2) ∈ P , u1 ≤ u2,
v1 ≥ v2 imply A(u1, v1) ≤ A(u2, v2). The element x ∈ P is called a fixed point of
A if A(x, x) = x.

The following conditions were was assumed in [21]:
(A1) there exists h ∈ P with h 6= θ such that A(h, h) ∈ Ph,
(A2) for any u, v ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that

A(tu, t−1v) ≥ ϕ(t)A(u, v). (1.1)

Lemma 1.2 ([21]). Assume that (A1), (A2) hold. Then A : Ph × Ph → Ph; and
there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤ v0.

Definition 1.3 ([20]). An operator A : P → P is said to be sub-homogeneous if it
satisfies

A(tx) ≥ tA(x), ∀t ∈ (0, 1), x ∈ P.

The following result can be found in Zhai and Zhang [21].

Theorem 1.4 ([21]). Let P be a normal cone in E. Assume that T : P × P → P
is a mixed monotone operator and satisfies:

(A3) there exists h ∈ P with h 6= θ such that T (h, h) ∈ Ph;
(A4) for any u, v ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that

T (tu, t−1v) ≥ ϕ(t)T (u, v). (1.2)

Then
(1) T : Ph × Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0, u0 ≤

T (u0, v0) ≤ T (v0, u0) ≤ v0;
(3) T has a unique fixed point x∗ in Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = T (xn−1, yn−1), yn = T (yn−1, xn−1), n = 1, 2 . . . ,

we have xn → x∗ and yn → x∗ as n→∞.

2. Main result

In this section, we state and prove our main results. First, we consider the mixed
monotone operator A : P × P → P . The following conditions will be assumed:

(A5) there exists h ∈ P with h 6= θ such that A(h, h) ∈ Ph,
(A6) for any u, v ∈ P and s, t ∈ (0, 1) such that s ≤ t, there exists ϕ(t) ∈ (t2, 1]

and ϕ is decreasing such that

A(tu, t−1v) +A(tu, s−1v) ≥ 2
ϕ(t)
t
A(u, v). (2.1)

Lemma 2.1. Assume (A5), (A6) hold. Then A : Ph × Ph → Ph; and there exist
u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤ v0.
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Proof. For s ≤ t from condition (A6) we obtain

A(t−1x, ty) ≤ 1

2ϕ(t)
t

(A(x, y) +A(x,
t

s
y)), ∀s, t ∈ (0, 1), x, y ∈ P. (2.2)

For any u, v ∈ Ph, there exist µ1, µ2 ∈ (0, 1), such that

µ1h ≤ u ≤
1
µ1
h, µ2h ≤ v ≤

1
µ2
h.

Let µ = min{µ2, µ1}. Then µ ∈ (0, 1). From (2.2) and the mixed monotone
properties of operator A and regarding 0 < µ, there exists 0 < µ′ < µ such that

A(u, v) ≤ A(
1
µ1
h, µ2h) ≤ A(

1
µ
h, µh)

≤ 1

2(ϕ(µ)
µ )

(A(h, h) +A(h,
µ

µ′
h))

≤ 1

2(ϕ(µ)
µ )

(A(h, h) +A(h, h))

=
1

(ϕ(µ)
µ )

(A(h, h)) ≤ 1
ϕ(µ)

A(h, h).

Regarding the inequality

A(u, v) ≥ A(µ1h,
1
µ2
h) ≥ A(µh,

1
µ
h),

we derive that

2A(u, v) ≥ A(µh,
1
µ
h) +A(µh,

1
µ
h)

≥ 2(
ϕ(µ)
µ

)(A(h, h) +A(h, h))

= 2(
ϕ(µ)
µ

)(A(h, h)) ≥ 2ϕ(µ)A(h, h).

Tehrefore, we obtain
A(u, v) ≥ ϕ(µ)A(h, h).

It follows from A(h, h) ∈ Ph that A(u, v) ∈ Ph. Hence we have A : Ph × Ph → Ph.
Since A(h, h) ∈ Ph, we can choose a sufficiently small number t0 ∈ (0, 1) such that

t0h ≤ A(h, h) ≤ 1
t0
h. (2.3)

For k > 2 we have

tk0h ≤ A(h, h) ≤ 1
tk0
h . (2.4)

Put u0 = t0
kh and v0 = 1

tk0
h. Evidently, u0, v0 ∈ Ph and u0 = t0

2kv0 < v0. Take

any r ∈ (0, t02k], then r ∈ (0, 1) and u0 ≥ rv0. By the mixed monotone properties of
A, we have A(u0, v0) ≤ A(v0, u0). Because t0 ∈ (0, 1), then there exists s0 ∈ (0, 1)
such that 0 < s0 ≤ t0. Further, combining condition (A2) with (2.3), and since
s0 ≤ t0 we have

A(u0, v0) = A(tk0h,
1
tk0
h)
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≥ 2(
ϕ(tk0)
tk0

)A(h, h)−A(h, h)

≥ (2(
ϕ(t0)
t20

)− 1)A(h, h) > A(h, h)

≥ tk0h = u0,

and

A(v0, u0) = A(
1
tk0
h, tk0h)

≤ 1

2(ϕ(tk0 )

tk0
)
(A(h, h) +A(h,

tk0
sk0
h))

≤ 1

2(ϕ(tk0 )

tk0
)
2A(h, h)

≤ A(h, h) ≤ 1
tk0
h = v0.

Consequently, we have u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤ v0. �

Corollary 2.2. If in (2.1) put s = t then we obtain (1.2). Consequently the Lemma
2.1 yields the Lemma 1.2.

Theorem 2.3. Suppose that P is a normal cone of E, and (A5), (A6) hold. Then
operator A has a unique fixed point x∗ in Ph. Moreover, for any initial x0, y0 ∈ Ph,
constructing successively the sequences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1) n = 1, 2, . . . ,

we have ‖xn − x∗‖ → 0,‖yn − x∗‖ → 0 as n→∞.

Proof. From Lemma 2.1, there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤ v0.

Construct recursively the sequences

un = A(un−1, vn−1), vn = A(vn−1, un−1), n = 1, 2, . . . .

Evidently u1 ≤ v1. By the mixed monotone properties of A, we obtain

un ≤ vn , n = 1, 2, . . . .

It also follows from Lemma 2.1 and the mixed monotone properties of A that

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0. (2.5)

Note that u0 ≥ rv0. We can get un ≥ u0 ≥ rv0 ≥ rvn, n = 1, 2, . . . . Let

tn = sup{t > 0|un ≥ tvn}, sn = sup{s > 0|un ≥ svn}, sn ≤ tn n = 1, 2, . . . .

Thus we have un ≥ tnvn, un ≥ snvn, n = 1, 2, . . ., then un ≥ tnvn ≥ snvn, also
un+1 ≥ un ≥ tnvn ≥ tnvn+1 ≥ snvn+1, n = 1, 2, . . .. Therefore, tn+1 ≥ tn, i.e., tn is
increasing with tn ⊂ (0, 1]. Suppose tn → t∗ as n→∞, then t∗ = 1. Otherwise, 0 <
t∗ < 1. Then from condition (A2) and tn ≤ t∗, we have A(un, vn) ≥ A(tnvn, 1

tn
un)

and A(un, vn) ≥ A(tnvn, 1
sn
un), so

un+1 = A(un, vn)
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≥ 1
2

(A(tnvn,
1
tn
un) +A(tnvn,

1
sn
un))

≥ ϕ(tn)
tn

A(vn, un) ≥ ϕ(t∗)
tn

A(vn, un)

=
ϕ(t∗)
tn

vn+1.

By the definition of tn, tn+1 ≥ ϕ(t∗)
tn

. Let n → ∞, we obtain t∗2 ≥ ϕ(t∗) > t∗2,
which is a contradiction. Thus, limn→∞ tn = 1. For any natural number p we have

θ ≤ un+p − un ≤ vn − un ≤ vn − tnvn = (1− tn)vn ≤ (1− tn)v0,

θ ≤ vn − vn+p ≤ vn − un ≤ (1− tn)v0.

Since the cone P is normal, we have

‖un+p − un‖ ≤M(1− tn)‖v0‖ → 0,

‖vn − vn+p‖ ≤M(1− tn)‖v0‖ → 0,

as n → ∞, where M is the normality constant of P . So we can claim that un
and vn are Cauchy sequences. Since E is complete, there exist u∗, v∗ such that
un → u∗, vn → v∗, as n → ∞. By (2.5), we know that un ≤ u∗ ≤ v∗ ≤ vn with
u∗, v∗ ∈ Ph and

θ ≤ v∗ − u∗ ≤ vn − un ≤ (1− tn)v0.

Further
‖v∗ − u∗‖ ≤M(1− tn)‖v0‖ → 0 (n→∞),

and thus u∗ = v∗. Let x∗ := u∗ = v∗ and then we obtain

un+1 = A(un, vn) ≤ A(x∗, x∗) ≤ A(vn, un) = vn+1.

Let n→∞, then we obtain x∗ = A(x∗, x∗). That is, x∗ is a fixed point of A in Ph.
Next we shall prove that x∗ is the unique fixed point of A in Ph. In fact, suppose
x̄ is a fixed point of A in Ph. Since x∗, x̄ ∈ Ph, there exists positive numbers
µ̄1, µ̄2, λ̄1, λ̄2 > 0 such that

µ̄1h ≤ x∗ ≤ λ̄1, µ̄2h ≤ x̄ ≤ λ̄2h.

Then we obtain

x̄ ≤ λ̄2h =
λ̄2

µ̄1
µ̄1h ≤

λ̄2

µ̄1
x∗, x̄ ≥ µ̄2h =

µ̄2

λ̄1
λ̄1h ≥

µ̄2

λ̄1
x∗.

Let e1 = sup{t > 0|tx∗ ≤ x̄ ≤ t−1x∗}. Evidently, 0 < e1 ≤ 1, e1x
∗ ≤ x̄ ≤ 1

e1
x∗.

Next we prove e1 = 1. If 0 < e1 < 1, then x̄ = A(x̄, x̄) ≥ A(e1x
∗, 1
e1
x∗), then

2A(x̄, x̄) ≥ 2A(e1x
∗,

1
e1
x∗) = A(e1x

∗,
1
e1
x∗) +A(e1x

∗,
1
e1
x∗)

≥ 2(
ϕ(e1)
e1

)A(x∗, x∗).

So we have

A(x̄, x̄) ≥ (
ϕ(e1)
e1

)A(x∗, x∗) ≥ ϕ(e1)
e1

A(x∗, x∗) ≥ ϕ(e1)A(x∗, x∗).

Since ϕ(e1) > e1, this contradicts the definition of e1. Hence e1 = 1, and we obtain
x̄ = x∗. Therefore, A has a unique fixed point x∗ in Ph. Note that [u0, v0] ⊂ Ph,
then we know that x∗ is the unique fixed point of A in [u0, v0].
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Now we construct the sequences recursively as follows:

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . . ,

for any initial points x0, y0 ∈ Ph. Since x0, y0 ∈ Ph we can choose small numbers
e2, e3 ∈ (0, 1) such that

e2h ≤ x0 ≤
1
e2
h, e3h ≤ y0 ≤

1
e3
h.

Let e∗ = min{e2, e3}. Then e∗ ∈ (0, 1) and

e∗h ≤ x0, y0 ≤
1
e∗
h.

We can choose a sufficiently large positive integer m such that[ϕ(e∗)
e∗

]m ≥ 1
e∗
.

Put ū0 = e∗mh, v̄0 = 1
e∗mh, it easy to see that ū0, v̄0 ∈ Ph and ū0 < x0, y0 < v̄0.

Let
ūn = A(ūn−1, v̄n−1), v̄n = A(v̄n−1, ūn−1), n = 1, 2, . . . .

Analogously, it follows that there exists y∗ ∈ Ph such that A(y∗, y∗) = y∗ and
limn→∞ ūn = limn→∞ v̄n = y∗. By the uniqueness of fixed point of operator A in
Ph. We get x∗ = y∗ and by induction ūn ≤ xn, yn ≤ v̄n, n = 1, 2, . . .. Since cone
P is normal we have limn→∞ xn = limn→∞ yn = x∗. �

Theorem 2.4. Let α ∈ (0, 1), A : P × P → P be a mixed monotone operator
satisfying

A(tx, t−1y) +A(tx, s−1y) ≥ 2t2α−1A(x, y), s, t ∈ (0, 1), s ≤ t x, y ∈ P. (2.6)

Suppose that B : P → P is an in increasing sub-homogeneous operator. Assume
also that

(i) there is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;
(ii) there exists a constant δ0 > 0 such that A(x, y) ≥ δ0Bx for all x, y ∈ P .

Then
(1) A : Ph × Ph → Ph, B : Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) +Bu0 ≤ A(v0, u0) +Bv0 ≤ v0;

(3) the operator A(x, x) +Bx = x has a unique solution x∗ in Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1) +Bxn−1, yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n→∞.

Proof. Notice that from (2.6) and Definition 1.3, we have

A(
1
t
x, ty) ≤ 1

2t2α−1
(A(x, y) +A(x,

t

s
y)), (2.7)

and B( 1
tx) ≤ 1

tBx for s, t ∈ (0, 1), x, y ∈ P and s ≤ t.
Since A(h0, h0), Bh0 ∈ Ph, there exist constants λ1, λ2, ν1, ν2 > 0 such that

λ1h ≤ A(h0, h0) ≤ λ2h, ν1h ≤ Bh0 ≤ ν2h .
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Also from h0 ∈ Ph, there exists a constant t0 ∈ (0, 1) such that t0h ≤ h0 ≤ 1
t0
h,

and let s0 ∈ (0, 1) such that s0 ≤ t0, then we have

s0h ≤ t0h ≤ h0 ≤
1
t0
h ≤ 1

s0
h.

From s0 ≤ t0, (2.6), (2.7) and the mixed monotone properties of operator A, we
have

A(h, h) ≥ A(t0h0,
1
t0
h0), A(h, h) ≥ A(t0h0,

1
s0
h0).

So we have
2A(h, h) ≥ 2t2α−1

0 A(h0, h0) .
By combining the inequalities above, we have

A(h, h) ≥ t2α−1
0 A(h0, h0) ≥ t2α0 A(h0, h0) ≥ λ1t

2α
0 h,

and

A(h, h) ≤ A(
1
t0
h0, t0h0) ≤ 1

2t2α−1
0

(A(h0, h0) +A(h0,
t0
s0
h0))

≤ 1
t2α0

A(h0, h0) ≤ λ2

tα0
h.

Noting that λ2
t2α0
, λ1t

2
0α > 0, we can get A(h, h) ∈ Ph. By Definition 1.3 and the

monotone property of operator B, we have

Bh ≤ B(
1
t0
h0) ≤ 1

t0
Bh0 ≤

ν2

t0
h, Bh ≥ B(t0h0) ≥ t0Bh0 ≥ ν1t0h.

Next we show B : Ph → Ph. For any x ∈ Ph, we can choose a sufficiently small
number µ ∈ (0, 1) such that

µh ≤ x ≤ 1
µ
h.

Consequently,

Bx ≤ B(
1
µ
h) ≤ 1

µ

ν2

t0
h, Bx ≥ B(µh) ≥ µt0ν1h.

Evidently, we have ν2
µt0
, µt0ν1 > 0. Thus Bx ∈ Ph; that is, B : Ph → Ph. So the

conclusion (1) holds. Now we define an operator T = A+B by T (x, y) = A(x, y) +
Bx. Then T : P × P → P is a mixed monotone operator and T (h, h) ∈ Ph. In the
following we show that there exists ϕ(t) ∈ (t, 1] with respect to s, t ∈ (0, 1), s ≤ t
such that

T (tx, t−1y) + T (tx, s−1y) ≥ 2(
ϕ(t)
t

)A(x, y), ∀, x, y ∈ P.

Consider the function

f(t) =
t2β−1 − t

t2α−1 − t2β−1
,

for t ∈ (0, 1), where β ∈ (α, 1). It is easy to prove that f is increasing in (0, 1) and

lim
t→0+

f(t) = 0, lim
t→1−

f(t) =
1− β
β − α

.

Further, fixing t ∈ (0, 1), we have

lim
β→1−

f(t) = lim
β→1−

t2β−1 − t
t2α−1 − t2β−1

= 0.
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So there exists β0(t) ∈ (0, 1) with respect to t such that

t2β0(t)−1 − t
t2α−1 − t2β0(t)−1

≤ δ0, t ∈ (0, 1).

Hence we have

A(x, y) ≥ δ0Bx ≥
t2β0(t)−1 − t

t2α−1 − t2β0(t)−1
Bx, ∀t ∈ (0, 1), x, y ∈ P.

Then we obtain

t2α−1A(x, y) + tBx ≥ t2β0(t)−1[A(x, y) +Bx], ∀t ∈ (0, 1), x, y ∈ P.
Consequently, for any t ∈ (0, 1) and x, y ∈ P ,

T (tx, t−1y) + T (tx, s−1y) = A(tx, t−1y) +B(tx) +A(tx, s−1y) +B(tx)

≥ 2t2α−1A(x, y) + 2tBx

≥ 2t2β0(t)−1(A(x, y) +Bx)

= 2t2β0(t)−1T (x, y).

Let ϕ(t) = t2β0(t), t ∈ (0, 1). Then ϕ(t) ∈ (t2, 1] and

T (tx, t−1y) + T (tx, s−1y) ≥ 2(
ϕ(t)
t

)A(x, y),

for any s, t ∈ (0, 1) and x, y ∈ P . Hence the condition (A2) in Lemma 2.1 is satisfied.
By Lemma 2.1 we conclude that: (a) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that
rv0 ≤ u0 < v0, u0 ≤ T (u0, v0) ≤ T (v0, u0) ≤ v0; (b) T has a unique fixed point x∗

in Ph; (c) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = T (xn−1, yn−1), yn = T (yn−1, xn−1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n→∞. That is, conclusions (2)–(4) hold. �

Corollary 2.5. Let α ∈ (0, 1), A : P × P → P is a mixed monotone operator.
Assume (2.6) holds and there is h0 > θ such that A(h0, h0) ∈ Ph. Then

(1) A : Ph × Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤ v0;

(3) the operator A(x, x) = x has a unique solution x∗ in Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n→∞.

3. Solution to fractional differential equations

In this section, we shall propose a method for showing the existence and unique-
ness of a solution for the fractional differential equation

Dα

Dt
u(s, t) + f(s, t, u(s, t), v(s, t)) = 0,

0 < ε < T, T ≥ 1, t ∈ [ε, T ], 0 < α < 1, s ∈ [a, b]
(3.1)

subject to the condition

u(s, ζ) = u(s, T ), (s, ζ) ∈ [a, b]× (ε, t), (3.2)
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where Dα is the Riemann-Liouville fractional derivative of order α. We will suppose
that a, b ∈ (0,∞), a < b. Let

E = C([a, b]× [ε, T ]).

Consider the Banach space of continuous functions on [a, b]× [ε, T ] with sup norm
and set

P = {y ∈ C([a, b]× [ε, T ]) : min
(s,t)∈[a,b]×[ε,T ]

y(s, t) ≥ 0}.

Then P is a normal cone.

Lemma 3.1. Let (s, t) ∈ [a, b] × [ε, T ], (s, ζ) ∈ [a, b] × (ε, t) and 0 < α < 1. Then
the problem

Dα

Dt
u(s, t) + f(s, t, u(s, t), v(s, t)) = 0

with the boundary value condition u(s, ζ) = u(s, T ) has a solution u0 if and only if
u0 is a solution of the fractional integral equation

u(s, t) =
∫ T

ε

G(t, ξ)f(s, ξ, u(s, ξ), v(s, t))dξ,

where

G(t, ξ) =


tα−1(ζ−ξ)α−1−tα−1(T−ξ)α−1

(ζα−1−Tα−1)Γ(α) − (t−ξ)α−1

Γ(α) , ε ≤ ξ ≤ ζ ≤ t ≤ T,
−tα−1−(T−ξ)α−1

(ζα−1−Tα−1)Γ(α) −
(t−ξ)α−1

Γ(α) , ε ≤ ζ ≤ ξ ≤ t ≤ T,
−tα−1(T−ξ)α−1

(ζα−1−Tα−1)Γ(α) , ε ≤ ζ ≤ t ≤ ξ ≤ T.

Proof. From Dα

Dt u(s, t) + f(s, t, u(s, t), v(s, t)) = 0 and the boundary condition, it
is easy to see that u(s, t)− c1tα−1 = −Iαε f(s, t, u(s, t), v(s, t)). By the definition of
a fractional integral, we obtain

u(s, t) = c1t
α−1 −

∫ ζ

ε

(t− ξ)α−1

Γ(α)
f(s, ξ, u(s, ξ), v(s, ξ))dξ,

u(s, ζ) = c1T
α−1 −

∫ ζ

ε

(ζ − ξ)α−1

Γ(α)
f(s, ξ, u(s, ξ), v(s, ξ))dξ,

u(s, T ) = c1T
α−1 −

∫ T

ε

(t− ξ)α−1

Γ(α)
f(s, ξ, u(s, ξ), v(s, ξ))dξ.

Since u(s, ζ) = u(s, T ), we obtain

c1 =
1

ζα−1 − Tα−1

∫ ζ

ε

(ζ − ξ)α−1

Γ(α)
f(s, ξ, u(s, ξ), v(s, ξ))dξ

− 1
ζα−1 − Tα−1

∫ T

ε

(T − ξ)α−1

Γ(α)
f(s, ξ, u(s, ξ), v(s, ξ))dξ.

Hence

u(s, t) =
tα−1

ζα−1 − Tα−1

∫ ζ

ε

(ζ − ξ)α−1

Γ(α)
f(s, ξ, u(s, ξ), v(s, ξ))dξ

− tα−1

ζα−1 − Tα−1

∫ T

ε

(T − ξ)α−1

Γ(α)
f(s, ξ, u(s, ξ), v(s, ξ))dξ

−
∫ t

ε

(t− ξ)α−1

Γ(α)
f(s, ξ, u(s, ξ), v(s, ξ))dξ
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=
∫ T

ε

G(t, ξ)f(s, ξ, u(s, ξ), v(s, ξ))dξ.

This completes the proof. �

Theorem 3.2. Let 0 < ε < T and let f(s, t, u(s, t), v(s, t)) be function in the space
C([a, b], [ε, T ], [0,∞], [0,∞]), that is increasing in u, decreasing in v, with positive
values. Also assume that for any u, v ∈ P and c, c′ ∈ (0, 1) with c′ ≤ c, there exists
ϕ(c) ∈ (c2, 1] and ϕ is decreasing such that∫ T

ε

G(t, ξ)f(s, ξ, cu(s, ξ), c−1v(s, ξ))dξ +
∫ T

ε

G(t, ξ)f(s, ξ, cu(s, ξ), c′−1
v(s, ξ))dξ

≥ 2
ϕ(c)
c

∫ T

ε

G(t, ξ)f(s, ξ, u(s, ξ), v(s, ξ))dξ,

and f(s, t, u(s, t), v(s, t)) = 0, whenever G(s, t) < 0. Also assume that there exist
M1 > 0, M2 > 0 and h 6= θ ∈ P such that

M1h(t) ≤
∫ T

ε

G(t, ξ)f(s, ξ, u(s, ξ), v(s, ξ))dξ ≤M2h(t),

for all t ∈ [ε, T ], where G(t, s) is the green function defined in Lemma 3.1. Then
problem (3.1) with the boundary value condition (3.2) has unique solution u∗.

Proof. By using Lemma (3.1), the problem is equivalent to the integral equation

u(s, t) =
∫ T

ε

G(t, ξ)f(s, ξ, u(s, ξ), v(s, ξ))dξ,

where

G(t, ξ) =


tα−1(η−ξ)α−1−tα−1(T−ξ)α−1

(ηα−1−Tα−1)Γ(α) − (t−ξ)α−1

Γ(α) ε ≤ ξ ≤ η ≤ t ≤ T
−tα−1−(T−ξ)α−1

(ηα−1−Tα−1)Γ(α) −
(t−ξ)α−1

Γ(α) ε ≤ η ≤ ξ ≤ t ≤ T
−tα−1(T−ξ)α−1

(ηα−1−Tα−1)Γ(α) ε ≤ η ≤ t ≤ ξ ≤ T

Define the operator A : P × P → E by

A(u(s, t), v(s, t)) =
∫ T

ε

G(t, ξ)f(s, ξ, u(s, ξ), v(s, ξ))dξ.

Then u is solution for the problem if and only if u = A(u, u). It is easy to see
to check that the operator A is increasing in u and decreasing in v on P . By
assumptions of theorem we have;

(A7) there exists h ∈ P with h 6= θ such that

M1h(t) ≤
∫ T

ε

G(t, ξ)f(s, ξ, u(s, ξ), v(s, ξ))dξ ≤M2h(t),

thus A(h, h) ∈ Ph,
(A8) for any u, v ∈ P and c, c′ ∈ (0, 1) such that c′ ≤ c , there exists ϕ(c) ∈ (c2, 1]

and ϕ is decreasing such that

A(cu, c−1v) +A(cu, c′−1
v) ≥ 2

ϕ(c)
c
A(u, v).

Now by using theorem (2.3), the operator A has a unique fixed point u∗ in Ph.
Therefore the boundary value problem (3.1) has unique solution u∗. �
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