
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 292, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

MULTIPLICITY OF POSITIVE SOLUTIONS FOR
SECOND-ORDER DIFFERENTIAL INCLUSION SYSTEMS

DEPENDING ON TWO PARAMETERS

ZIQING YUAN, LIHONG HUANG, CHUNYI ZENG

Abstract. We consider the two-point boundary-value system

−u′′
i + ui ∈ λ∂uiF (u1, . . . , un) + µ∂uiG(u1, . . . , un),

u′
i(a) = u′

i(b) = 0 ui ≥ 0, 1 ≤ i ≤ n.
Applying a version of nonsmooth three critical points theorem, we show the
existence of at least three positive solutions.

1. Introduction

In the previous decades, there has been a lot of interest in scalar periodic
problems driven by the one dimension p-laplacian. Some results can be found
in [3, 18, 25, 24] and references therein. We mention the works by Guo [12], Pino
et al [23], Fabry and Fayad [9] and Dang and Oppenheimer [7]. The authors used
degree theory and assumed that the right-hand side nonlinearity f(t, ζ) is jointly
continuous in t ∈ T = [a, b] and ζ ∈ R. Their conditions on f are also asymptotic
and there is no interaction between the nonlinearity and the Fučik spectrum of the
one-dimensional p-laplacian. Especially, Heidarkhani and Yu [13] considered the
existence of at least three solutions for a class of two-point boundary-value systems
of the form

−u′′i + ui = λ∂ui
F (u1, . . . , un) + µ∂ui

G(u1, . . . , un),

u′i(a) = u′i(b) = 0
(1.1)

for 1 ≤ i ≤ n, where F,G : [a, b] × Rn → R are C1-functionals with respect to
(u1, . . . , un) ∈ Rn for a.e. x ∈ [a, b].

From the above results, a natural question arises: what will happen when the
potential functions F and G are not differentiable in (1.1)? This is the main
point of interest in our paper. Here, we extend the main results in [13] to a
class of perturbed Motreanu-Panagiotopoulos functionals [19], which raises some
essential difficulties. The presence of non-differentiable function probably leads
to no solution of (1.1) in general. Therefore to overcome this difficulty, setting
fi = ∂ui

F (u1, . . . , un) and gi = ∂ui
G(u1, . . . , un), we consider such functions fi
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and gi, which are locally essentially bounded measurable and we fill the discontinu-
ity gaps of fi and gi, replacing fi and gi by intervals [f−i (u1, . . . , un), f+

i (u1, . . . , un)]
and [g−i (u1, . . . , un), g+

i (u1, . . . , un)], where

f−i (u1, . . . , un) = lim
δ→0+

ess inf |u′i−ui|<δ ∂ui
F (u1, . . . , u

′
i, . . . , un),

f+
i (u1, . . . , un) = lim

δ→0+
ess sup|u′i−ui|<δ ∂ui

F (u1, . . . , u
′
i, . . . , un),

g−i (u1, . . . , un) = lim
δ→0+

ess inf |u′i−ui|<δ ∂ui
G(u1, . . . , u

′
i, . . . , un),

g+
i (u1, . . . , un) = lim

δ→0+
ess sup|u′i−ui|<δ ∂ui

G(u1, . . . , u
′
i, . . . , un).

Then f−i (u1, . . . , un), g−i (u1, . . . , un) are lower semi-continuous, and f+
i (u1, . . . , un),

g+
i (u1, . . . , un) are upper semi-continuous.

So instead of (1.1) we consider the following second-order Neumann inclusion
systems on a bounded interval [a, b] in R (a < b) with nonsmooth potentials (hemi-
variational inequality):

−u′′i + ui ∈ λ∂ui
F (u1, . . . , un) + µ∂ui

G(u1, . . . , un),

u′i(a) = u′i(b) = 0 , ui ≥ 0 for 1 ≤ i ≤ n,
(1.2)

where λ, µ are two positive parameters, F,G : Rn → R are measurable and lo-
cally Lipschitz functions. We denote by ∂ui

F (u1, . . . , un) (1 ≤ i ≤ n) the par-
tial generalized gradient of F (u1, . . . , un) with respect to ui (1 ≤ i ≤ n), and by
∂uiG(u1, . . . , un) (1 ≤ i ≤ n) the partial generalized gradient of G(u1, . . . , un) to
ui (1 ≤ i ≤ n). Hemivariational inequality is a new type of variational expressions
which arises in problems of engineering and mechanics, when one deals with non-
smooth and nonconvex energy functionals. For several concrete applications, we
refer the reader to the monographs of [11, 19, 20, 21, 22] and references [8, 15, 10]
and therein. More precisely, Iannizzoto [14] established a nonsmooth three critical
points theorem and give two applications for variational-hemivariational inequalities
depending on two parameters. Marano and Motreanu [17] obtained a nonsmooth
version of Ricceri’s theorem and used the theorem to discuss the existence of solu-
tions to the following discontinuous variational-hemivariational inequality problem

−
∫

Ω

∇u(x) · ∇(v(x)− u(x)) dx

≤ λ
∫

Ω

[J◦(x, u(x); v(x)− u(x)) + (µK)◦(x, u(x); v(x)− u(x))] dx.

Kristály et al [16] generalized a result of Ricceri concerning the existence of three
critical points of certain nonsmooth functional, also gave two applications, both in
the theory of differential inclusions. Our approach is based on the nonsmooth crit-
ical point for non-differential functions due to Chang [5] and the nonsmooth three
critical points which was proved by Iannizzotto [14]. Compared with the results
in [14, 16, 17], our framework presents new nontrivial difficulties. In particular,
the presence of set-valued reaction terms ∂G and ∂F require completely different
devices in order to verify the appropriate conditions.
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We say that u = (u1, . . . , un) ∈ (W 1,2([a, b]))n is a weak solution of (1.2) if the
following conditions are satisfied∫ b

a

u′i(x)v′i(x) dx+
∫ b

a

ui(x)vi(x) dx

+ λ

∫ b

a

F 0
ui

(u1(x), . . . , un(x);−vi(x)) dx

+ µ

∫ b

a

G0
ui

(u1(x), . . . , un(x);−vi(x)) dx ≥ 0

(1.3)

for 1 ≤ i ≤ n and all v = (v1, . . . , vn) ∈ (W 1,2([a, b]))n. Moreover we assume that
the nonsmooth potential functions F and G satisfy the following assumptions:

(A1) F and G are regular on Rn (in the sense of Clarke [6]);
(A2) There exists k1 > 0 and a1 > 0 such that |ω1| + . . . + |ωn| ≤ k1(|u1| +

. . . + |un|) + a1 for all (u1, . . . , un) ∈ Rn and all ωi ∈ ∂ui
F (u1, . . . , un)

(1 ≤ i ≤ n);
(A3) There exists k2 > 0 and a2 > 0 such that |ξ1|+ . . .+ |ξn| ≤ k2(|u1|+ . . .+

|un|)+a2 for all (u1, . . . , un) ∈ Rn and all ξi ∈ ∂ui
G(u1, . . . , un) (1 ≤ i ≤ n).

Our main results are the following:

Theorem 1.1. Assume that (A1)–(A3) are satisfied and there exist 2n+ 3 positive
constants d, e, rηi, γi, for 1 ≤ i ≤ n, such that d+ e < b− a, 0 < k1 <

M1
2nr and

n∑
i=1

η2
i ≤ c

n∑
i=1

γ2
i ,

where c = de(b− a− 4
5 (d+ e)) + 4

3 (d+ e), and
(A4) F (ζ1, . . . , ζn) ≥ 0 for each ζi ∈ [0, deγi] (1 ≤ i ≤ n) and F (0, . . . , 0) = 0;
(A5)

M1 =
∑n
i=1 η

2
i

c
∑n
i=1 γ

2
i

(b− a− (d+ e))F (deγ1, . . . , deγn)

− (b− a) max
(ζ1,...,ζn)∈A1

F (ζ1, . . . , ζn) > 0,

where

A1 = {(ζ1, . . . , ζn)|
n∑
i=1

ζ2
i ≤

2de
b− a

n∑
i=1

η2
i };

then, there exist λ′, λ′′ ∈ (0, ν], 0 < ν < 1
2nk1

, λ′ < λ′′, µ1 > 0 and σ1 > 0 such
that for every λ ∈ [λ′, λ′′] and µ ∈ (0, µ1), system (1.2) has at least three positive
solutions in (W 1,2([a, b]))n whose norms are less than σ1.

If n = 1, then system (1.2) turns into

−u′′ + u ∈ λ∂uF (u) + µ∂uG(u),

u′(a) = u′(b) = 0, u ≥ 0.
(1.4)

From Theorem 1.1, we have the following result.

Corollary 1.2. Assume that the following conditions are satisfied:
(A1’) F and G are regular on R;
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(A2’) There exists k3 > 0 and a3 > 0 such that |ω| ≤ k3|u|+ a3 for all u ∈ R and
all ω ∈ ∂uF (u);

(A3’) There exists k4 > 0 and a4 > 0 such that |ξ| ≤ k4|u|+ a4 for all u ∈ R and
all ξ ∈ ∂uG(u);

and there exist five positive constants d, e, r, η, γ such that d + e < b − a, k3 <
M2
2r

and η2 ≤ cγ2, where c = de(b− a− 4
5 (d+ e)) + 4

3 (d+ e), and

(A4’) F (u) ≥ 0 for all u ∈ [0, deγ] and F (0) = 0;
(A5’) M2 = η2

cγ2 (b− a− (d+ e))F (deγ)− (b− a) maxu∈A2 F (u) > 0, where A2 =
{u| − η( 2de

b−a )1/2 ≤ u ≤ η( 2de
b−a )1/2};

then, there exist λ′, λ′′ ∈ (0, ν], 0 < ν < 1
2nk3

, λ′ < λ′′, µ1 > 0 and σ1 > 0 such
that for every λ ∈ [λ′, λ′′] and µ ∈ (0, µ1), system (1.4) has at least three positive
solutions in W 1,2([a, b]) whose norms are less than σ1.

Next, we give an example that illustrate Theorem 1.1 (and Corollary 1.2). Set

F (u) =


10199e−9900ue−u

3
u ≥ 10,

u200e−u
4

0 < u < 10,
0 u ≤ 0,

G(u) =


u u ≥ 1,
u2 0 < u < 1,
0 u ≤ 0,

and choose a = 0, b = 1, d = 0.25, e = 0.5, η = 0.5, γ = 16. Then it is easy to
check that F (u) and G(u) satisfy the assumptions in Theorem 1.1.

2. Preliminaries

In this section we state some definitions and lemmas, which will be used in this
article. First of all, we give some definitions: (X, ‖ · ‖) denotes a (real) Banach
space and (X∗, ‖ · ‖∗) its topological dual. While xn → x (respectively, xn ⇀ x) in
X means the sequence {xn} converges strongly (respectively, weakly) in X.

Definition 2.1. A function ϕ: X → R is locally Lipschitz if for every u ∈ X there
exist a neighborhood U of u and L > 0 such that for every ν, ω ∈ U ,

|ϕ(ν)− ϕ(ω)| ≤ L‖ν − ω‖.

If ϕ is locally Lipschitz on bounded sets, then clearly it is locally Lipschitz.

Definition 2.2. Let ϕ : X → R be a locally Lipschitz functional and u, ν ∈ X, the
generalized derivative of ϕ in u along the direction ν, is

ϕ0(u; ν) = lim sup
ω→u,τ→0+

ϕ(ω + τν)− ϕ(ω)
τ

.

It is easy to see that the function ν → ϕ0(u; ν) is sublinear, continuous and so is
the support function of a nonempty, convex and w∗− compact set ∂ϕ(u) ⊂ X∗,

∂ϕ(u) = {u∗ ∈ X∗ : 〈u∗, ν〉X ≤ ϕ0(u; ν)}.

If ϕ ∈ C1(X), then ∂ϕ(u) = {ϕ′(u)}.

Clearly, these definitions extend those of the Gâteaux directional derivative and
gradient.
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Definition 2.3. A mapping A : X → X∗ is of type (S)+, for every sequence {un}
such that un ⇀ u ∈ X and

lim sup
n
〈A(un), un − u〉 ≤ 0,

one has un → u.

Definition 2.4. Let ϕ : X → R be a locally Lipschitz functional and X : X →
R ∪ {+∞} be a proper, convex, lower semicontinuous (l.s.c.) functional whose
restriction to the set

dom(X ) = {u ∈ X : X (u) < +∞}

is continuous, then ϕ+ X is a Motreanu-Panagiotopouls functional.

In most applications, C is a nonempty, closed, convex subset of X; the indicator
of C is the function XC : X → R ∪ {+∞} defined by

XC =

{
0 if u ∈ C,
+∞ if u 6∈ C.

It is easy to see that XC is proper, convex and l.s.c., while its restriction to
dom(X ) = C is the constant 0.

Definition 2.5. Let ϕ + X be a Motreanu-Panagiotopouls functional, u ∈ X.
Then, u is a critical point of ϕ+ X if for every v ∈ X

ϕ◦(u; v − u) + X (v)−X (u) ≥ 0.

The next propositions will be used later.

Proposition 2.6 ([6]). Let h : X → R be locally Lipschitz on X. Then
(i) h◦(u; v) = max{〈ω, v〉X : ω ∈ ∂h(u)} for all u, v ∈ X,
(ii) (Lebourg’s mean value theorem) Let u and v be two points in X, then there

exists a point ζ in the open segment between u and v and ωζ ∈ ∂h(ζ) such
that

h(u)− h(v) = 〈ωζ , u− v〉X .

We say that h is regular at u ∈ X (in the sense of Clarke [6]) if for all z ∈ X the
usual one-sided directional derivative

h′(u; z) = lim
t→0+

h(u+ tz)− h(u)
t

exists and h′(u; z) = h◦(u; z). Moreover, we say that h is regular on X, if it is
regular in every point u ∈ X.

Proposition 2.7. Let h : X → R be a locally Lipschitz function which is regular
at (u1, . . . , un) ∈ X, then

(i)

∂h(u1, . . . , un) ⊂ ∂u1h(u1, . . . , un)× . . .× ∂un
h(u1, . . . , un),

where ∂uih(u1, . . . , un) denotes the partial generalized gradient of
h(u1, . . . , ui, . . . , un) to ui for 1 ≤ i ≤ n.

(ii) h◦(u1, . . . , un; v1, . . . , vn) ≤ h◦1(u1, . . . , un; v1) + . . .+ h◦n(u1, . . . , un; vn) for
all (v1, . . . , vn) ∈ X.
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Proof. For the proof of (i), see [6, Proposition 2.3.15]. From Proposition 2.6 (i),
it follows that there exists a ω ∈ ∂h(u, v) such that h◦(u; v) = 〈ω, v〉X . From (i)
we have ω = (ω1, . . . , ωn), where ωi ∈ ∂uih(u1, . . . , un) (1 ≤ i ≤ n), and using the
definition of the generalized gradient, we derive h◦(u; v) = 〈ω1, v1〉W 1,2([a,b]) + . . .+
〈ωn, vn〉W 1,2([a,b]) ≤ h◦1(u1, . . . , un; v1) + . . .+ h◦n(u1, . . . , un; vn). �

The following theorems are the main tools for proving our main results.

Theorem 2.8 (see [14]). Let (X, ‖ · ‖) be a reflexive Banach space, Λ ⊂ R an
interval, C a nonempty, closed, convex subset of X, N ∈ C1(X,R) a sequentially
weakly l.s.c. functional, bounded on any bounded subset of X, such that N ′ is of
type (S)+, Γ : X → R is a locally Lipschitz functional with compact gradient, and
ρ1 ∈ R. Assume also that the following conditions hold:

(i) supλ∈Λ infu∈C [N (u)+λ(ρ1−Γ(u))] < infu∈C supλ∈Λ[N (u)+λ(ρ1−Γ(u))];
(ii) lim‖u‖→+∞[N (u)− λΓ(u)] = +∞ for every λ ∈ Λ.

Then there exist λ′, λ′′ ∈ Λ (λ′ < λ′′) and σ1 > 0 such that for every λ ∈ [λ′, λ′′]
and every locally Lipschitz functional G : X → R with compact gradient, there exists
µ1 > 0 such that for every µ ∈ (0, µ1), the functional N − λΓ − µG + XC has at
least three critical points whose norms are less than σ1.

Theorem 2.9 ([2]). Let X be a nonempty set and Φ, Ψ two real functions on
X. Assume that Φ(u) ≥ 0 for every u ∈ X and there exists u0 ∈ X such that
Φ(u0) = Ψ(u0) = 0. Further, assume that there exist u1 ∈ X, r > 0 such that
Φ(u1) > r and

sup
Φ(u)<r

Ψ(u) < r
Ψ(u1)
Φ(u1)

.

Then, for every h > 1 and for every ρ ∈ R satisfying

sup
Φ(u)<r

Ψ(u) +
rΨ(u1)

Φ(u1) − supΦ(u)<r Ψ(u)

h
< ρ < r

Ψ(u1)
Φ(u1)

,

one has

sup
λ∈R

inf
u∈X

[Φ(u) + λ(−Ψ(u) + ρ)] < inf
u∈X

sup
λ∈[0,ν]

[Φ(u) + λ(−Ψ(u) + ρ))],

where

ν =
hr

rΨ(u1)
Φ(u1) − supΦ(u)<r(Φ(u))

.

3. Proof of main results

Let X = (W 1,2([a, b]))n equipped with the norm

‖(u1, . . . , un)‖ =
( n∑
i=1

‖ui‖2
)1/2

,

where ‖ui‖ = (
∫ b
a

(|u′i(x)|2 + |ui(x)|2) dx)1/2 for 1 ≤ i ≤ n, and we introduce the
functionals Φ,Ψ : X → R for each u = (u1, . . . , un) ∈ X, as follows

Φ(u) =
n∑
i=1

1
2
‖ui‖2, Ψ(u) =

∫ b

a

F (u1(x), . . . , un(x)) dx
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and

J(u) =
∫ b

a

G(u1(x), . . . , un(x)) dx.

Let C = {u ∈ X : u(x) ≥ 0 for every x ∈ [a, b]}, then for all λ, µ > 0 and u ∈ X,

ϕ(u) = Φ(u)− λΨ(u)− µJ(u) + XC(u).

The next lemma displays some properties of Φ.

Lemma 3.1. Φ ∈ C1(X,R) and its gradient, defined for u, v ∈ X by

〈Φ′(u), v〉 =
∫ b

a

∇u(x)∇v(x) dx

is of type (S)+, where u = (u1, . . . , un) and v = (v1, . . . , vn).

The proof of the above lemma is similar to the one in Chabrowski [4, Section
2.2]. We omit it here. Next we consider some properties of Ψ.

Lemma 3.2. If (A1)–(A2) are satisfied, then Ψ(u) : X → R is a locally Lipschitz
function with compact gradient. Moreover,

Ψ◦(u1, . . . , un; v1, . . . , vn) ≤
∫ b

a

F ◦(u1, . . . , un; v1, . . . , vn) dx, (3.1)

for all (u1, . . . , un), (v1, . . . , vn) ∈ X.

Proof. First, let u = (u1, . . . , un), v = (v1, . . . , vn) ∈ X be fixed elements. Using
the regularity of F and Lebourg’s mean value theorem (see Proposition 2.6) we
derive a ω ∈ ∂F (ζ1, . . . , ζn) such that

F (u)− F (v) = 〈ω, u− v〉,
where (ζ1, . . . , ζn) is in the open line segment between (u1, . . . , un) and (v1, . . . , vn).
Using Proposition 2.7, there exist ωi ∈ ∂ζi

F (ζ1, . . . , ζn) (1 ≤ i ≤ n), such that

F (u1, . . . , un)− F (v1, . . . , vn) = ω1(u1 − v1) + . . .+ ωn(un − vn). (3.2)

From (A1) and (3.2), we obtain

|F (u1, . . . , un)− F (v1, . . . , vn)|
≤ (|ω1|+ . . .+ |ωn|)(|u1 − v1|+ . . .+ |un − vn|)
≤ [k1(|u1|+ . . .+ |un|+ |v1|+ . . .+ |vn|) + a1](|u1 − v1|+ . . .+ |un − vn|).

(3.3)
Using (3.3), Hölder’s inequality and the fact the embeddingW 1,2([a, b]) ↪→ L2([a, b])
is continuous, we derive

|Ψ(u1, . . . , un)−Ψ(v1, . . . , vn)|

≤ nk1

n∑
i=1

(‖ui‖2 + ‖vi‖2 +m1)(‖u1 − v1‖2 + . . .+ ‖un − vn‖2)

≤ c1
n∑
i=1

(‖ui‖+ ‖vi‖+m1)(‖u1 − v1‖+ . . .+ ‖un − vn‖)

for some c1 > 0, m1 > 0 and ‖ · ‖2 denotes the L2−norm. From this relation it
follows that Ψ is locally Lipschitz on X.
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Now choose u = (u1, . . . , un), h = (h1, . . . , hn) ∈ X, since F (u1, . . . , un) is
continuous, F ◦(u1, . . . , un;h1, . . . , hn) can be expressed as the upper limit of

F (u0
1 + th1, . . . , u

0
n + thn)− F (u0

1, . . . , u
0
n)

t
,

where t→ 0+ taking rational values and (u0
1, . . . , u

0
n)→ (u1, . . . , un) taking values

in a countable dense subset of X. Therefore, the map

x 7→ F ◦(u1(x), . . . , un(x);h1(x), . . . , hn(x))

is also measurable. By (A2), the map x 7→ F ◦(u1(x), . . . , un(x);h1(x), . . . , hn(x))
belongs to L1([a, b]). Since X is separable, there exist functions (uk1 , . . . , u

k
n) ∈ X

and numbers tk → 0+ such that (uk1 , . . . , u
k
n)→ (u1, . . . , un) in X and

Ψ◦(u1, . . . , un;h1, . . . , hn) = lim
k→+∞

Ψ(uk1 + tkh1, . . . , u
k
n + tkhn)−Ψ(uk1 , . . . , u

k
n)

tk
.

We define gn : [a, b]→ R ∪ {+∞} by

gk(x) = −F (uk1 + tkh1, . . . , u
k
n + tkhn)− F (uk1 , . . . , u

k
n)

tk
+ k1(|h1|+ . . .+ |hn|)

×
(
|uk1 |+ . . .+ |ukn|+ |uk1 + tkh1|+ . . .+ |ukn + tkhn|+

a1

k1

)
.

Then the function gk is measurable and nonnegative (see (3.3)). From Fatou’s
Lemma, we have

I = lim sup
k→+∞

∫ b

a

[−gk(x)] dx ≤
∫ b

a

lim sup
k→+∞

[−gk(x)] dx = H.

Let Lk = Bk + gk, where

Bk(x) =
F (uk1 + tkh1, . . . , u

k
n + tkhn)− F (uk1 , . . . , u

k
n)

tk
.

From the Lebesgue dominated convergence theorem, we obtain

lim sup
k→+∞

∫ b

a

Lk(x) dx

= 2k1

∫ b

a

(|h1(x)|+ . . .+ |hn(x)|)
(
|u1(x)|+ . . .+ |un(x)|+ a1

2k1

)
dx.

Hence, we derive

I = lim sup
k→+∞

Ψ(uk1 + tkh1, . . . , u
k
n + tkhn)−Ψ(uk1 , . . . , u

k
n)

tk
− lim
k→+∞

∫ b

a

Lk dx

= Ψ◦(u1, . . . , un;h1, . . . , hn)− 2k1

∫ b

a

(|h1(x)|+ . . .+ |hn(x)|)

×
(
|u1(x)|+ . . .+ |un(x)|+ a1

2k1

)
dx.

Now, we obtain the estimatesH ≤ HB−HL, whereHB =
∫ b
a

lim supk→+∞Bk(x) dx
and HL =

∫ b
a

lim infk→+∞ Lk(x) dx. Since (uk1(x), . . . , ukn(x))→ (u1(x), . . . , un(x))
a.e. in [a, b] and tk → 0+, we derive

HL = 2k1

∫ b

a

(|h1(x)|+ . . .+ |hn(x)|)
(
|u1(x)|+ . . .+ |un(x)|+ a1

2k1

)
dx.
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On the other hand,

HB =
∫ b

a

lim sup
k→+∞

F (uk1 + tkh1, . . . , u
k
n + tkhn)− F (uk1 , . . . , u

k
n)

tk
dx

≤
∫ b

a

lim sup
(u0

1,...,u
0
n)→(u1,...,un), t→0+

F (u0
1 + th1, . . . , u

0
n + thn)− F (u0

1, . . . , u
0
n)

t
dx

=
∫ b

a

F ◦(u1, . . . , un;h1, . . . , hn) dx,

which implies (3.1).
At last, we prove that ∂Ψ is compact. Let {uk}k≥1 be a sequence in X, where

uk = (uk1 , . . . , u
k
n), such that ‖uk‖ ≤ M and choose ωk ∈ ∂Ψ(uk), where ωk =

(ωk1 , . . . , ω
k
n), k ≥ 1, k ∈ N and M > 0. From (A1), for every v = (v1, . . . , vn) ∈ X,

we obtain

〈ωk, v〉

≤
∫ b

a

|ωk(x)||v(x)|dx ≤
∫ b

a

k1

(
|uk1 |+ . . .+ |ukn|+

a1

k1

)
(|v1|+ . . .+ |vn|) dx

≤ k1

[( ∫ b

a

(|uk1 |+ . . .+ |ukn|)2 dx
)1/2

+
a1

k1
(b− a)1/2

]
×
(∫ b

a

(|v1|+ . . .+ |vn|)2 dx
)1/2

= k1

[( ∫ b

a

(|uk1 |2 + . . .+ |ukn|2 + 2|uk1 ||uk2 |+ . . .+ 2|ukn−1||ukn|) dx
)1/2

+
a1

k1
(b− a)1/2

]( ∫ b

a

(|v1|2 + . . .+ |hn|2 + 2|v1||v2|+ . . .+ 2|vn−1||vn|) dx
)1/2

≤ k1

[
n
(∫ b

a

(|uk1 |2 + . . .+ |ukn|2) dx
)1/2

+
a1

k1
(b− a)1/2

]
×
(∫ b

a

(|v1|2 + . . .+ |vn|2) dx
)1/2

≤
(
c1‖uk‖+

a1

k1
(b− a)1/2

)
‖v‖

≤
(
c1M +

a1

k1
(b− a)1/2

)
‖v‖,

where c1 is a positive constant. Hence

‖ωk‖∗ ≤ c1M +
a1

k1
(b− a)1/2 = c2 .

This means that {ωk} is bounded. Passing to a subsequence ωk ⇀ ω ∈ X∗, where
ω = (ω1, . . . , ωn). We need to prove that the convergence is strong.

We proceed by contradiction. Suppose that there exists ε > 0, such that for
every k ∈ N

‖ωk − ω‖∗ > ε,

where ωk = (ωk1 , . . . , ω
k
n). That is for all k ∈ N, there exists a vk = (vk1 , . . . , v

k
n) ∈

B(0, 1)× . . .×B(0, 1) such that

〈ωk − ω, vk〉 > ε . (3.4)
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Since {vk}k≥1 is bounded, passing to a subsequence, vn ⇀ v = (v0
1 , . . . , v

0
n) ∈ X

and ‖vk − v‖ → 0, so for k big enough,

|〈ωk − ω, v〉| < ε

3
, |〈ω, vk − v〉| < ε

3
, ‖vk − v‖ < ε

3c2
,

this implies

〈ωk − ω, vk〉 = 〈ωk − ω, v〉+ 〈ωk, vk − v〉 − 〈ω, vk − v〉

≤ ε

3
+
ε

3
+ c2‖vk − v‖

<
ε

3
+
ε

3
+
ε

3
= ε,

which contradicts (3.4). The proof is complete. �

Analogously, we deduce the properties of the function J .

Lemma 3.3. If (A1) and (A3) are satisfied, then J : X → R is a locally Lipschitz
function with compact gradient and

J◦(u1, . . . , un; v1, . . . , vn) ≤
∫ b

a

G◦(u1, . . . , un; v1, . . . , vn) dx

for all (u1, . . . , un), (v1, . . . , vn) ∈ X.

Now, we are in a position to establish the following proposition.

Lemma 3.4. If (A1)–(A3) are satisfied, then, for every λ, µ > 0, ϕ : X → R ∪
{+∞} is a Motreanu-Panagiotopoulos function and the critical points (u1, . . . , un)
belong to X of ϕ is a weak solution of (1.1).

Proof. From Lemmas 3.1–3.3 the function I = Φ − λΨ − µJ is locally Lipschitz;
furthermore, C is a closed convex subset of X and C 6= ∅; thus ϕ is a Motreanu-
Panagiotopoulos function. Since (u1, . . . , un) ∈ X is a critical point of ϕ, then
u ∈ C and for all v = (v1, . . . , vn) ∈ C we have

0 ≤ I◦(u1, . . . , un; v1, . . . , vn)

=
∫ b

a

n∑
i=1

(u′iv
′
i + uivi) dx+ λ(−Ψ)◦(u1, . . . , un; v1, . . . , vn)

+ µ(−J)◦(u1, . . . , un; v1, . . . , vn)

≤
∫ b

a

n∑
i=1

(u′iv
′
i + uivi) dx+ λ

∫ b

a

F ◦(u1, . . . , un;−v1, . . . ,−vn) dx

+ µ

∫ b

a

G◦(u1, . . . , un;−v1, . . . ,−vn) dx.

From Proposition 2.7 (ii), we have

0 ≤
∫ b

a

n∑
i=1

(u′iv
′
i + uivi) dx+ λ

∫ b

a

F ◦u1
(u1, . . . , un;−v1) dx+ . . .

+ λ

∫ b

a

F ◦un
(u1, . . . , un;−vn) dx

+ µ

∫ b

a

G◦u1
(u1, . . . , un;−v1) dx+ . . .+ µ

∫ b

a

G◦un
(u1, . . . , un;−vn) dx.
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Taking v1 = . . . = vi−1 = vi+1 = . . . = vn = 0 in the above inequality for 1 ≤ i ≤ n,
then we lead to (1.3), i.e., (u1, . . . , un) is a weak solution of (1.2). �

Proof of Theorem 1.1. We apply Theorem 2.8 to prove this theorem. For this pur-
pose, it is easy to see that X is a reflexive Banach space. We put Λ = (0, ν],
where 0 < ν < 1

2nk1
. The functional Φ ∈ C1(X,R) is continuous and convex, hence

weakly l.s.c. and obviously bounded on any bounded subset of X. Moreover, Φ′

is of type (S+) (Lemma 3.1) and Ψ is a locally Lipschitz function with compact
gradient (Lemma 3.2). We only need to test conditions (i) and (ii) in Theorem 2.8.

We first check condition (i). Let v(x) = (v1(x), . . . , vn(x)) such that for 1 ≤ i ≤
n,

vi(x) =


eγi

d (x− a)2 if a ≤ x < a+ d,

deγi if a+ d ≤ x ≤ b− e,
dγi

e (b− x)2 if b− e ≤ x ≤ b.
(3.5)

It is obvious that v ∈ X. From a simple computation, we have∫ b

a

(|v′i(x)|2 + |vi(x)|2) dx =
(
d2e2

(
b− a− 4(d+ e)

5

)
+

4
3
de(d+ e)

)
γ2
i . (3.6)

Set r = de
2

∑n
i=1 η

2
i , since

∑n
i=1 η

2
i ≤ c

∑n
i=1 γ

2
i , from (3.6), we obtain

Φ(v1, . . . , vn) =
dec

2

n∑
i=1

γ2
i >

de

2

n∑
i=1

η2
i = r.

Let u0 = (0, . . . , 0), u1 = (v1, . . . , vn). From (A4), we have Ψ(u0) = 0, and Φ(u0) =
0. From [1], we obtain

max
x∈[a,b]

|ui(x)| ≤
( 2
b− a

)1/2

‖ui‖

for all ui ∈W 1,2([a, b]), 1 ≤ i ≤ n. Hence

sup
x∈[a,b]

n∑
i=1

|ui(x)|2

2
≤ 2
b− a

n∑
i=1

‖ui(x)‖2

2
(3.7)

for all u = (u1, . . . , un) ∈ X. From (3.7), for each r > 0,

Φ−1((−∞, r))
= {u = (u1, . . . , un) ∈ X : Φ(u) < r}

=
{
u = (u1, . . . , un) ∈ X :

n∑
i=1

‖ui‖2

2
< r
}

⊂
{
u = (u1, . . . , un) ∈ X :

n∑
i=1

|ui|2 <
4r
b− a

for all x ∈ [a, b]
}
.

(3.8)

By (A5), we have∑n
i=1 η

2
i

c
∑n
i=1 γ

2
i

(b− a− (d+ e))F (deγ1, . . . , deγn) > (b− a) max
(ζ1,...,ζn)∈A1

F (ζ1, . . . , ζn).

(3.9)



12 Z. YUAN, L. HUANG, C. ZENG EJDE-2015/292

From (A4), (A5), (3.5), (3.8) and (3.9), for all u = (u1, . . . , un) ∈ X, we have

sup
u∈Φ−1((−∞,r))

Ψ(u) ≤ supPn
i=1 |ui(x)|2≤ 4r

b−a

∫ b

a

F (u1(x), . . . , un(x)) dx

≤
∫ b

a

sup
(ζ1,...,ζn)∈A1

F (ζ1, . . . , ζn) dx

<

∑n
i=1 η

2
i

c
∑n
i=1 γ

2
i

(b− a− (d+ e))F (deγ1, . . . , deγn)

≤
r
∫ b−e
a+d

F (deγ1, . . . , deγn) dx
Φ(v1, . . . , vn)

≤
r
∫ b
a
F (v1, . . . , vn) dx
Φ(v1, . . . , vn)

=
rΨ(v)
Φ(v)

.

(3.10)

Note that 0 < k1 <
M1
2nr . Fix 1 < h < M1

2nk1r
and ρ such that

sup
Φ(u)<r

Φ(u) +
rΨ(v)

Φ(v) − supΦ(u)<r Ψ(u)

h
< ρ < r

Ψ(v)
Φ(v)

.

From Theorem 2.9, we obtain

sup
λ∈R

inf
u∈X

[Φ(u) + λ(ρ−Ψ(u))] < inf
u∈X

sup
λ∈Λ

[Φ(u) + λ(ρ−Ψ(u))].

Next, we test condition (ii). From (A2), Lebourg’s mean value theorem and Propo-
sition 2.7, there exist ωi ∈ ∂ζiF (ζ1, . . . , ζn), where ζi is between the segment ui and
0 for 1 ≤ i ≤ n, such that

F (u1, . . . , un) = F (u1, . . . , un)− F (0, . . . , 0) = ω1u1 + . . .+ ωnun

≤ (|ω1|+ . . .+ |ωn|)(|u1|+ . . .+ |un|)
≤ k1(|u1|+ . . .+ |un|)2 + a1(|u1|+ . . .+ |un|)
= k1(|u1|2 + . . .+ |un|2 + 2|u1||u2|+ . . .+ 2|un−1||un|)

+ a1(|u1|+ . . .+ |un|)
≤ nk1(|u1|2 + . . .+ |un|2) + a1(|u1|+ . . .+ |un|).

(3.11)

By (3.11), we can find two positive constants K and τ satisfying K ≤ nk1 and

F (ζ1, . . . , ζn) ≤ K
n∑
i=1

ζ2
i + τ

for all (ζ1, . . . , ζn) ∈ Rn. Let u = (u1, . . . , un) ∈ X, then it is easy to see that

F (u1, . . . , un) ≤ K
n∑
i=1

|ui(x)|2 + τ a.e. x ∈ [a, b]. (3.12)

Choosing λ ∈ (0, ν], from (3.12), we obtain

Φ(u)− λΨ(u) =
n∑
i=1

‖ui‖2

2
− λ

∫ b

a

F (u1(x), . . . , un(x)) dx

≥
n∑
i=1

‖ui‖2

2
− λK

n∑
i=1

∫ b

a

|ui(x)|2 dx− λ(b− a)τ
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≥
n∑
i=1

‖ui‖2

2
− λK

n∑
i=1

∫ b

a

|ui(x)|2 dx− b− a
2nk1

τ

≥
(1

2
− λK

) n∑
i=1

‖ui‖2 −
b− a
2nk1

τ.

Since 0 < K ≤ nk1 and 0 < ν < 1
2nk1

, we have

lim
‖u‖→+∞

(Φ(u)− λΨ(u)) = +∞,

then we have tested condition (ii). The proof is complete. �
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[10] M. Filippaks, L. Gasiński, N. Papageorgiou; On the existence of positive solutions for hemi-
variational inequalities driven by the p-laplacian, J. Global Optim. 31 (2005) 173-189.
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