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EXISTENCE AND CONCENTRATION OF POSITIVE BOUND
STATES FOR SCHRÖDINGER-POISSON SYSTEMS WITH

POTENTIAL FUNCTIONS

PATRÍCIA L. CUNHA

Abstract. In this article we study the existence and concentration behavior
of bound states for a nonlinear Schrödinger-Poisson system with a parameter

ε > 0. Under suitable conditions on the potential functions, we prove that

for ε small the system has a positive solution that concentrates at a point
which is a global minimum of the minimax function associated to the related

autonomous problem.

1. Introduction

In this article we study the Schrödinger-Poisson system

−ε2∆v + V (x)v +K(x)φ(x)v = |v|q−2v in R3

−∆φ = K(x)v2 in R3
(1.1)

where ε > 0 is a parameter, q ∈ (4, 6) and V,K : R3 → R are, respectively, an
external potential and a charge density. The unknowns of the system are the field
u associated with the particles and the electric potential φ. We are interested in
the existence and concentration behavior of solutions of (1.1) in the semiclassical
limit ε→ 0.

The first equation of (1.1) is a nonlinear equation in which the potential φ
satisfies a nonlinear Poisson equation. For this reason, (1.1) is called a Schrödinger-
Poisson system, also known as Schrödinger-Maxwell system. For more information
about physical aspects, we refer the reader to [6, 10] and references therein.

We observe that when φ ≡ 0, (1.1) reduces to the well known Schrödinger equa-
tion

− ε2∆u+ V (x)u = f(x, u) x ∈ RN . (1.2)
In the previous years, the nonlinear stationary Schrödinger equation has been

widely investigated, mainly in the semiclassical limit as ε→ 0 (see e.g. [21, 23, 24]
and its references). Rabinowitz [21] studied problem (1.2) using mountain pass
arguments to find least energy solutions, for ε > 0 sufficiently small. Then, Wang
[23] proved that the solution in [21] concentrates around the global minimal of V
when ε tends to 0.
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Wang and Zeng [24] considered the Schrödinger equation

− ε2∆u+ V (x)u = K(x)|u|p−1u+Q(x)|u|q−1u, x ∈ RN (1.3)

where 1 < q < p < (n + 2)/(n− 2)+. They proved the existence of least energy
solutions and their concentration around a point in the semiclassical limit. The
authors used the energy function C(s) defined as the minimal energy of the func-
tional associated with ∆u + V (s)u = K(s)|u|p−1u + Q(s)|u|q−1u, where s ∈ RN
acts as a parameter instead of an independent variable. For each ε > 0 sufficiently
small, they proved the existence of a solution uε for (1.3), whose global maximum
approaches to a point y∗ when ε tends to 0. Moreover, under suitable hypothesis
on the potentials V and W , the function ξ 7→ C(ξ) assumes a minimum at y∗.

Motivated by these results, Alves and Soares [2] investigated the same phenom-
enon for the gradient system

−ε2∆u+ V (x)u = Qu(u, v) in RN

−ε2∆v +W (x)v = Qv(u, v) in RN

u(x), v(x)→ 0, as |x| → ∞
u, v > 0 RN

(1.4)

In this system is natural to expect some competition between the potentials V
and W , each one trying to attract the local maximum points of the solutions to
its minimum points. In fact, in [2] the authors proved that functions uε and vε
satisfies (1.4) and concentrate around the same point which is the minimum of the
respective function C(s).

Ianni and Vaira [17] studied the Schrödinger-Poisson system (1.1) proving that
if V has a non-degenerated critical point x0, then there exists a solution that
concentrates around this point. Moreover, they also proved that if x0 is degenerated
for V and a local minimum for K, then there exist a solution concentrating around
x0. The proof was based in the Lyapunov-Schmidt reduction.

The double parameter perturbation was also considered for system (1.1) by [15,
16]. He and Zhou [16] studied the existence and behavior of a ground state solution
which concentrates around the global minimum of the potential V . They considered
K ≡ 1 and the presence of the nonlinear term f(x, u).

Yang and Han [26] studied the Schrödinger-Poisson system

−∆v + V (x)v +K(x)φ(x)v = |v|q−2v in R3

−∆φ = K(x)v2 in R3
. (1.5)

Under suitable assumptions on V , K and f they proved existence and multiplicity
results by using the mountain pass theorem and the fountain theorem. Later, Zhao,
Liu and Zhao [27], using variational methods, proved the existence and concentra-
tion of solutions for the system

−∆v + λV (x)v +K(x)φ(x)v = |v|q−2v in R3

−∆φ = K(x)v2 in R3
(1.6)

when λ > 0 is a parameter and 2 < p < 6.
Several papers dealt with system (1.5) under variety assumptions on potentials

V and K. Most part of the literature focuses on the study of the system with V
or K constant or radially symmetric, mainly studying existence, nonexistence and
multiplicity of solutions see e.g. [4, 9, 10, 11, 12, 18, 20, 22].
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Using variational methods as in [2, 21, 24], we prove that there exists a solution
uε for the Schrödinger-Poisson system (1.1) which concentrates around a point,
without any additional assumption on the degenerability of such point related with
the potentials V and K, as used in [17].

More precisely, denote C∞ as the minimax value related to

−∆v + V∞v +K∞φv = |v|q−2v in R3

−∆φ = K∞v
2 in R3

where the following conditions hold
(H0) There exists α > 0 such that V (x),K(x) ≥ α > 0 for all x ∈ R3,
(H1) V (x) and K(x) are continuous functions and V∞,K∞ are defined by

V∞ = lim inf
|x|→∞

V (x) > inf
x∈R3

V (x)

K∞ = lim inf
|x|→∞

K(x) > inf
x∈R3

K(x).

We prove that if
C∞ > inf

ξ∈R3
C(ξ),

then (1.1) has a positive solution vε as ε tends to zero. After passing to a sub-
sequence, vε concentrates at a global minimum point of C(ξ) for ξ ∈ R3, where
the energy function C(ξ) is defined to be the minimax function associated with the
problem

−∆u+ V (ξ)u+K(ξ)φ(ξ)u = |u|q−2u in R3

−∆φ = K(ξ)u2 in R3
(1.7)

Therefore, C(ξ) plays a central role in our study. The main result for (1.1)) reads
as follows.

Theorem 1.1. Suppose (H0)–(H1) hold. If

C∞ > inf
ξ∈R3

C(ξ), (1.8)

then there exists ε∗ > 0 such that system (1.1)) has a positive solution vε for
ε ∈ (0, ε∗). Moreover, vε concentrates at a local (hence global) maximum point
y∗ ∈ R3 such that

C(y∗) = min
ξ∈R3

C(ξ).

Theorem 1.1 complements the study made in [12, 17, 26, 27] in the following
sense: we deal with the perturbation problem (1.1) and study the concentration
behavior of positive bound states.

To the best of our knowledge, the only previous article regarding the concentra-
tion of solutions for the perturbed Schrödinger-Poisson system with potentials V
and K is [17], where the smoothness of such potentials is considered. We only need
the boundedness of V and K. Moreover, we do not assume that the concentration
point of solutions vε for the system (1.1) is a local minimum (or maximum) of such
potentials, as in the previous paper. In our research we shall consider a different
variational approach.

The outline of this paper is as follows: in Section 2 we set the variational frame-
work. In Section 3 we study the autonomous system related to (1.1). In section 4
we establish an existence result for system (1.1) with ε = 1. In section 5, we prove
Theorem 1.1.
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2. Variational framework and preliminary results

Throughout this article we use the following notation:
• H1(R3) is the usual Sobolev space endowed with the standard scalar product

and norm

(u, v) =
∫

R3
(∇u∇v + uv) dx, ‖u‖2 =

∫
R3

(|∇u|2 + u2) dx.

• D1,2 = D1,2(R3) represents the completion of C∞0 (R3) with respect to the
norm

‖u‖2D1,2 =
∫

R3
|∇u|2 dx.

• Lp(Ω), 1 ≤ p ≤ ∞, Ω ⊂ R3, denotes a Lebesgue space; the norm in Lp(Ω) is
denoted by ‖u‖Lp(Ω), where Ω is a proper subset of R3; ‖u‖p is the norm in Lp(R3).

We recall that by the Lax-Milgram theorem, for every v ∈ H1(R3), the Poisson
equation −∆φ = v2 has a unique positive solution φ = φv ∈ D1,2(R3) given by

φv(x) =
∫

R3

v2(y)
|x− y|

dy. (2.1)

The function φ : H1(R3)→ D1,2(R3), φ[v] = φv has the following properties (see
for instance Cerami and Vaira [8]).

Lemma 2.1. For any v ∈ H1(R3), we have
(i) φ is continuous and maps bounded sets into bounded sets;

(ii) φv ≥ 0;
(iii) there exists C > 0 such that ‖φ‖D1,2 ≤ C‖v‖2 and∫

R3
|∇v|2 dx =

∫
R3
φvv

2 dx ≤ C‖v‖4;

(iv) φtv = t2φv, ∀ t > 0;
(v) if vn ⇀ v in H1(R3), then φvn

⇀ φv in D1,2(R3).

As in [4], for every v ∈ H1(R3), there exist a unique solution φ = φK,v ∈ D1,2(R3)
of −∆φ = K(x)v2 where

φK,v(x) =
∫

R3

K(y)v2(y)
|x− y|

dy. (2.2)

and it is easy to see that φK,v satisfies Lemma 2.1 if K satisfies conditions (H0)–
(H1).

Substituting (2.2) into the first equation of (1.1), we obtain

− ε2∆v + V (x)v +K(x)φK,v(x)v = |v|q−2v. (2.3)

Making the changing of variables x 7→ εx and setting u(x) = v(εx), (2.3) becomes

−∆u+ V (εx)u+K(εx)φK,v(εx)u = |u|q−2u. (2.4)

A simple computation shows that

φK,v(εx) = ε2φε,u(x),

where

φε,u(x) =
∫

R3

K(εy)u2(y)
|x− y|

dy.
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Substituting this into (2.4), Equation (1.1) can be rewritten in the equivalent equa-
tion

−∆u+ V (εx)u+ ε2K(εx)φε,uu = |u|q−2u. (2.5)
Note that if uε is a solution of (2.5), then vε(x) = uε(x/ε) is a solution of (2.3).
We denote by Hε = {u ∈ H1(R3) :

∫
R3 V (εx)u2 < ∞} is a Sobolev space endowed

with the norm
‖u‖2ε =

∫
R3

(|∇u|2 + V (εx)u2) dx.

At this step, we see that (5.1) is variational and its solutions are critical points
of the functional

Iε(u) =
1
2

∫
R3

(|∇u|2 + V (εx)u2) dx+
ε2

4

∫
R3
K(εx)φε,u(x)u2 dx− 1

q

∫
R3
|u|q dx.

3. Autonomous Case

In this section we study the autonomous system

−∆u+ V (ξ)u+K(ξ)φ(x)u = |u|q−2u in R3

−∆φ = K(ξ)u2 in R3
(3.1)

where ξ ∈ R3. To this system we associate the functional Iξ : Hξ 7→ R,

Iξ(u) =
1
2

∫
R3

(|∇u|2 + V (ξ)u2) dx+
1
4

∫
R3
K(ξ)φu(x)u2 dx− 1

q

∫
R3
|u|q dx. (3.2)

Hereafter, the Sobolev space Hξ = H1(R3) is endowed with the norm

‖u‖ξ =
∫

R3
(|∇u|2 + V (ξ)u2) dx.

By standard arguments, the functional Iξ verifies the Mountain-Pass Geometry,
more exactly it satisfies the following lemma.

Lemma 3.1. The functional Iξ satisfies
(i) There exist positive constants β, ρ such that Iξ(u) ≥ β for ‖u‖ξ = ρ,
(ii) There exists u1 ∈ H1(R3) with ‖u1‖ξ > ρ such that Iξ(u1) < 0.

Applying a variant of the Mountain Pass Theorem (see [25]), we obtain a se-
quence (un) ⊂ H1(R3) such that

Iξ(un)→ C(ξ) and I ′ξ(un)→ 0,

where

C(ξ) = inf
γ∈Γ

max
0≤t≤1

Iξ(γ(t)), C(ξ) ≥ α, (3.3)

Γ = {γ ∈ C([0, 1], H1(R3))|γ(0) = 0, γ(1) = u1}. (3.4)

We observe that C(ξ) can be also characterized as

C(ξ) = inf
u6=0

max
t>0

Iξ(tu).

Proposition 3.2. Let ξ ∈ R3. Then system (3.1) has a positive solution u ∈
H1(R3) such that I ′ξ(u) = 0 and Iξ(u) = C(ξ), for any q ∈ (4, 6).

The proof of the above propostion is an easy adaptation of Azzollini and Pom-
ponio [5, Theorem 1.1] and we omit it.
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Lemma 3.3. The function ξ 7→ C(ξ) is continuous.

Proof. The proof consists in proving that there exist sequences (ζn) and (λn) in R3

such that C(ζn), C(λn)→ C(ξ) as n→ 0, where
• ζn → ξ and C(ζn) ≥ C(ξ) for all n,
• λn → ξ and C(λn) ≥ C(ξ) for all n,

as we know by Alves and Soares [2]. �

4. System (1.1) with ε = 1

Setting ε = 1, in this section we consider the system

−∆u+ V (x)u+K(x)φ(x)u = |u|q−2u in R3

−∆φ = K(x)u2 in R3
(4.1)

whose solutions are critical points of the corresponding functional

I(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2) dx+
1
4

∫
R3
K(x)φu(x)u2 dx− 1

p

∫
R3
|u|q dx

which is well defined for u ∈ H1, where

H1 = {u ∈ H1(R3) :
∫

R3
V (x)u2 dx <∞}

with the same norm notation of the Sobolev space H1(R3).
Similar to the autonomous case, the functional I satisfies the mountain pass

geometry, then there exists a sequence (un) ⊂ H1 such that

I(un)→ c and I ′(un)→ 0 , (4.2)

where

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)),

Γ = {γ ∈ C([0, 1], H1(R3))|γ(0) = 0, I(γ(1)) < 0}.

Remark 4.1. The function (µ, ν) 7→ cµ,ν is continuous, where cµ,ν is the minimax
level of

Iµ,ν(u) =
1
2

∫
R3

(|∇u|2 + µu2) dx+
1
4

∫
R3
νφu(x)u2 dx− 1

q

∫
R3
|u|q dx. (4.3)

Remark 4.2. We denote by C∞ the minimax value related to the functional

I∞(u) =
1
2

∫
R3

(|∇u|2 + V∞u
2) dx+

1
4

∫
R3
K∞φuu

2 dx− 1
q

∫
R3
|u|q dx ,

where V∞ and K∞, given by condition (H1), belong to (0,∞). Otherwise, define
C∞ =∞. I∞(u) is well defined for u ∈ E∞, where E∞ is a Sobolev space endowed
with the norm

‖u‖∞ =
∫

R3
(|∇u|2 + V∞u

2) dx

equivalent to the usual Sobolev norm on H1(R3).

An important tool in our analysis is the following theorem.

Theorem 4.3. If c < C∞, then c is a nontrivial critical value for I.
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Proof. From (4.2), (un) is bounded in H1. As a consequence, passing to a sub-
sequence if necessary, un ⇀ u in H1. From Proposition 2.1 (v), φun ⇀ φu in
D1,2(R3), as n→∞. Then, (u, φu) is a weak solution of (4.1). Similar to the proof
of Proposition 3.1, I(u) = c. It remains to show that u 6= 0.

From Alves, Souto and Soares [3], if there exist constants η, R such that

lim inf
n→+∞

∫
BR(0)

u2
n dx ≥ η > 0,

then u 6= 0.
By contradiction, consider u ≡ 0. Hence, there exists a subsequence of (un), still

denoted by (un), such that

lim
n→+∞

∫
BR(0)

u2
n dx = 0.

Let µ and ν be such that

inf
x∈R3

V (x) < µ < lim inf
|x|→∞

V (x) = V∞ inf
x∈R3

K(x) < ν < lim inf
|x|→∞

K(x) = K∞

and take R > 0 such that

V (x) > µ, ∀x ∈ R3\BR(0)K(x) > ν, ∀x ∈ R3\BR(0).

For each n ∈ N, there exist tn > 0, tn → 1 such that I(tnun) = maxt≥0 I(tun).
The convergence of (tn) follows from (4.2). In fact, since I ′(un)un = on(1) and
I ′(tnun)tnun = on(1), we have

‖un‖2 +
∫

R3
K(x)φunu

2
n dx =

∫
R3
|un|q dx+ on(1)

we have

t2n‖un‖2 + t4n

∫
R3
K(x)φunu

2
n dx = tqn

∫
R3
|un|q dx+ on(1).

Then

(1− t2n)‖un‖2 = (tq−2
n − t2n)

∫
R3
|un|q dx+ on(1)

Observe that tn neither converge to 0 nor to∞, otherwise we would have ‖un‖ → ∞
as n→∞, which is impossible since c > 0. See e.g. [1].

Suppose tn → t0. Letting n→ +∞,

0 = (t20 − 1)`1 + t20(tq−4
0 − 1)`2

where `1, `2 > 0. Hence, t0 = 1. Consequently, we have

I(un)− I(tnun)

=
1− t2n

2
‖un‖2 +

1
4

(1− t4n)
∫

R3
K(x)φunu

2
n dx+

tqn − 1
q

∫
R3
|un|q dx = on(1)
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which implies, for every t ≥ 0,
I(un) ≥ I(tun) + on(1)

=
t2

2

∫
R3
|∇un|2 + V (x)u2

n dx+
t4

4

∫
R3
K(x)φun

u2
n dx

− tq

q

∫
R3
|un|q dx+ Iµ,ν(tun)− Iµ,ν(tun) + on(1)

≥ t2

2

∫
BR(0)

(V (x)− µ)u2
n dx+

t4

4

∫
BR(0)

(K(x)− ν)φun
u2
n dx

+ Iµ,ν(tun) + on(1),

(4.4)

where Iµ,ν(u) is given by (4.3).
Consider τn such that Iµ,ν(τnun) = maxt≥0 Iµ,ν(tun). As in the above argu-

ments, τn → 1. Letting t = τn in (4.4), we have

I(un) ≥ τ2
n

2

∫
BR(0)

(V (x)− µ)u2
n dx+

τ4
n

4

∫
BR(0)

(K(x)− ν)φun
u2
n dx

+ cµ,ν + on(1).

Taking the limit n→ +∞, we have c ≥ cµ,ν . Next, taking µ→ V∞ and ν → K∞,
we obtain c ≥ C∞, proving Theorem 4.3. �

5. Proof of Theorem 1.1

This section is devoted to study the existence, regularity and the asymptotic
behavior of solutions for the system (1.1)), which is equivalent to

−∆u+ V (εx)u+ ε2K(εx)φε,uu = |u|q−2u. (5.1)

where

Iε(u) =
1
2

∫
R3

(|∇u|2 + V (εx)u2) dx+
ε2

4

∫
R3
K(εx)φε,u(x)u2 dx− 1

q

∫
R3
|u|q dx.

is the Euler-Lagrange functional related to (5.1).
The proof of Theorem 1.1 is divided into three subsections as follows:

5.1. Existence of a solution.

Theorem 5.1. Suppose (H0)–(H1) hold and consider

C∞ > inf
ξ∈R3

C(ξ) . (5.2)

Then, there exists ε∗ > 0 such that system (5.1) has a positive solution for every
0 < ε < ε∗.

Proof. By hypothesis (5.2), there exists b ∈ R3 and δ > 0 such that

C(b) + δ < C∞. (5.3)

Define uε(x) = u(x − b
ε ), where, from Proposition 3.2, u is a solution of the au-

tonomous Schrödinger-Poisson system

−∆u+ V (b)u+K(b)φ(x)u = |u|q−2u in R3

−∆φ = K(b)u2 in R3
(5.4)

with Ib(u) = C(b).
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Let tε be such that Iε(tεuε) = maxt≥0 Iε(tuε). Similar to the proof of Theorem
4.3, we have limε→0 tε = 1.

Since

cε = inf
γ∈Γ

max
0≤t≤1

Iε(γ(t)) = inf
u∈H1
u6=0

max
t≥0
Iε(tu) ≤ max

t≥0
Iε(tuε) = Iε(tεuε),

we have
lim sup
ε→0

cε ≤ lim sup
ε→0

Iε(tεuε) = Ib(u) = C(b) < C(b) + δ,

which, from (5.3), implies
lim sup
ε→0

cε < C∞.

Therefore, there exists ε∗ > 0 such that cε < C∞ for every 0 < ε < ε∗. In view of
Theorem 4.3, system (5.1) has a positive solution for every 0 < ε < ε∗. �

5.2. Regularity of the solution. The first result is a suitable version of Brezis
and Kato [7] and the second one is a particular version of from Gilbarg and
Trudinger [14, Theorem 8.17].

Proposition 5.2. Consider u ∈ H1(R3) satisfying

−∆u+ b(x)u = f(x, u) in R3,

where b : R3 → R is a L∞loc(R3) function and f : R3 → R is a Caratheodory function
such that

0 ≤ f(x, s) ≤ Cf (sr + s), ∀s > 0, x ∈ R3.

Then, u ∈ Lt(R3) for every t ≥ 2. Moreover, there exists a positive constant
C = C(t, Cf ) such that

‖u‖Lt(R3) ≤ C‖u‖H1(R3).

Proposition 5.3. Consider t > 3 and g ∈ L1/2(Ω), where Ω is an open subset of
R3. Then, if u ∈ H1(Ω) is a subsolution of

∆u = g in Ω,

we have that for any y ∈ R3 and B2R(y) ⊂ Ω, R > 0 and

sup
BR(y)

u ≤ C
(
‖u+‖L2(B2R(y)) + ‖g‖L1/2(B2R(y))

)
where C = C(t, R).

In view of Propositions 5.2 and 5.3, the positive solutions of (1.1) are in C2(R3)∩
L∞(R3) for all ε > 0. Similar arguments was employed by He and Zou [16].

5.3. Concentration of solutions.

Lemma 5.4. Suppose (H0)–(H1) hold. Then, there exists β0 > 0 such that

cε ≥ β0,

for every ε > 0. Moreover,

lim sup
ε→0

cε ≤ inf
ξ∈R3

C(ξ).
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Proof. Let wε ∈ Hε be such that cε = Iε(wε). Then, from condition (H0)

cε = Iε(wε) ≥ inf
u∈H1
u 6=0

sup
t≥0

J(tu) = β0, ∀ε > 0,

where

J(u) =
1
2

∫
R3

(|∇u|2 + αu2) dx+
1
4

∫
R3
αφuu

2 dx− 1
q

∫
R3
|u|q dx.

Let ξ ∈ R3 and consider w ∈ H1(R3) a least energy solution for system (1.7), that
is, Iξ(w) = C(ξ) and I ′ξ(w) = 0. Let wε(x) = w(x− ξ

ε ) and take tε > 0 such that

cε ≤ Iε(tεwε) = max
t≥0
Iε(twε).

Similar to the proof of Theorem 4.3, tε → 1 as ε→ 0, then

cε ≤ Iε(tεwε)→ Iξ(w) = C(ξ), as ε→ 0

which implies that lim supε→0 cε ≤ C(ξ) for all ξ ∈ R3. Therefore,

lim sup
ε→0

cε ≤ inf
ξ∈R3

C(ξ).

�

Lemma 5.5. There exist a family (yε) ⊂ R3 and constants R, β > 0 such that

lim inf
ε→0

∫
BR(yε)

u2
ε dx ≥ β, for each ε > 0.

Proof. By contradiction, suppose that there exists a sequence εn → 0 such that

lim
n→∞

sup
y∈R3

∫
BR(y)

u2
n dx = 0, for all R > 0,

where, for the sake of simplicity, we denote un(x) = uεn
(x). Hereafter, denote

φεn,un(x) = φun(x). From [19, Lemma I.1], we have∫
R3
|un|q dx→ 0, as n→∞.

But, since∫
R3

(|∇un|2 + V (εnx)u2
n) dx+

∫
R3
ε2
nK(εnx)φunu

2
n dx =

∫
R3
|un|q dx ,

we have ∫
R3

(|∇un|2 + V (εnx)u2
n) dx→ 0, as n→∞.

Therefore,
lim
n→∞

cεn
= lim
n→∞

Iεn
(un) = 0

which is an absurd, since for some β0 > 0, cε ≥ β0, from Lemma 5.4. �

Lemma 5.6. The family (εyε) is bounded. Moreover, if y∗ is the limit of the
sequence (εnyεn

) in the family (εyε), then we have

C(y∗) = inf
ξ∈R3

C(ξ).
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Proof. Consider un(x) = uεn
(x + yεn

). Suppose by contradiction that (εnyεn
)

approaches infinity. It follows from Lemma 5.5 that there exists constants R, β > 0
such that ∫

BR(0)

u2
n(x) dx ≥ β > 0, for all n ∈ N. (5.5)

Since un(x) satisfies

−∆un + V (εnx+ εnyεn)un + ε2
nK(εnx+ εnyεn)φεn,unun = |un|q−2un, (5.6)

it follows that un(x) is bounded in Hε. Hence, passing to a subsequence if necessary,
un → û ≥ 0 weakly in Hε, strongly in Lploc(R3) for p ∈ (2, 6) and a.e. in R3. From
(5.5), û 6= 0.

Using û as a test function in (5.6) and taking the limit, we obtain∫
R3

(|∇û|2 + µû2) dx ≤
∫

R3
(|∇û|2 + µû2) dx+

∫
R3
νφûû

2 dx ≤
∫

R3
|û|q dx (5.7)

where, µ and ν are positive constantes such that

µ < lim inf
|x|→∞

V (x) and ν < lim inf
|x|→∞

K(x).

Consider the functional Iµ,ν : H1(R3)→ R given by

Iµ,ν(u) =
1
2

∫
R3

(|∇u|2 + µu2) dx+
1
4

∫
R3
νφu(x)u2 dx− 1

q

∫
R3
|u|q dx.

Let σ > 0 be such that Iµ,ν(σû) = maxt>0 Iµ,ν(tû). We claim that

σ2

∫
R3

(|∇û|2 + µû2) dx+ σ4

∫
R3
νφûû

2 dx = σq
∫

R3
|û|q dx. (5.8)

In fact, from (5.7)

Iµ,ν(σû) =
σ2

2

∫
R3

(|∇û|2 + µû2) dx+
σ4

4

∫
R3
νφûû

2 dx− σq

q

∫
R3
|û|q dx

≤ σ2

2

∫
R3
|û|q dx+

σ4

4

∫
R3
νφûû

2 dx− σq

q

∫
R3
|û|q dx

it follows that σ ≤ 1, and since d
dtIµ,ν(tû)

∣∣∣
t=σ

= 0, we obtain

d

dt
Iµ,ν(tû)

∣∣∣
t=σ

= σ

∫
R3

(|∇û|2 + µû2) dx+ σ3

∫
R3
νφûû

2 dx− σq−1

∫
R3
|û|q dx = 0

proving (5.8).
From Lemma 5.4, equation (5.8) and the fact that σ ≤ 1, we have

cµ,ν = inf
u6=0

max
t>0

Iµ,ν(tu) = inf
u6=0

Iµ,ν(σu) ≤ Iµ,ν(σû)

=
σ2

2

∫
R3

(|∇û|2 + µû2) dx+
σ4

4

∫
R3
νφûû

2 dx− σq

q

∫
R3
|û|q dx

=
σ2

4

∫
R3

(|∇û|2 + µû2) dx+
σq(q − 4)

4q

∫
R3
|û|q dx

≤ 1
4

∫
R3

(|∇û|2 + µû2) dx+
q − 4

4q

∫
R3
|û|q dx

≤ lim inf
n→∞

(
Iεn

(un)− 1
4
I ′εn

(un)un
)
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= lim inf
n→∞

cεn
≤ lim sup

n→∞
cεn
≤ inf
ξ∈R3

C(ξ)

hence, cµ,ν ≤ infξ∈R3 C(ξ).
If we consider

µ→ lim inf
|x|→∞

V (x) = V∞ and ν → lim inf
|x|→∞

K(x) = K∞,

then by the continuity of the function (µ, ν) 7→ cµν we obtain C∞ ≤ infξ∈R3 C(ξ),
which contradicts condition (C∞). Therefore, (εyε) is bounded and there exists a
subsequence of (εyε) such that εnyεn

→ y∗.
Now we proceed to prove that C(y∗) = infξ∈R3 C(ξ). Recalling that un(x) =

uεn
(x+ yεn

) and from the arguments above, û satisfies the equation

−∆u+ V (y∗)u+K(y∗)φuu = |u|q−2u (5.9)

The Euler-Lagrange functional associated to this equation is Iy∗ : Hy∗(R3), defined
as in (3.2) with ξ = y∗.

Using û as a test function in (5.9) and taking the limit, we obtain∫
R3

(|∇û|2 + V (y∗)û2) dx ≤
∫

R3
|û|q dx.

Then
Iy∗(σû) = max

t>0
Iy∗(tû).

Finally, from Lemma 5.4 and since 0 < σ ≤ 1 we have

inf
ξ∈R3

C(ξ)

≤ C(y∗) ≤ Iy∗(σû)

=
σ2

4

∫
R3

(|∇û|2 + V (y∗)û2) dx+
σq(q − 4)

4q

∫
R3
|û|q dx

≤ 1
4

∫
R3

(|∇û|2 + V (y∗)û2) dx+
q − 4

4q

∫
R3
|û|q dx

≤ lim inf
n→∞

[1
4

∫
R3

(
|∇un|2 + V (εnx+ εnyεn

)u2
n

)
dx+

q − 4
4q

∫
R3
|un|q dx

]
≤ lim inf

n→∞

(
Iεn(un)− 1

4
I ′εn

(un)un
)

= lim inf
n→∞

cεn ≤ inf
ξ∈R3

C(ξ)

which implies that C(y∗) = infξ∈R3 C(ξ). �

As a consequence of the previous lemma, there exists a subsequence of (εnyεn
)

such that εnyεn
→ y∗.

Let uεn
(x+ yεn

) = un(x) and consider ũ ∈ H1 such that un ⇀ ũ.

Lemma 5.7. un → ũ in H1(R3), as n → ∞. Moreover, there exists ε∗ > 0 such
that lim|x|→∞ uε(x) = 0 uniformly on ε ∈ (0, ε∗).

Proof. By Lemmas 5.4 and 5.6, we have

inf
ξ∈R3

C(ξ)

= C(y∗) ≤ Iy∗(ũ)− 1
4
I ′y∗(ũ)ũ
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=
1
4

∫
R3

(|∇ũ|2 + V (y∗)ũ2) dx+
(q − 4

4q

)∫
R3
|ũ|q dx

≤ lim inf
n→∞

{1
4

∫
R3

(|∇un|2 + V (εnx+ εnyεn)u2
n) dx+

(q − 4
4q

)∫
R3
|un|q dx

}
≤ lim sup

n→∞

{1
4

∫
R3

(|∇un|2 + V (εnx+ εnyεn
)u2
n) dx+

(q − 4
4q

)∫
R3
|un|q dx

}
= lim sup

n→∞

{
Iεn(uεn)− 1

4
I ′εn

(uεn)uεn

}
= lim sup

n→∞
cεn
≤ inf
ξ∈R3

C(ξ) .

Then

lim
n→∞

∫
R3

(|∇un|2 + V (εnx+ εnyεn)u2
n) dx =

∫
R3

(|∇ũ|2 + V (y∗)ũ2) dx.

Now observe that

cεn
= Iεn

(uεn
)− 1

4
I ′εn

(uεn
)uεn

=
1
4

∫
R3

(|∇uεn
|2 + V (εnx)u2

εn
) dx+

(q − 4
4q

)∫
R3
|uεn
|q dx

=
1
4

∫
R3

(|∇un|2 + V (εnx+ εnyεn
)u2
n) dx+

(q − 4
4q

)∫
R3
|un|q dx

:= αn;

hence,
lim sup
n→∞

αn = lim sup
n→∞

cεn
≤ C(y∗).

On the other hand, using Fatou’s Lemma,

lim inf
n→∞

αn ≥
1
4

∫
R3

(|∇ũ|2 + V (y∗)ũ2) dx+
(q − 4

4q

)∫
R3
|ũ|q dx

= Iy∗(ũ)− 1
4
I ′y∗(ũ)ũ

≥ C(y∗);

then limn→∞ αn = C(y∗).
Therefore, since ũ is the weak limit of (un) in H1(R3), we conclude that un → ũ

strongly in H1(R3). In particular, we have

lim
R→∞

∫
|x|≥R

u2∗

n dx = 0 uniformly on n. (5.10)

Applying Proposition 5.2 with b(x) = V (εnx+ εnyεn
) + ε2

nK(εnx+ εnyεn
)φun

, we
obtain un ∈ Lt(R3), t ≥ 2 and

‖un‖t ≤ C‖un‖,

where C does not depend on n.
Now consider

−∆un ≤ −∆un + V (εnx+ εnyεn
)un + ε2

nK(εnx+ εnyεn
)φun

un

= |un|q−2un := gn(x).
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For some t > 3, ‖gn‖ t
2
≤ C, for all n. Using Proposition 5.3, we have

sup
BR(y)

un ≤ C
(
‖un‖L2(B2R(y)) + ‖gn‖L1/2(B2R(y))

)
for every y ∈ R3, which implies that ‖un‖L∞(R3) is uniformly bounded. Then, from
(5.10),

lim
|x|→∞

un(x) = 0 uniformly on n ∈ N.

Consequently, there exists ε∗ > 0 such that

lim
|x|→∞

uε(x) = 0 uniformly on ε ∈ (0, ε∗).

�

To complete the proof of Theorem 1.1, it remains to show that the solutions of
(1.1) have at most one local (hence global) maximum point y∗ such that C(y∗) =
minξ∈R3 C(ξ).

From the previous Lemma, we can focus our attention only in a fixed ball
BR(0) ⊂ R3. If w ∈ L∞(R3) is the limit in C2

loc(R3) of

wn(x) = un(x+ yn)

then, from Gidas, Ni and Nirenberg [13], w is radially symmetric and has a unique
local maximum at zero which is a non-degenerate global maximum. Therefore,
there exists n0 ∈ N such that wn does not have two critical points in BR(0) for all
n ≥ n0. Consider pε ∈ R3 this local (hence global) maximum of wε.

Recall that if uε is a solution of (Sε), then

vε(x) = uε(
x

ε
)

is a solution of (1.1). Since pε is the unique maximum of wε, then ŷε = pε + yε is
the unique maximum of uε. Hence, ỹε = εpε + εyε is the unique maximum of vε.
Once pε ∈ BR(0), that is, it is bounded, and εyε → y∗, we have

ỹε → y∗.

where C(y∗) = infξ∈R3 C(ξ). Consequently, the concentration of functions vε ap-
proaches y∗.
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