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EXISTENCE AND CONCENTRATION OF POSITIVE BOUND
STATES FOR SCHRODINGER-POISSON SYSTEMS WITH
POTENTIAL FUNCTIONS

PATRICIA L. CUNHA

ABSTRACT. In this article we study the existence and concentration behavior
of bound states for a nonlinear Schrédinger-Poisson system with a parameter
€ > 0. Under suitable conditions on the potential functions, we prove that
for € small the system has a positive solution that concentrates at a point
which is a global minimum of the minimax function associated to the related
autonomous problem.

1. INTRODUCTION

In this article we study the Schrodinger-Poisson system
—e?Av + V(z)v + K(z)p(x)v = |v|9%v  in R3

—A¢p = K(z)v? inR3 (1.1)

where € > 0 is a parameter, ¢ € (4,6) and V, K : R® — R are, respectively, an
external potential and a charge density. The unknowns of the system are the field
u associated with the particles and the electric potential ¢. We are interested in
the existence and concentration behavior of solutions of in the semiclassical
limit ¢ — 0.

The first equation of is a nonlinear equation in which the potential ¢
satisfies a nonlinear Poisson equation. For this reason, is called a Schrodinger-
Poisson system, also known as Schrodinger-Maxwell system. For more information
about physical aspects, we refer the reader to [0l [I0] and references therein.

We observe that when ¢ = 0, (1.1]) reduces to the well known Schrédinger equa-
tion

—?Au+V(z)u = f(z,u) xRN, (1.2)

In the previous years, the nonlinear stationary Schrodinger equation has been
widely investigated, mainly in the semiclassical limit as ¢ — 0 (see e.g. [21], 23] 24]
and its references). Rabinowitz [21] studied problem using mountain pass
arguments to find least energy solutions, for ¢ > 0 sufficiently small. Then, Wang
[23] proved that the solution in [2I] concentrates around the global minimal of V'
when ¢ tends to 0.
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Wang and Zeng [24] considered the Schrédinger equation
—?Au+V(z)u = K()|[uf'u+ Q) |ult u, 2eRY (1.3)

where 1 < ¢ < p < (n+2)/(n—2)". They proved the existence of least energy
solutions and their concentration around a point in the semiclassical limit. The
authors used the energy function C(s) defined as the minimal energy of the func-
tional associated with Au + V(s)u = K(s)|u|P"1u + Q(s)|u|?"1u, where s € RY
acts as a parameter instead of an independent variable. For each ¢ > 0 sufficiently
small, they proved the existence of a solution u,. for , whose global maximum
approaches to a point y* when ¢ tends to 0. Moreover, under suitable hypothesis
on the potentials V' and W, the function £ — C(&) assumes a minimum at y*.

Motivated by these results, Alves and Soares [2] investigated the same phenom-
enon for the gradient system

—2Au+V(z)u = Qu(u,v) inRY
—?Av+W(z)v = Qy(u,v) in RY
u(z),v(z) — 0, as|z|— oo
w,v>0 RY

In this system is natural to expect some competition between the potentials V'
and W, each one trying to attract the local maximum points of the solutions to
its minimum points. In fact, in [2] the authors proved that functions u. and wv.
satisfies and concentrate around the same point which is the minimum of the
respective function C(s).

Tanni and Vaira [I7] studied the Schréodinger-Poisson system proving that
if V' has a non-degenerated critical point xg, then there exists a solution that
concentrates around this point. Moreover, they also proved that if g is degenerated
for V and a local minimum for K, then there exist a solution concentrating around
xo. The proof was based in the Lyapunov-Schmidt reduction.

The double parameter perturbation was also considered for system by [15)
16]. He and Zhou [16] studied the existence and behavior of a ground state solution
which concentrates around the global minimum of the potential V. They considered
K =1 and the presence of the nonlinear term f(z,u).

Yang and Han [26] studied the Schrodinger-Poisson system

—Av +V(z)v + K(z)p(x)v = |v|? %0 in R

—A¢p = K(z)v? inR3 '

Under suitable assumptions on V', K and f they proved existence and multiplicity
results by using the mountain pass theorem and the fountain theorem. Later, Zhao,

Liu and Zhao [27], using variational methods, proved the existence and concentra-
tion of solutions for the system

—Av+ NV (z)v + K(2)d(z)v = [v]7?v  in R?
—A¢ = K(z)v? inR3
when A > 0 is a parameter and 2 < p < 6.
Several papers dealt with system ([1.5)) under variety assumptions on potentials
V and K. Most part of the literature focuses on the study of the system with V'

or K constant or radially symmetric, mainly studying existence, nonexistence and
multiplicity of solutions see e.g. [4} [, [10] 111, 12, 18], 20, 22].

(1.4)

(1.5)

(1.6)
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Using variational methods as in [2], 2T], 24], we prove that there exists a solution
ue for the Schrédinger-Poisson system which concentrates around a point,
without any additional assumption on the degenerability of such point related with
the potentials V' and K, as used in [I7].

More precisely, denote C'y, as the minimax value related to

~Av+ Voov + Koo = 0|72 in R3
—A¢p=Kov? in R3
where the following conditions hold
(HO) There exists a > 0 such that V(z), K(z) > a > 0 for all z € R3,
(H1) V(z) and K(z) are continuous functions and V., Ko are defined by
Voo =liminf V(z) > inf V(x)
z€R3

|z|— o0
Ko = liminf K(z) > inf K(z).
|z|—o0 z€R3
We prove that if
Cx > inf C(&),
> jnf, (€)

then (1.1) has a positive solution v. as € tends to zero. After passing to a sub-
sequence, v. concentrates at a global minimum point of C(€) for ¢ € R?, where
the energy function C'(§) is defined to be the minimax function associated with the

problem
—Au+ V(E)u+ K(€)¢()u = |ul* 2 in R?

—A¢p=K(u? inR?

Therefore, C(&) plays a central role in our study. The main result for (1.1))) reads
as follows.

Theorem 1.1. Suppose (HO)—(H1) hold. If
Coo > int C(6), (1.8)

(1.7)

then there exists €* > 0 such that system ) has a positive solution v, for
e € (0,e*). Moreover, v concentrates at a local (hence global) maximum point
y* € R3 such that

Cly*) = min C(&)-

Theorem complements the study made in [12] 17, 26, 27] in the following
sense: we deal with the perturbation problem and study the concentration
behavior of positive bound states.

To the best of our knowledge, the only previous article regarding the concentra-
tion of solutions for the perturbed Schrodinger-Poisson system with potentials V'
and K is [I7], where the smoothness of such potentials is considered. We only need
the boundedness of V' and K. Moreover, we do not assume that the concentration
point of solutions v, for the system ([1.1]) is a local minimum (or maximum) of such
potentials, as in the previous paper. In our research we shall consider a different
variational approach.

The outline of this paper is as follows: in Section 2 we set the variational frame-
work. In Section 3 we study the autonomous system related to . In section 4
we establish an existence result for system with € = 1. In section 5, we prove
Theorem [L11
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2. VARIATIONAL FRAMEWORK AND PRELIMINARY RESULTS

Throughout this article we use the following notation:
e H'(R3) is the usual Sobolev space endowed with the standard scalar product
and norm

(u,v):/ (VuVo + ) da, Hu||2:/ (Vul? + u?) da.
R3 R3

e D12 = DL2(R?) represents the completion of C§°(R?) with respect to the
norm

lul3es = / Vul? dr.
R(i

e LP(Q), 1 < p < oo, Q C R3 denotes a Lebesgue space; the norm in LP(Q) is
denoted by [ul| s (), where € is a proper subset of R?; [lu||,, is the norm in L?(R?).

We recall that by the Lax-Milgram theorem, for every v € H*(R?), the Poisson
equation —A¢ = v? has a unique positive solution ¢ = ¢, € D1?(R3) given by

()
o) = [ (2.1)

The function ¢ : H}(R3) — DV2(R3), ¢[v] = ¢, has the following properties (see
for instance Cerami and Vaira [§]).

Lemma 2.1. For any v € H'(R?), we have

(1) ¢ is continuous and maps bounded sets into bounded sets;
(i) ¢y = 0;
(iii) there exists C' > 0 such that ||¢| pr.2 < Cljv||* and

/ |Vo|? da z/ ppv? dz < C|lv||*;
RS R3

(iv) ¢pro = t2¢u, Y1 > 0;
(v) if v, — v in HY(R?), then ¢,, — ¢, in DV2(R3).
Asin [4], for every v € H*(IR?), there exist a unique solution ¢ = ¢x , € DV?(R3)
of —A¢ = K(x)v? where

K(y)v?
rlo) = [ FE (22
and it is easy to see that ¢ , satisfies Lemma if K satisfies conditions (HO)—
<Hé)1ibstituting into the first equation of , we obtain
—?Av+ V(z)v + K(z) K o (2)v = |v]7 0. (2.3)
Making the changing of variables x +— ex and setting u(x) = v(ex), becomes
— Au+ V(ex)u + K(ex)px o (ex)u = |u|??u. (2.4)
A simple computation shows that

K v (ex) = €2¢a,u($),
where

boule) = [ KEWCG)

rs T =Y
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Substituting this into (2.4)), Equation (|1.1)) can be rewritten in the equivalent equa-
tion

— Au+ V(ex)u + 2K (ex)p yu = |u|? 2u. (2.5)
Note that if u. is a solution of (2.5), then v.(z) = u-(x/¢e) is a solution of (2.3).
We denote by H. = {u € H'(R?) : [o, V(ex)u? < oo} is a Sobolev space endowed
with the norm

ull2 = /Rgawﬁ +V(ex)?) da.

At this step, we see that (5.1) is variational and its solutions are critical points
of the functional

Z.(u) = %/RSUVUF + V(ex)u?) dx + % . K(e2) e u(x)u? dz — é . |u|? da.
3. AuToNOMOUS CASE
In this section we study the autonomous system
~Au+V(Eu+ K€ ¢(x)u = [u/Tu in R?
~A¢p=K(u? inR3 (38-1)

where £ € R3. To this system we associate the functional Ie: He— R,
1 1 1
I(u) = 7/ (Va2 + V() do+ = | K(€)éu()u? dz— f/ ult dz. (3.2)
) 2 R3 4 R3 q Jrs
Hereafter, the Sobolev space He = H'(R?) is endowed with the norm
lulle = [ (9P + Vi€)) do

By standard arguments, the functional I¢ verifies the Mountain-Pass Geometry,
more exactly it satisfies the following lemma.
Lemma 3.1. The functional I satisfies
(i) There exist positive constants (3, p such that I¢(u) > § for ||ulle = p,
(ii) There exists uy € H'(R®) with ||ui|l¢ > p such that I¢(uq) < 0.
Applying a variant of the Mountain Pass Theorem (see [25]), we obtain a se-
quence (u,,) C H'(R3) such that

Ie(uy) — C(§) and  If(un) — 0,

where
c) = Whéfr Jnax, I(v(t), C§)>a, (3.3)
I = {yeC([0,1], H"(R?*))|7(0) = 0,7(1) = u}. (3.4)

We observe that C'(€) can be also characterized as
= inf I (tu).
c(€) inf max ¢(tu)
Proposition 3.2. Let ¢ € R®. Then system (3.1)) has a positive solution u €
HY(R3) such that I{(u) = 0 and I¢(u) = C(§), for any q € (4,6).

The proof of the above propostion is an easy adaptation of Azzollini and Pom-
ponio [B, Theorem 1.1] and we omit it.
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Lemma 3.3. The function & — C(§) is continuous.
Proof. The proof consists in proving that there exist sequences (¢,,) and (),) in R?
such that C(¢,), C(A,) — C(&) as n — 0, where

e (, — & and C(G,) > C(§) for all n,
e )\, — and C(A\,) > C(¢&) for all n,

as we know by Alves and Soares [2]. O

4. SYSTEM WITH € = 1

Setting € = 1, in this section we consider the system
—Au+V(2)u+ K(x)p(z)u = |u|??u  in R?
~A¢ = K(z)u? inR? 1)

whose solutions are critical points of the corresponding functional
1 1 1
I(u) = f/ (Va2 + V@) de + = [ K(@)pu(z)u?de — f/ uf? da
2 R3 4 R3 P Jrs
which is well defined for u € Hy, where
Hy = {uec H'(R?): / V(z)u?dr < oo}
R3
with the same norm notation of the Sobolev space H'(R?).

Similar to the autonomous case, the functional I satisfies the mountain pass
geometry, then there exists a sequence (u,) C H; such that

I(uy) — ¢ and [I'(u,)—0, (4.2)
where

c= inf max I (v(1)),

I = {y € ([0, 1], Hi(R?))|7(0) = 0,1(v(1)) < 0}.

Remark 4.1. The function (u,v) + ¢, is continuous, where ¢, ,, is the minimax
level of

1 1 1
I, (u) = 3 /]R3(|Vu|2 + pu?) dx + 1 /RS vy (2)u? de — 6/}1&3 |u|? da. (4.3)

Remark 4.2. We denote by C the minimax value related to the functional

1 1 1
Io(u) = 3 /RS(\VW + Voou?) dzx + . Koobyu® do — g/w lu|? dz

where V., and K, given by condition (H7), belong to (0,00). Otherwise, define
Coo = 00. Io(u) is well defined for u € Fo,, where E, is a Sobolev space endowed
with the norm

fulle = [ (90 + Vi) da
R3
equivalent to the usual Sobolev norm on H*(R3).
An important tool in our analysis is the following theorem.

Theorem 4.3. If ¢ < Cy, then c is a nontrivial critical value for I.
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Proof. From (4.2)), (u,) is bounded in H;. As a consequence, passing to a sub-

sequence if necessary, u, — u in H;. From Proposition (V), bu, — ¢y in
D12(R3), as n — oo. Then, (u, ¢,) is a weak solution of (4.1)). Similar to the proof

of Proposition I(u) = c. Tt remains to show that u # 0.
From Alves, Souto and Soares [3], if there exist constants n, R such that

liminf/ ur drx >1n >0,
Br(0)

n—-+4oo

then u # 0.
By contradiction, consider u = 0. Hence, there exists a subsequence of (uy, ), still
denoted by (u,), such that

lim u? dr = 0.
n—-+00 Br(0)

Let p and v be such that

inf V(z) <p <liminfV(z) =V, inf K(z) <v <liminf K(z) = K

T ER3 |x|~>oo rER3 ‘x|~>oo
and take R > 0 such that
V(z) >p, YoeR)N\Bg(0)K(z)>v, VaecR*\Bg(0).

For each n € N, there exist ¢, > 0, ¢, — 1 such that I(t,u,) = max;>oI(tu,).
The convergence of (¢,) follows from (4.2)). In fact, since I'(u,)u, = o,(1) and
I'(tpun)tru, = op(1), we have

||un||2 +/ K(x)(bunui dr = / |un|q dx + On(l)
R3 R3
we have
ti”unHz—l—tﬁ/ K(x)qﬁunuidm:t%/ |un|? dz + 0, (1).
R3 R3
Then
(1= &)l = (657> = 2) [ Jual7do +0,(1)
RS

Observe that t,, neither converge to 0 nor to co, otherwise we would have ||u, || — oo
as m — 00, which is impossible since ¢ > 0. See e.g. [I].
Suppose t, — tg. Letting n — 400,

0= (t2 = 1)y +t2(tT " — 1)ty
where /1, /5 > 0. Hence, tg = 1. Consequently, we have

I(uy) — I(tnun)

1—¢2

. 1
= S P4 = 1)) [ K@) da+
R3

e —1

/}R3 |tn|? dz = 0, (1)
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which implies, for every ¢ > 0,
I(uy) > I(tuy) + 0n(1)

t2 t4
. / VP + V(@2 de+ = [ K (@)é,u2 de
2 Jes 4 Jps "

4
> V(@) - pude+ = [ (K@) = v)gu,ul do
2 JBr(0) Br(0)

+ IM’V(tun) + On(1)7
where I, ,(u) is given by (4.3).
Consider 7, such that I, , (T u,) = maxy>o I, (tu,). As in the above argu-
ments, 7, — 1. Letting ¢t = 7,, in (4.4), we have

tq
-2 /R Jtnl? 4 Ty (1) = Ty (i) + 0, (1) (4.4)
t2

.2 T;f
)z 2 [ @ - weder [ (@) - )6, do
Br(0) Br(0)

Taking the limit n — +o00, we have ¢ > ¢, ,,. Next, taking p — Vo and v — K,
we obtain ¢ > C,, proving Theorem [£.3] O

5. PROOF OF THEOREM [L.1]

This section is devoted to study the existence, regularity and the asymptotic
behavior of solutions for the system (1.1])), which is equivalent to

— Au+ V(ez)u + 2K (ex) e yu = |u|? 2u. (5.1)

where

1 2 1
L= /R3(|Vu|2 FV(enp?) do+ [ K(eoooepide = [ julrda,

is the Euler-Lagrange functional related to (5.1]).
The proof of Theorem is divided into three subsections as follows:

5.1. Existence of a solution.
Theorem 5.1. Suppose (HO)—(H1) hold and consider

Coo > giéaRg c(g). (5.2)
Then, there exists €* > 0 such that system has a positive solution for every
0<e<e”.
Proof. By hypothesis (5.2)), there exists b € R® and § > 0 such that

C)+ 6 < Cw. (5.3)

Define uc(z) = u(x — g), where, from Proposition u is a solution of the au-

tonomous Schrédinger-Poisson system
—Au+V(b)u+ Kb)p(x)u = |u/??u in R (5.4)
—Ap = K(bu? inR? '

with I (u) = C(b).
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Let t. be such that Z (t.u.) = max;>o Zs (tu.). Similar to the proof of Theorem
[4.3] we have lim._¢t. = 1.
Since
ce = inf max Z.(vy(t)) = inf maxZ.(tu) < r§1>aXIE(tug) =T (teue),

~veI' 0<t<1 weHl t>0 0
u#0

we have
limsup c. < limsupZ. (teue) = Iy(u) = C(b) < C(b) + 4,
e—0 e—0

which, from (5.3), implies

limsupec, < Copo.
e—0

Therefore, there exists €* > 0 such that ¢, < C for every 0 < ¢ < ¢*. In view of
Theorem [4.3] system (5.1)) has a positive solution for every 0 < & < e*. (]

5.2. Regularity of the solution. The first result is a suitable version of Brezis
and Kato [7] and the second one is a particular version of from Gilbarg and
Trudinger [14] Theorem 8.17].

Proposition 5.2. Consider u € H'(R3) satisfying
—Au+b(x)u = f(z,u) in R,

where b : R? — R is a LS (R®) function and f : R® — R is a Caratheodory function

loc
such that
0< f(z,8) <Cp(s"+3s), Vs>0,z€eR>
>

Then, u € L*(R3) for every t
C = C(t,Cy) such that

. Moreover, there exists a positive constant

lullLersy < Cllull g rs)-

Proposition 5.3. Consider t > 3 and g € L'/?(Q), where Q0 is an open subset of
R3. Then, if u € HY(Q) is a subsolution of

Au=g in{,
we have that for any y € R® and Bagr(y) C Q, R > 0 and

sup u < C( 6" | 2(ann + 19122 (5200
Br(y)

where C = C(t, R).

In view of Propositions and the positive solutions of (L.1)) are in C?(R3)N
L>(R3) for all € > 0. Similar arguments was employed by He and Zou [16].

5.3. Concentration of solutions.

Lemma 5.4. Suppose (HO)—(H1) hold. Then, there exists By > 0 such that
¢ > Pos

for every e > 0. Moreover,

limsupec. < inf C(§).
E_)Qp e = feRs (5)
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Proof. Let we € H. be such that ¢. = Z.(w¢). Then, from condition (Hp)
ce =T (we) > inf sup J(tu) = By, Ve >0,

ueHL
el 120
where

1 1 1
I =5 [ (VP +aydos g [ avaido— [ s

Let £ € R? and consider w € H(R3) a least energy solution for system ([1.7)), that
is, Ie(w) = C(§) and I{(w) = 0. Let we(z) = w(z — %) and take t. > 0 such that

e < T (tewe) = Igig{fg(twa).

Similar to the proof of Theorem te. — 1 as e — 0, then
ce < I (tewe) — Ie(w) =C(&), ase—0
which implies that limsup,_,c. < C(€) for all £ € R3. Therefore,

li < inf C(§).
TS0t = cems ©

Lemma 5.5. There exist a family (y.) C R? and constants R, 3 > 0 such that

lim inf/ ug dx > [, for each e > 0.
BR(?!E)

e—0

Proof. By contradiction, suppose that there exists a sequence €,, — 0 such that

lim sup / u% dx =0, forall R>0,
Br(y)

n—00 y cR3

where, for the sake of simplicity, we denote wu,(x) = w., (z). Hereafter, denote
Gep un () = Py, (x). From [19, Lemma I.1], we have

|un|Tdx — 0, asmn — oo.
R3
But, since

/ (Vanl? + Viena)ud) de + / €2 K (e, 2 di = / |7 dz,
R R3 R3

3

we have
/ (|Vtn|? + V(enz)u?)dz — 0, asn — oo.
R3
Therefore,
lim ¢., = lim I (u,)=0
which is an absurd, since for some Gy > 0, c. > [y, from Lemma O

Lemma 5.6. The family (ey.) is bounded. Moreover, if y* is the limit of the
sequence (e,ye, ) in the family (ey.), then we have

Cly') = jn, C(©).
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Proof. Consider u,(x) = u., (z + ye,). Suppose by contradiction that (e,ye, )
approaches infinity. It follows from Lemma [5.5| that there exists constants R, 3 > 0
such that

/ u(z)dr > >0, forallneN. (5.5)
Br(0)
Since u, (z) satisfies

— Aup + V(enx + enye, Jun + EZK(Enx + enYe, ) Py un Un = |un|q_2un7 (5.6)

it follows that w, (z) is bounded in H.. Hence, passing to a subsequence if necessary,
up, — @ > 0 weakly in H., strongly in LY (R3) for p € (2,6) and a.e. in R?. From

loc
B.3), @ # 0.
Using 4 as a test function in (5.6) and taking the limit, we obtain

/ (|Val? + pa?) de < / (|IVal? + pa?) do +/ v dr < / |a|?dz  (5.7)
R3 R3 R3 R3
where, p and v are positive constantes such that

w<liminf V(z) and v <liminf K(z).

Consider the functional I,,, : H'(R?) — R given by

1 1 1
I, (u) = 3 /R&(\Vu|2 + pu?) da + 1 /]Rg vy (x)u® dr — g/Rs |ul? dz.

Let o > 0 be such that I, , (oct) = maxs~o I, (t@). We claim that
02/ (Va2 + i) do + 04/ Va2 dz = aq/ i da. (5.8)
RS RS RS
In fact, from ({5.7)

ot o?
I,,(o0) = / (IVal? + pi?) de + — vt dr — —/ ||? dx
’ R3 4 Jgs q Jrs

4 q
/ |a\qu+”—/ V(;S@{ﬁdx—a—/ |49 dz
R3 4 R3 q R3

it follows that ¢ < 1, and since %Iu7y(tﬁ)

SR SSIRS

<

=0, we obtain
t=o

= cr/ (|IVa? + pa?) de + 03/ voattde — ot [ |a|9ds =0
t=o R3 R3 R3
proving (5.8).
From Lemma equation (5.8) and the fact that o < 1, we have

Cup = 113&% r?>a§< I/A,V(tu) = 3}71&% Iﬂ,V(Uu) < I,u,z/(oﬂ)

ilw,(tﬁ)

o2

4 q
= 7/ (IVa)? + pia?)de + = | veai® do — i/ 4|9 da
2 R3 4 R3 q Jrs
2 q —4
= —/ (vl + pa2) do + 29 =D [ 150 4y
4 R3 4(] R3

1 ~12 ~2 q_4/ N
_ d sz qd
1 /RS(Wu\ + pt?) dr + 10 e | dx

1
< liminf (IE” (un) — =ZI1 (un)un)

n—00 47 ¢En

IN
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= liminfe., <limsupec., < inf C(§)
) EER3

n—oo n—oo

hence, ¢, < infecrs C(E).
If we consider

p—liminf V(z) =V, and v — liminf K(2) = K,

then by the continuity of the function (u,v) — c,, we obtain O < infecps C(§),
which contradicts condition (C°°). Therefore, (cy.) is bounded and there exists a
subsequence of (ey.) such that e,y., — y*.

Now we proceed to prove that C(y*) = infeeps C'(§). Recalling that u,(z) =
Ue, (z + ye, ) and from the arguments above, 4 satisfies the equation

= Du+ V(Y )u+ Ky )uu = |ul"u (5.9)

The Euler-Lagrange functional associated to this equation is I« : Hy« (R?), defined

as in (3.2) with £ = y*.

Using @ as a test function in (5.9)) and taking the limit, we obtain
/ (|\Val]? + V(y*)a*)de < [ |a|?da.
R3 R3
Then
I (o) = max I (tw).
Finally, from Lemma [5.4] and since 0 < ¢ < 1 we have
inf C'
Anf, ()
< Cy") < Iy-(od)

2 (g —4
= (L/ (V> + V(y*)a?) do + otla—4) |a|? da
4 R3 4q R3

1 —4
< 7/ (|\Va|* + V(y*)a?) do + a-= |49 d
4 R3 4q R3

1 -4
< liminf {f/ (\Vun|2 + Vi(enz + enye, )ui) dx + L/ [t | dm}
4 Jus " 4 Jus

n—oo

< liminf (Isn (un) — iI’ (un)un)

€
n— oo "

=liminfe,, < inf C
imin Cn_glenRS )

which implies that C(y*) = infeers C(&). O

As a consequence of the previous lemma, there exists a subsequence of (£,ye,,)
such that e,y., — y*.
Let u., (z + ye, ) = un(z) and consider @ € H! such that u, — .

Lemma 5.7. u, — @ in H*(R3), as n — co. Moreover, there exists €* > 0 such
that lim| | e (x) = 0 uniformly on € € (0,€*).

Proof. By Lemmas [5.4] and we have
inf C(§)

€£€R3

= Cy*) < I (@) — 31;*(11)11
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_ 1 ~12 ) ~2 q—4 ~1q
=1 LVl + vy e+ (42 [ Jalras
1
gliminf{z/ (|Vun|? + V(enz + enye, )u> )dz+ / |un|qd:z:
n—oo R3

1
< limsup {Z / (|Vun | + V(enz + enye, )u2) dx + W / [, | dm
RS RS

n—oo

1
= lim sup {Ign (ufn) I/ (uEn )uan }

En
n—oo 4

n—oo

= limsupe,, < 521]1{3 c().
Then

im [ (Vun? + Vens + enye, ) do = / (IVal? + V(y*)a?) da.
]Rl}

n—oo [p3

Now observe that

1
ce, = Ic, (ue,) — Zzén (ue,, )ue,

—4
/ (|Vue, |2 + V(snx)uzn) dx + (7(]4 ) / lue,, |? dx
R3 R3

q
/ (|Vtun|*> + V(enz + epye, Ju2) dz +
R3

N \

»-lk\'i

= Qpn

hence,
lim sup o, = limsupec,, < C(y*).

n—oo n—oo

On the other hand, using Fatou’s Lemma,

1 4
lim inf a, > Z/Rs(|Vﬂ|2+V(y*)ﬁ2)dx+ (qTq) [ laltds

= I,- (@) — 31;* (@)
> C(y");

then lim, o ay, = C(y*).
Therefore, since 4 is the weak limit of (u,,) in H!(R?), we conclude that u,, — @
strongly in H*(R?). In particular, we have

lim u? dz =0 uniformly on n. (5.10)
R—o00 |z|>R

Applying Proposition [5.2{ with b(z) = V (e, + enye, ) + 2 K (enT + enye, )bu, , We
obtain u, € L*(R?), t 2 2 and

HunHt < Cllunll,

where C' does not depend on n.
Now consider

—Auy, < —Auy + V(ens + €nye, )un + siK(enx + ende,, ) bu, Un

= |un|q*2un = gn(x).
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For some ¢ >3, ||gy[|: < C, for all n. Using Proposition we have

sup w, < C<||Un||L2(Bm(y>) + ||g"||L1/2(BzR(y)))
Br(y)

for every y € R3, which implies that ||ty L (gs) is uniformly bounded. Then, from

E-10

lim w,(x) =0 uniformly on n € N.
|x|—o00

Consequently, there exists ¢* > 0 such that

lim wuc(x) =0 uniformly one € (0,&%).

O

To complete the proof of Theorem [1.1] it remains to show that the solutions of
have at most one local (hence global) maximum point * such that C(y*) =
mingcgrs C(§).

From the previous Lemma, we can focus our attention only in a fixed ball
Bgr(0) C R3. If w € L>(R3) is the limit in C?_(R?) of

then, from Gidas, Ni and Nirenberg [I3], w is radially symmetric and has a unique
local maximum at zero which is a non-degenerate global maximum. Therefore,
there exists ng € N such that w,, does not have two critical points in Br(0) for all
n > ng. Consider p. € R? this local (hence global) maximum of w..
Recall that if u. is a solution of (S;), then
x
ve(2) = us(g)

is a solution of (|1.1). Since p. is the unique maximum of we, then ¢ = p: + Y. is
the unique maximum of u.. Hence, . = epe + €y, is the unique maximum of v..
Once p. € Bg(0), that is, it is bounded, and ey. — y*, we have

be =Y.
where C(y*) = infecps C'(§). Consequently, the concentration of functions v, ap-
proaches y*.
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