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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A
DEGENERATE QUASILINEAR PARABOLIC EQUATION WITH

A GRADIENT TERM

HUILAI LI, XINYUE WANG, YUANYUAN NIE, HONG HE

Abstract. This article concerns the asymptotic behavior of solutions to the

Cauchy problem of a degenerate quasilinear parabolic equations with a gra-
dient term. A blow-up theorem of Fujita type is established and the critical

Fujita exponent is formulated by the spacial dimension and the behavior of
the coefficient of the gradient term at ∞.

1. Introduction

In this article, we study the asymptotic behavior of solutions to the Cauchy
problem

∂u

∂t
= ∆um + b(|x|)x · ∇um + up, x ∈ Rn, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ Rn, (1.2)

where p > m > 1, b ∈ C0,1([0,+∞)) and 0 ≤ u0 ∈ L∞(Rn). The equation (1.1)
is a typical quasilinear parabolic equaton which is called the Newtonian filtration
equation. It is noted that (1.1) is degenerate at the points where u = 0. In the
semilinear case m = 1, (1.1) is the heat equation.

The studies on asymptotic behavior of solutions to diffusion equations with non-
linear reaction began in 1966 by Fujita [6]. There it was proved that for (1.1)-(1.2)
with m = 1 and b ≡ 0, there does not exist a nontrivial nonnegative global solution
if 1 < p < pc = 1 + 2/n, whereas if p > pc, there exist both nontrivial nonnegative
global and blow-up solutions. This result shows that the exponent p of the non-
linear reaction affects the properties of solutions directly. We call pc the critical
Fujita exponent and such a result a blow-up theorem of Fujita type.

The elegant work of Fujita revealed a new phenomenon of nonlinear evolution
equations. There have been a number of extensions of Fujita’s results in several
directions since then, including similar results for numerous of quasilinear parabolic
equations and systems in various of geometries (whole spaces, cones and exterior
domains) with nonlinear reactions or nonhomogeneous boundary conditions, and
even degenerate equations in domains with non-compact boundary [1, 2]. We refer
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to the survey papers [4, 11] and the references therein, and more recent works
[5, 12, 15, 17, 18, 19, 21, 22, 23, 24]. Among those extensions, it is Galaktionov
[7, 8] who first investigated the blow-up theorem of Fujita type for (1.1)-(1.2) with
b ≡ 0 and obtained that pc = m + 2/n. As to nonlinear evolution equations with
gradient terms, there are some studies for the semilinear case. In 1990, Meier [13]
studied the critical Fujita exponent for the Cauchy problem of

∂u

∂t
= ∆u+~b(x) · ∇u+ up, x ∈ Rn, t > 0, (1.3)

where ~b ∈ L∞(Rn; Rn). It was proved that

pc = 1 +
1
λ∗
,

where λ∗ is the maximal decay rate for solutions to
∂w

∂t
= ∆w +~b(x) · ∇w, x ∈ Rn, t > 0, (1.4)

i.e.

λ∗ = sup
{
λ ∈ R : there exists a nontrivial solution w of (1.4)

such that lim sup
t→+∞

tλ‖w(·, t)‖L∞(R) < +∞
}
.

If~b is constant, it is clear that λ∗ = n/2 and pc = 1+2/n. However, for nonconstant
~b ∈ L∞(Rn; Rn), λ∗ and pc are unknown generally. In 1993, Aguirre and Escobedo
[3] considered the Cauchy problem of

∂u

∂t
= ∆u+~b0 · ∇uq + up, x ∈ Rn, t > 0, (0 6= ~b0 ∈ Rn, q > 1)

and proved that

pc = min
{

1 +
2
n
, 1 +

2q
n+ 1

}
.

In [24], the semilinear problem (1.1)-(1.2) with m = 1 was studied and it was shown
that if b satisfies

lim
s→+∞

s2b(s) = κ, (−∞ ≤ κ ≤ +∞), (1.5)

inf{s2b(s) : s > 0} > −n in the case − n < κ ≤ +∞, (1.6)

then the critical Fujita exponent is

pc =


1, κ = +∞,
1 + 2/(n+ κ), −n < κ < +∞,
+∞, −∞ ≤ κ ≤ −n.

As to the quasilinear parabolic equations with gradient terms, Suzuki [16] in 1998
considered the Cauchy problem of
∂u

∂t
= ∆um +~b0 · ∇uq + up, x ∈ Rn, t > 0, (m ≥ 1, 0 6= ~b0 ∈ Rn, p, q > 1)

and proved that if q > m− 1 and max{m, q} ≤ p < min{m+ 2/n,m+ 2(q −m+
1)/(n+ 1)}, then there does not exist any nontrivial nonnegative global solutions.
In [23], the case

b(s) =
κ

s2
, s > 0, (−∞ < κ < +∞)
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was studied. Since such a function is singular at 0 when κ 6= 0, the authors
considered the Neumann exterior problem

∂u

∂t
= ∆um +

κ

|x|2
x · ∇um + up, x ∈ Rn \B1, t > 0,

∂um

∂ν
(x, t) = 0, x ∈ ∂B1, t > 0,

u(x, 0) = u0(x), x ∈ Rn \B1

and showed that its critical Fujita exponent is

pc =

{
m+ 2/(n+ κ), −n < κ < +∞,
+∞, −∞ < κ ≤ −n,

where B1 is the unit ball in Rn and ν is the unit inner normal vector to ∂B1. Also
they considered a special case for the Dirichlet exterior problem.

In this article, we study the asymptotic behavior of solutions to the Cauchy
problem (1.1)-(1.2), where b satisfies (1.5) and (1.6). It is proved that the critical
Fujita exponent to (1.1)-(1.2) can be formulated as

pc =


m, κ = +∞,
m+ 2/(n+ κ), −n < κ < +∞,
+∞, −∞ ≤ κ ≤ −n.

(1.7)

That is to say, if m < p < pc, there does not exist any nontrivial nonnegative global
solution to (1.1)-(1.2), whereas if p > pc, there exist both nontrivial nonnegative
global and blow-up solutions to (1.1)-(1.2). It is shown from (1.7) that the behavior
of the coefficient of the gradient term at ∞, together with the spacial dimension,
determines precisely the critical Fujita exponent to (1.1)-(1.2). The technique used
in this paper is mainly inspired by [14, 17, 23, 24]. To prove the blow-up of so-
lutions, we determine the interactions among the diffusion, the gradient and the
reaction by a precise energy integral estimate instead of pointwise comparisons.
The key is to choose a suitable weight for the energy integral. For the existence of
global nontrivial solutions, we construct a global nontrivial supersolution. Noting
that (1.1) does not possess a self-similar construct, we have to seek a complicated
supersolution and do some precise calculations. By the way, (1.6) is used only
for constructing a global nontrivial supersolution and it seems necessary when one
constructs such a supersolution.

This article is organized as follows. We give some preliminaries in §2, such as the
well-posedness of (1.1)-(1.2) and some auxiliary lemmas. The blow-up theorems of
Fujita type for (1.1)-(1.2) are obtained in §3.

2. Preliminaries

Equation (1.1) is degenerate at the points where u = 0. So, weak solutions are
considered at those points in this paper.

Definition 2.1. Let 0 < T ≤ +∞. A nonnegative function u is called a super
(sub) solution to the problem (1.1), (1.2) in (0, T ), if

u ∈ C([0, T ), Lmloc(Rn)) ∩ L∞loc(0, T ;L∞(Rn))
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and the integral inequality∫ T

0

∫
Rn
u(x, t)

∂ϕ

∂t
(x, t) dx dt+

∫ T

0

∫
Rn
um(x, t)∆ϕ(x, t) dx dt

−
∫ T

0

∫
Rn
um(x, t) div(b(|x|)ϕ(x, t)x) dx dt

+
∫ T

0

∫
Rn
up(x, t)ϕ(x, t) dx dt+

∫
Rn
u0(x)ϕ(x, 0)dx ≤ (≥)0

is satisfied for each 0 ≤ ϕ ∈ C1,1(Rn × [0, T )) vanishing when t near T or |x| being
sufficiently large. A nonnegative function u is called a solution to the problem (1.1),
(1.2) in (0, T ), if it is both a supersolution and a subsolution.

Definition 2.2. A solution u to the problem (1.1), (1.2) is said to blow up in a
finite time 0 < T < +∞, if

‖u(·, t)‖L∞(Rn) → +∞ as t→ T−.

Otherwise, u is said to be global.

For 0 ≤ u0 ∈ L∞(Rn), by using the theory on the Newtonian filtration equations
(see, e.g., [9, 10, 20]), one can establish the existence, uniqueness and the compar-
ison principle to the solutions of (1.1)-(1.2) locally in time. Moreover, it can be
proved that

Lemma 2.3. Assume that u is a solution to (1.1)-(1.2) in (0, T ) with 0 < T ≤ +∞.
Then, for each ψ ∈ C1,1

0 (Rn),
d

dt

∫
Rn
u(x, t)ψ(x)dx =

∫
Rn
um(x, t)∆ψ(x) dx dt−

∫
Rn
um(x, t) div(b(|x|)ψ(x)x)dx

+
∫

Rn
up(x, t)ψ(x)dx

in the distribution sense.

To investigate the blow-up property of solutions to (1.1)-(1.2), we need the fol-
lowing auxiliary lemma.

Lemma 2.4. Assume that b ∈ C0,1([0,+∞)) satisfies (1.5) with −∞ ≤ κ < +∞.
Let u be a solution to the problem (1.1), (1.2). Then there exist three numbers
R0 > 0, δ > 1 and M0 > 0 depending only on n and b, such that for each R > R0,

d

dt

∫
Rn
u(x, t)ψR(|x|)dx ≥ −M0R

−2

∫
BδR\BR

um(x, t)ψR(|x|)dx

+
∫

Rn
up(x, t)ψR(|x|)dx,

(2.1)

for t > 0, where

ψR(r) =


h(r), 0 ≤ r ≤ R,
1
2h(r)

(
1 + cos (r−R)π

(δ−1)R

)
, R < r < δR,

0, r ≥ δR
with

h(r) = exp
{∫ r

0

sb(s)ds
}
, r ≥ 0,
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while Br denotes the open ball in Rn with radius r and centered at the origin.

Proof. It is clear that ψR ∈ C1,1([0,+∞)) with ψ′R(0) = 0. Choosing ψ(x) =
ψR(|x|) in Lemma 2.3, one gets that

d

dt

∫
Rn
u(x, t)ψR(|x|)dx

=
∫

Rn
um(x, t)∆ψR(|x|)dx−

∫
Rn
um(x, t) div(b(|x|)ψR(|x|)x)dx

+
∫

Rn
up(x, t)ψR(|x|)dx

=
∫
BδR

um(x, t)
(
∆ψR(|x|)− div(b(|x|)ψR(|x|)x)

)
dx

+
∫

Rn
up(x, t)ψR(|x|)dx.

(2.2)

As shown in [24], there exist three numbers R0 > 0, δ > 1 and M0 > 0 depending
only on n and b, such that for each R > R0,

∆ψR(|x|)− div(b(|x|)ψR(|x|)x) ≥ −M0R
−2ψR(|x|), |x| > 0. (2.3)

Substituting (2.3) into (2.2) leads to (2.1). �

Remark 2.5. Lemma 2.4 still holds if (1.5) is replaced by

lim sup
s→+∞

s2b(s) = κ.

Remark 2.6. The proof of Lemma 2.4 is invalid if κ = +∞. In this case, (2.1)
holds for each fixed R > 0, but δ > 1 and M0 depend also on R.

Next, we study self-similar supersolutions of (1.1) of the form

u(x, t) = (t+ T )−αv((t+ T )−β |x|), x ∈ Rn, t ≥ 0, (2.4)

where

α =
1

p− 1
, β =

p−m
2(p− 1)

,

T ≥ 1 will be determined. If v ∈ C0,1([0,+∞)) with vm ∈ C1,1([0,+∞)) solves

(vm)′′(r) +
n− 1
r

(vm)′(r) + (t+ T )2βb((t+ T )βr)r(vm)′(r)

+ βrv′(r) + αv(r) + vp(r) ≤ 0, r > 0
(2.5)

for each t > 0, then u given by (2.4) is a supersolution to (1.1).

Lemma 2.7. Assume that b ∈ C0,1([0,+∞)) satisfies (1.5) and (1.6) with −n <
κ ≤ +∞, and p > pc. Choose −n < κ1 < κ2 < κ such that

inf{s2b(s) : s > 0} > κ1, κ2 >
1

p−m
− n. (2.6)

Let T = η−(m+2)/β and

v(r) = (η −A(r))1/(m−1)
+ , r ≥ 0, (2.7)
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where s+ = max{0, s}, 0 < η < 1 will be determined, while A ∈ C1,1([0,+∞))
satisfies A(0) = 0 and

A′(r) =


A1r, 0 ≤ r ≤ ηm+1,

A2r + (A1 −A2)η
(m+1)(n+κ2)

rn+κ2−1 , ηm+1 < r < ηm,

A2r + (A1 −A2)ηn+κ2r, r ≥ ηm

with

A1 = max
{ 2(m− 1)
m(n+ κ1)(p+ pc − 2)

, A2

}
,

A2 =
m− 1

2m(n+ κ2)(p− 1)
+

(m− 1)(p−m)
4m(p− 1)

.

Then, there exists sufficiently small 0 < η < 1 such that u given by (2.4) and (2.7)
is a supersolution to (1.1).

Proof. Choose η0 ∈ (0, 1) such that for each 0 < η < η0,

A(r) < r, 0 < r < η0. (2.8)

By the first formula in (2.6), one has

(t+ T )2βb((t+ T )βr)r ≥ κ1

r
, r > 0, t > 0. (2.9)

Therefore, for each 0 < η < η0, it follows from (2.8) and (2.9) that

(vm)′′(r) +
n− 1
r

(vm)′(r) + (t+ T )2βb((t+ T )βr)r(vm)′(r)

+ βrv′(r) + αv(r) + vp(r)

≤ m

(m− 1)2
(A′(r))2v2−m(r) +

(
α− m

m− 1
A′′(r)− m(n+ κ1 − 1)

m− 1
A′(r)
r

)
v(r)

+ vp(r)

=
A2

1m

(m− 1)2
r2v2−m(r) +

(
α− A1m(n+ κ1)

m− 1

)
v(r) + vp(r)

≤
( A2

1m

(m− 1)2
η2m−1(1− ηm−1)−1 +

(
α− A1m(n+ κ1)

m− 1

)
+ η(p−1)/(m−1)

)
v(r),

for 0 < r < ηm+1 and t > 0. The choice of A1 implies

α <
A1m(n+ κ1)

m− 1
.

Thus, there exists 0 < η1 < η0 such that for each 0 < η < η1,

(vm)′′(r) +
n− 1
r

(vm)′(r) + (t+ T )2βb((t+ T )βr)r(vm)′(r)

+ βrv′(r) + αv(r) + vp(r) ≤ 0,

0 < r < ηm+1, t > 0.

(2.10)

By (1.5) and κ2 < κ, there exists 0 < η2 < η0 such that

s2b(s) ≥ κ2, s >
1
η2
,
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which, together with the choice of T , implies that for each 0 < η < η2,

(t+ T )2βb((t+ T )βr)r ≥ κ2

r
, r > ηm+1, t > 0. (2.11)

For each 0 < η < η2, it follows from (2.11) and (2.8) that

(vm)′′(r) +
n− 1
r

(vm)′(r) + (t+ T )2βb((t+ T )βr)r(vm)′(r)

+ βrv′(r) + αv(r) + vp(r)

≤ m

(m− 1)2
(A′(r))2v2−m(r) +

(
α− m

m− 1
A′′(r)− m(n+ κ2 − 1)

m− 1
A′(r)
r

)
v(r)

+ vp(r)

=
m

(m− 1)2
(
A2 + (A1 −A2)

η(m+1)(n+κ2)

rn+κ2

)2

r2v2−m(r)

+
(
α− A2m(n+ κ2)

m− 1

)
v(r) + vp(r)

≤
( mA2

1

(m− 1)2
η2m−1(1− ηm−1)−1 +

(
α− A2m(n+ κ2)

m− 1

)
+ η(p−1)/(m−1)

)
v(r),

for ηm+1 < r < ηm and t > 0. The choice of A2 implies

α <
A2m(n+ κ2)

m− 1
.

Thus, there exists 0 < η3 < η2 such that for each 0 < η < η3,

(vm)′′(r) +
n− 1
r

(vm)′(r) + (t+ T )2βb((t+ T )βr)r(vm)′(r)

+ βrv′(r) + αv(r) + vp(r) ≤ 0, ηm+1 < r < ηm, t > 0.
(2.12)

For each 0 < η < η0, (2.8) yields A−1(η) > η. Thus, for each 0 < η < η2, it follows
from (2.11) that

(vm)′′(r) +
n− 1
r

(vm)′(r) + (t+ T )2βb((t+ T )βr)r(vm)′(r)

+ βrv′(r) + αv(r) + vp(r)

≤ 1
m− 1

rA′(r)
( m

m− 1
A′(r)
r
− β

)
v2−m(r)

+
(
α− m

m− 1
A′′(r)− m(n+ κ2 − 1)

m− 1
A′(r)
r

)
v(r) + vp(r)

=
A2

m− 1
r2
( mA2

m− 1
− β

)
v2−m(r) +

(
α− A2m(n+ κ2)

m− 1

)
v(r) + vp(r),

for ηm < r < A−1(η) and t > 0. The choice of A2 implies

mA2

m− 1
< β, α <

A2m(n+ κ2)
m− 1

.

Thus, there exists 0 < η4 < η2 such that for each 0 < η < η4,

(vm)′′(r) +
n− 1
r

(vm)′(r) + (t+ T )2βb((t+ T )βr)r(vm)′(r)

+ βrv′(r) + αv(r) + vp(r) ≤ 0, ηm < r < A−1(η), t > 0.
(2.13)
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Summing up, from (2.10), (2.12) and (2.13), for 0 < η < min{η1, η3, η4}, the
function u given by (2.4) and (2.7) is a supersolution of (1.1). �

Remark 2.8. Lemma 2.7 still holds if (1.5) is replaced by

lim inf
s→+∞

s2b(s) = κ.

Remark 2.9. In Lemma 2.7, (1.6) is necessary to get a supersolution to (1.1) of
the form (2.4) and (2.7). But, it is not clear at this moment whether (1.1) admits
a global supersolution of other form if (1.6) is invalid.

3. Blow-up theorem of Fujita type

In this section, we establish the blow-up theorem of Fujita type for the problem
(1.1), (1.2) by using Lemmas 2.4 and 2.7. First consider the case m < p < pc with
−∞ ≤ κ < +∞.

Theorem 3.1. Assume that b ∈ C0,1([0,+∞)) satisfies (1.5) with −∞ ≤ κ < +∞.
Let m < p < pc. Then for each nontrivial 0 ≤ u0 ∈ L∞(Rn), the solution to the
problem (1.1), (1.2) must blow up in a finite time.

Proof. Let ψR, h, R0, δ and M0 be given by Lemma 2.4. Owing to −∞ ≤ κ < +∞
and 1 < p < pc,

κ <
2

p−m
− n.

Fix κ̃ to satisfy

κ < κ̃ <
2

p−m
− n. (3.1)

By (1.5) and (3.1), there exists R1 > 0 such that

s2b(s) < κ̃, s > R1.

For each R > R1, one obtain∫
Rn
ψR(|x|)dx ≤ nωn

∫ δR

0

rn−1h(r)dr

≤ ωn(δR)n exp
{∫ δR

0

sb(s)ds
}

≤ ωn(δR)n exp
{∫ R1

0

sb(s)ds
}

exp
{
κ̃

∫ δR

R1

1
s
ds
}

= M1R
n+κ̃,

(3.2)

where ωn is the volume of the unit ball in Rn, while M1 > 0 depends only on n, b,
R1, δ and κ̃. Let u be the solution to the problem (1.1), (1.2). Denote

wR(t) =
∫

Rn
u(x, t)ψR(|x|)dx, t ≥ 0.

For each R > max{R0, R1}, it follows from Lemma 2.4 that

d

dt
wR(t) ≥ −M0R

−2

∫
Rn
um(x, t)ψR(|x|)dx+

∫
Rn
up(x, t)ψR(|x|)dx, (3.3)
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for t > 0. The Hölder inequality and (3.2) yield∫
Rn
um(x, t)ψR(|x|)dx

≤
(∫

Rn
ψR(|x|)dx

)(p−m)/p(∫
Rn
up(x, t)ψR(|x|)dx

)m/p
≤M (p−m)/p

1 R(p−m)(n+κ̃)/p
(∫

Rn
up(x, t)ψR(|x|)dx

)m/p
, t > 0.

(3.4)

Substitute (3.4) into (3.3) to obtain

d

dt
wR(t) ≥

(∫
Rn
up(x, t)ψR(|x|)dx

)m/p(
−M0M

(p−m)/p
1 R−2+(p−m)(n+κ̃)/p

+
(∫

Rn
up(x, t)ψR(|x|)dx

)(p−m)/p)
, t > 0.

(3.5)

It follows from the Hölder inequality and (3.2) that∫
Rn
u(x, t)ψR(|x|)dx ≤

(∫
Rn
ψR(|x|)dx

)(p−1)/p(∫
Rn
up(x, t)ψR(|x|)dx

)1/p

≤M (p−1)/p
1 R(p−1)(n+κ̃)/p

(∫
Rn
up(x, t)ψR(|x|)dx

)1/p

,

for t > 0, which implies∫
Rn
up(x, t)ψR(|x|)dx ≥M−(p−1)

1 R−(p−1)(n+κ̃)wpR(t), t > 0. (3.6)

Substituting (3.6) into (3.5), one gets that for each R > max{R0, R1},
d

dt
wR(t) ≥M−m(p−1)/p

1 R−m(p−1)(n+κ̃)/pwmR (t)

×
(
−M0M

(p−m)/p
1 R−2+(p−m)(n+κ̃)/p

+M
−(p−1)(p−m)/p
1 R−(p−1)(p−m)(n+κ̃)/pw

(p−m)
R (t)

)
, t > 0.

(3.7)

Note that (3.1) implies 2 > (p − m)(n + κ̃), while wR(0) is nondecreasing with
respect to R ∈ (0,+∞) and

sup{wR(0) : R > 0} > 0.

Therefore, there exists R2 > 0 such that for each R > R2,

M0M
(p−m)/p
1 R−2+(p−m)(n+κ̃)/p

≤ 1
2
M
−(p−1)(p−m)/p
1 R−(p−1)(p−m)(n+κ̃)/pw

(p−m)
R (0).

(3.8)

Fix R > max{R0, R1, R2}. Then, (3.7) and (3.8) yield
d

dt
wR(t) ≥ 1

2
M
−p(p−1)/p
1 R−p(p−1)(n+κ̃)/pwpR(t), t > 0.

Since p > m > 1, there exists T > 0 such that

wR(t) =
∫

Rn
u(x, t)ψR(|x|)dx→ +∞ as t→ T−.

Noting that suppψR(|x|) is bounded, one gets

‖u(·, t)‖L∞(Rn) → +∞ as t→ T−.
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That is to say, u blows up in a finite time. �

Turn to the case p > pc with −n < κ ≤ +∞.

Theorem 3.2. Assume that b ∈ C0,1([0,+∞)) satisfies (1.5) and (1.6) with −n <
κ ≤ +∞. Let p > pc. Then there exist both nontrivial nonnegative global and
blow-up solutions of problem (1.1)-(1.2).

Proof. The comparison principle and Lemma 2.7 yield that problem (1.1)-(1.2)
admits a global nontrivial solution. Let us show there also exists a blow-up solutions
to (1.1)-(1.2). Fix R > R0. Assume that u is a solution to (1.1)-(1.2). It follows
from Lemma 2.4 (the case −n < κ < +∞), Remark 2.6 (the case κ = +∞) that
there exist a nontrivial function 0 ≤ ψ ∈ C1,1

0 (Rn), with ‖ψ‖L1(Rn) ≤ 1, and a
constant M > 0, both depending only on n, R and b, such that

d

dt
w(t) ≥ −M

∫
Rn
um(x, t)ψ(x)dx+

∫
Rn
up(x, t)ψ(x)dx, t > 0, (3.9)

where

w(t) =
∫

Rn
u(x, t)ψ(x)dx, t ≥ 0.

The Hölder inequality yields∫
Rn
um(x, t)ψ(x)dx ≤

(∫
Rn
ψ(x)dx

)(p−m)/p(∫
Rn
up(x, t)ψ(x)dx

)m/p
, (3.10)

for t > 0. Substitute (3.10) into (3.9) to get

d

dt
w(t) ≥

(∫
Rn
up(x, t)ψ(x)dx

)m/p(
−M+

(∫
Rn
up(x, t)ψ(x)dx

)(p−m)/p)
, (3.11)

for t > 0. It follows from the Hölder inequality that∫
Rn
u(x, t)ψ(x)dx ≤

(∫
Rn
ψ(x)dx

)(p−1)/p(∫
Rn
up(x, t)ψ(x)dx

)1/p

, t > 0,

which implies∫
Rn
up(x, t)ψ(x)dx ≥

(∫
Rn
ψ(x)dx

)−(p−1)

wp(t), t > 0. (3.12)

Substituting (3.12) into (3.11), one gets that

d

dt
w(t) ≥

(∫
Rn
ψ(x)dx

)−m(p−1)/p

wm(t)
(
−M

+
(∫

Rn
ψ(x)dx

)−(p−m)(p−1)/p

wp−m(t)
)
, t > 0.

(3.13)

If u0 is so large that

w(0) =
∫

Rn
u0(x)ψ(x)dx ≥ (2M)1/(p−m)

(∫
Rn
ψ(x)dx

)(p−1)/p

.

Then, (3.13) leads to

d

dt
w(t) ≥ 1

2

(∫
Rn
ψ(x)dx

)−p(p−1)/p

wp(t), t > 0.

By the same argument as in the end of the proof of Theorem 3.1, u must blow up
in a finite time. �
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Remark 3.3. In Theorem 3.1, b need not to satisfy (1.6) even if −n < κ < +∞.
However, (1.6) is needed in the proof of Lemma 2.7 and thus in the proof of Theorem
3.2.

According to Remarks 2.5 and 2.8, one gets the following statement.

Remark 3.4. Theorem 3.1 still holds if (1.5) is replaced by

lim sup
s→+∞

s2b(s) = κ,

while Theorem 3.2 still holds if (1.5) is replaced by

lim inf
s→+∞

s2b(s) = κ.

From Theorems 3.1 and 3.2 we have the following statement.

Remark 3.5. For problem (1.1)-(1.2), pc = m if lims→+∞ s2b(s) = +∞, while
pc = +∞ if lim sups→+∞ s2b(s) ≤ −n. In particular, pc = m for the Cauchy
problems of

∂u

∂t
= ∆um + x · ∇um + up, x ∈ Rn, t > 0

and
∂u

∂t
= ∆um +

x

|x|+ 1
· ∇um + up, x ∈ Rn, t > 0,

while pc = +∞ for the Cauchy problems of
∂u

∂t
= ∆um − x · ∇um + up, x ∈ Rn, t > 0

and
∂u

∂t
= ∆um − x

|x|+ 1
· ∇um + up, x ∈ Rn, t > 0.
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