
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 30, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

POSITIVE RADIALLY SYMMETRIC SOLUTION FOR A
SYSTEM OF QUASILINEAR BIHARMONIC EQUATIONS IN

THE PLANE

JOSHUA BARROW, ROBERT DEYESO III, LINGJU KONG, FRANK PETRONELLA

Abstract. We study the boundary value system for the two-dimensional

quasilinear biharmonic equations

∆(|∆ui|p−2∆ui) = λiwi(x)fi(u1, . . . , um), x ∈ B1,

ui = ∆ui = 0, x ∈ ∂B1, i = 1, . . . ,m,

where B1 = {x ∈ R2 : |x| < 1}. Under some suitable conditions on wi and

fi, we discuss the existence, uniqueness, and dependence of positive radially
symmetric solutions on the parameters λ1, . . . , λm. Moreover, two sequences

are constructed so that they converge uniformly to the unique solution of the

problem. An application to a special problem is also presented.

1. Introduction

In this article, we are concerned with the existence, uniqueness, and dependence
of positive radially symmetric solutions of the following boundary value system for
the two-dimensional quasilinear biharmonic equations

∆(|∆ui|p−2∆ui) = λiwi(x)fi(u1, . . . , um), x ∈ B1,

ui = ∆ui = 0, x ∈ ∂B1, i = 1, . . . ,m,
(1.1)

where B1 = {x ∈ R2 : |x| < 1} with x = (x1, x2) and |x| =
√
x2

1 + x2
2, ∆ =

∂2

∂x2
1

+ ∂2

∂x2
2
, p > 1 is a constant, m ≥ 1 is an integer, λi is a positive parameter,

wi(x) is radially symmetric, namely, wi(x) = w(|x|), fi is continuous and positive
on (0,∞)m, and fi(y1, . . . , ym) may be singular at yi = 0.

Assume that (u1(t), . . . , um(t)) = (u1(|x|), . . . , um(|x|)) with t = |x| is a radially
symmetric solution of (1.1). Then, direct calculations show that for i = 1, . . . ,m,

L(|Lu|p−2Lu) = λiwi(t)fi(u1, . . . , um), t ∈ (0, 1),

u′i(0) = ui(1) = (|Lu|p−2Lu)′|t=0 = (|Lu|p−2Lu)|t=1 = 0,
(1.2)

where L denotes the polar form of the two-dimensional Laplacian operator ∆, i.e.,

L =
1
t

d

dt

(
t
d

dt

)
.
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Thus, to study positive radially symmetric solutions of (1.1), it suffices to study
positive solutions of problem (1.2).

Recently, Guo, Yin, and Ke [9] studied the scalar case of (1.1), i.e.,

∆(|∆u|p−2∆u) = λw(x)f(u), x ∈ B1,

u = ∆u = 0, x ∈ ∂B1.
(1.3)

Using fixed point index theory, they found some sufficient conditions under which
there exists λ∗ > 0 such that (1.3) has two positive radially symmetric solutions
for each 0 < λ < λ∗, has one positive radially symmetric solution for λ = λ∗, and
does not have a positive radially symmetric solution for any λ > λ∗. In [9], it
was assumed, among others, that f is continuous on [0,∞) and nondecreasing on
[0,∞). Such assumptions are not needed in this paper.

The background information on problem (1.3) and its related applications can be
found, for example, in [2, 3, 16]. In recent years, fourth order nonlinear differential
equations have become increasingly popular due to their possible applications in
the fields of image and signal processing, nuclear physics, and engineering. We refer
the reader to [3, 4, 5, 8, 6, 10, 11, 13] for a small sample of the work. Among these
works, papers [3, 5, 8] studied the existence of solutions of biharmonic equations
with singular nonlinearities and only paper [5] considered the uniqueness of positive
solutions. Specifically, paper [5] established criteria for the existence and uniqueness
of positive solutions of the problem

∆2u = u−β , x ∈ Ω,

u = ∂u/∂ν = 0, x ∈ ∂Ω,

where 0 < β < 1, Ω ⊂ Rn with n ≥ 2 is a smooth bounded domain and ν is the
exterior unit normal vector at ∂Ω.

To the best of our knowledge, little work has been done in the literature on
the uniqueness and dependence of positive solutions of biharmonic equations. In
this paper, we not only investigate the existence and uniqueness of positive solu-
tions of problem (1.2), but also discuss the dependence of positive solutions on the
parameters λ1, . . . , λm. Moreover, in our theorem, two sequences are constructed
in such a way that they converge uniformly to the unique positive solution of the
problem. As a simple application of our theory, we also present some uniqueness
and dependence results for the following special case of problem (1.2)

L(|Lu|p−2Lu) = λiwi(t)
( m∑
k=1

aiku
bik
k +

m∑
k=1

ciku
−dik
k

)
, t ∈ (0, 1),

u′i(0) = ui(1) = (|Lu|p−2Lu)′|t=0 = (|Lu|p−2Lu)|t=1 = 0, i = 1, . . . ,m,

(1.4)

where aik, bik, dik ≥ 0, and cik > 0, i, k = 1, . . . ,m. In our proof, part of
the analysis relies on some results from mixed monotone operator theory. This
technique was introduced by Guo and Lakshmikantham [7] in 1987. Since then,
many authors have investigated such operators and related applications to a variety
of problems; see, for example, [12, 14, 15, 17] and the references therein.

In this article, we need the following assumptions:
(H1) for i = 1, . . . ,m and y ∈ (0,∞)m, fi(y) can be written as fi(y) = gi(y) +

hi(y), where gi : [0,∞)m → [0,∞) is continuous and nondecreasing in each
of its arguments, and hi : (0,∞)m → (0,∞) is continuous and nonincreasing
in each of its arguments;
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(H2) for i = 1, . . . ,m, wi : (0, 1)→ [0,∞) is continuous and

0 < −
∫ 1

0

s(ln s)wi(s)hi(ρ(1− s))ds <∞ for any constant ρ > 0;

(H3) for i = 1, . . . ,m, there exists α ∈ (0, 1) such that

gi(κy) ≥ κ(p−1)αgi(y), (1.5)

hi(κ−1y) ≥ κ(p−1)αhi(y) (1.6)

for κ ∈ (0, 1) and y ∈ (0,∞)m.
The rest of this article is organized as follows. Section 2 contains some prelimi-

nary lemmas, Section 3 contains the main results of this paper and their proofs.

2. Preliminary lemmas

Lemma 2.1 below provides the equivalent integral form of problem (1.2).

Lemma 2.1. The function u(t) = (u1(t), . . . , um(t)) is a solution of (1.2) if and
only if

ui(t) = λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)fi(u(s))ds
)
dτ,

where φq(s) = |s|q−2s with 1/p+ 1/q = 1 and

k(t, s) =

{
−s ln t, 0 ≤ s ≤ τ ≤ 1,
−s ln s, 0 ≤ t ≤ s ≤ 1.

(2.1)

A similar version of Lemma 2.1 with m = 1 has been proved in [9, Pages 1322–
1323]. The present version can be proved in the same way.

The following lemma summarizes some properties of the function k(t, s).

Lemma 2.2. The function k(t, s) defined by (2.1) satisfies
(a) k(t, s) > 0 for t, s ∈ (0, 1);
(b) k(t, s) ≤ k(s, s) for t, s ∈ [0, 1];
(c) 0 ≤ k(t, s) ≤ 1/e for t, s ∈ [0, 1];
(d) s(1− t) ≤ k(t, s) ≤ −s ln s

1−s (1− t) for 0 ≤ s ≤ t ≤ 1.

Proof. Parts (a)–(c) were shown in [9, Remark 2]. We now show part (d). For any
fixed 0 ≤ s ≤ 1, let l(t) = −s ln t, s ≤ t ≤ 1. Assume first that s > 0. It is easy to
check that the tangent line of y = l(t) at t = 1 is given by y = s(1 − t), and the
secant line of y = l(t) connecting the points (1, l(1)) and (s, l(s)) is y = −s ln s

1−s (1−t).
Note that l′′(t) = s/t2 > 0 for t ∈ [s, 1]. Then, l(t) is concave upward. Hence, we
have

s(1− t) ≤ k(t, s) ≤ −s ln s
1− s

(1− t) for 0 < s ≤ t ≤ 1.

When s = 0, the above inequalities obviously hold. This completes the proof. �

In the sequel, let (X, ‖ · ‖) be a real Banach space that is partially ordered by a
normal cone P ⊂ X, i.e., u ≤ v if and only if v − u ∈ P . If u ≤ v and u 6= v, then
we write u < v or v > u. By θ we denote the zero element of X.

Recall that a nonempty closed convex subset P ⊂ X is called a cone if it satisfies:
(i) u ∈ P and λ > 0 implies λu ∈ P ;
(ii) u ∈ P and −u ∈ P implies u = θ.
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Moreover, a cone P is said to be normal if there exists a constant C > 0 such that,
for all u, v ∈ X, θ ≤ u ≤ v implies ‖u‖ ≤ C‖v‖.

Given ω ∈ P \ {θ}, let

Pω =
{
u ∈ X : there exist d > c > 0 such that cω ≤ u ≤ dω

}
. (2.2)

It is easy to see that Pω ⊂ P .
To prove our theorem, we need some results from monotone operator theory.

The following definition and lemma are well known. For instance, Definition 2.3
can be found in [7, 12, 14, 15, 17], and Lemma 2.4 is a special case of [17, Corollary
4.1]; see also [12, Theorem 2.1] and [15, Theorem 2.6].

Definition 2.3. An operator T : P × P → X is called mixed monotone if T (u, v)
is nondecreasing in u and nonincreasing in v. Moreover, an element u ∈ P is said
to be a fixed point of T if T (u, u) = u.

Lemma 2.4. Let P be a normal cone in a real Banach space X, ω ∈ P \ {θ},
and T : Pω × Pω → Pω be a mixed monotone operator. Assume that there exists
α ∈ (0, 1) such that

T (κu, κ−1v) ≥ καT (u, v) for u, v ∈ Pω and κ ∈ (0, 1).

Then T has a unique fixed point u in Pω. Moreover, if constructing successively the
sequences {un} and {vn}

un = T (un−1, vn−1), vn = T (vn−1, un−1), n = 1, 2, . . . ,

for any initial values u0, v0 ∈ Pω, we have ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as
n→∞.

3. Main results

In this section, we let 0 = (0, . . . , 0) and ∞ = (∞, . . . ,∞). For any vectors
y = (y1, . . . , ym) and z = (z1, . . . , zm), the following notations will be used:

• y → z if every component of y approaches the corresponding one of z;
• y → z+ (z−) if every component of y approaches the corresponding one of
z from the right (left);

• y →∞ if every component of y approaches ∞;
• y > z (y < z) if every component of y is strictly larger (smaller) than the

corresponding one of z.
In the remainder of the paper, we let X be the Banach space (C[0, 1])m equipped
with the norm

‖u‖ = max
{

max
t∈[0,1]

|ui(t)| : i = 1, . . . ,m
}
, u = (u1, . . . , um) ∈ X,

and define a cone P ⊂ X by

P =
{
u = (u1, . . . , um) ∈ X) : ui(t) ≥ 0 for t ∈ [0, 1] and i = 1, . . . ,m

}
.

Then, P is a normal cone in X. Choose ω(t) = 1− t ∈ P \{θ} and let Pω be defined
by (2.2) with the above P , i.e.,

Pω =
{
u = (u1, . . . , um) ∈ X : there exist d > c > 0 such that

cω(t) ≤ ui(t) ≤ dω(t) for t ∈ [0, 1] and i = 1, . . . ,m
}
.

Now, we state the main results in this paper.
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Theorem 3.1. Assume that (H1)–(H3) hold. Then:
(i) for any λ = (λ1, . . . , λm) > 0, problem (1.2) has a unique positive solution

uλ(t) = (uλ,1(t), . . . , uλ,m(t)) in X;
(ii) for any u0, v0 ∈ Pω, consider the sequences {un} = {un,1, . . . , un,m} and
{vn} = {vn,1, . . . , vn,m} defined by

un,i(t) = λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)
(
gi(un−1(s)) + hi(vn−1(s)

)
ds
)
dτ,

vn,i(t) = λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)
(
gi(vn−1(s)) + hi(un−1(s)

)
ds
)
dτ

for i = 1, . . . ,m and n = 1, 2, . . .. Then

‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n→∞;

(iii) if, in addition, 0 < α < 1/2, then the unique solution uλ(t) satisfies the
following properties:
(a) uλ(t) is strictly increasing in λ, i.e., µ > ν > 0 ⇒ uµ(t) > uν(t) on

[0, 1);
(b) limν→0+ ‖uν‖ = 0 and limµ→∞ ‖uµ‖ =∞;
(c) uλ(t) is continuous in λ, i.e., µ→ ν > 0⇒ ‖uµ − uν‖ → 0.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. Assume that the following conditions hold:
(A1) 0 < ζ < p− 1, where ζ = max{bik, dik : i, k = 1, . . . ,m};
(A2) 0 < −

∫ 1

0
s(ln s)(1− s)−dikwi(s)ds <∞ for i = 1, . . . ,m.

Then:
(i) for any λ = (λ1, . . . , λm) > 0, problem (1.4) has a unique positive solution

uλ(t) = (uλ,1(t), . . . , uλ,m(t)) in X;
(ii) with gi(y1, . . . , ym) =

∑m
k=1 aiky

bik
k , and hi(y1, . . . , ym) =

∑m
k=1 ciky

−dik
k ,

part (ii) of Theorem 3.1 holds for problem (1.4);
(iii) if, in addition, 0 < ζ < 1/2, then the unique solution uλ(t) satisfies the

three properties stated in part (iii) of Theorem 3.1.

Remark 3.3. In Theorem 3.1 (ii) and Corollary 3.2 (ii), if we choose u0 = v0
in Pω, then it is easy to see that un,i(t) = vn,i(t) on [0, 1] for i = 1, . . . ,m and
n = 1, 2, . . .. Hence, un(t) = vn(t) on [0, 1] for n = 1, 2, . . .. Thus, to use iterations
to approximate the unique solution of problem (1.2), in the nth step, we only need
to solve the equations

un,i(t) = λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)
(
gi(un−1(s)) + hi(un−1(s)

)
ds
)
dτ

for i = 1, . . . ,m.

Proof of Theorem 3.1. Let λ = (λ1, . . . , λm) > 0 be fixed. For u = (u1, . . . , um),
v = (v1, . . . , vm) ∈ Pω, define an operator Tλ : Pω × Pω → X by

Tλ(u, v)(t) =
(
Tλ,1(u, v)(t), . . . , Tλ,m(u, v)(t)

)
,

where

Tλ,i(u, v)(t) = λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)[gi(u(s)) + hi(v(s))]ds
)
dτ. (3.1)
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In view of (H1), (H2), and Lemma 2.2 (b), Tλ is well defined. Moreover, from the
monotonicity of gi and hi assumed in (H2), it is easy to verify that Tλ,i is mixed
monotone, and so is Tλ.

We now show that Tλ(Pω×Pω) ⊂ Pω. For i = 1, . . . ,m and u = (u1, . . . , um), v =
(v1, . . . , vm) ∈ Pω, let

zi(u, v)(τ) = φq

(∫ 1

0

k(τ, s)wi(s)[gi(u(s)) + hi(v(s))]ds
)
.

Then, from (2.1), Lemma 2.2 (d), (3.1), and the fact that − ln τ ≥ 1−τ for τ ∈ [t, 1],
we have

Tλ,i(u, v)(t)

= λ
1
p−1
i

∫ t

0

k(t, τ)zi(u, v)(τ)dτ + λ
1
p−1
i

∫ 1

t

k(t, τ)zi(u, v)(τ)dτ

≥ (1− t)λ
1
p−1
i

∫ t

0

τzi(u, v)(τ)dτ + λ
1
p−1
i

∫ 1

t

τ(− ln τ)zi(u, v)(τ)dτ

≥ (1− t)λ
1
p−1
i

∫ t

0

τzi(u, v)(τ)dτ + λ
1
p−1
i

∫ 1

t

τ(1− τ)zi(u, v)(τ)dτ

≥ (1− t)λ
1
p−1
i

(∫ t

0

τ(1− τ)zi(u, v)(τ)dτ +
∫ 1

t

τ(1− τ)zi(u, v)(τ)dτ
)

= (1− t)λ
1
p−1
i

∫ 1

0

τ(1− τ)zi(u, v)(τ)dτ

≥ c1(1− t) = c1ω(t),

(3.2)

where

c1 = min
1≤i≤m

{
λ

1
p−1
i

∫ 1

0

τ(1− τ)zi(u, v)(τ)dτ
}
.

Similarly, from (2.1), Lemma 2.2 (d), (3.1), and the fact that (1 − t)/(1 − τ) ≥ 1
for τ ∈ [t, 1], it follows that

Tλ,i(u, v)(t)

= λ
1
p−1
i

∫ t

0

k(t, τ)zi(u, v)(τ)dτ + λ
1
p−1
i

∫ 1

t

k(t, τ)zi(u, v)(τ)dτ

≤ (1− t)λ
1
p−1
i

∫ t

0

−τ ln τ
1− τ

zi(u, v)(τ)dτ + λ
1
p−1
i

∫ 1

t

−τ(ln τ)zi(u, v)(τ)dτ

≤ (1− t)λ
1
p−1
i

(∫ t

0

−τ ln τ
1− τ

zi(u, v)(τ)dτ +
∫ 1

t

−τ ln τ
1− τ

zi(u, v)(τ)dτ
)

= (1− t)λ
1
p−1
i

∫ 1

0

−τ ln τ
1− τ

zi(u, v)(τ)dτ

≤ d1(1− t) = d1ω(t),

(3.3)

where

d1 = max
1≤i≤m

{
λ

1
p−1
i

∫ 1

0

−τ ln τ
1− τ

zi(u, v)(τ)dτ
}
.

From (3.2) and (3.3), we see that Tλ(Pω × Pω) ⊂ Pω.
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Next, for i = 1, . . . ,m and u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Pω and κ ∈
(0, 1), from (H3) and (3.1), we have

Tλ,i(κu, κ−1v)(t)

= λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)[gi(κu(s)) + hi(κ−1v(s))]ds
)
dτ

≥ καλ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)[gi(u(s)) + hi(v(s))]ds
)
dτ

= καTλ,i(u, v)(t).

Thus,
Tλ(κu, κ−1v)(t) ≥ καTλ(u, v)(t). (3.4)

We have shown that all the conditions of Lemma 2.4 hold, so there exists a
unique uλ = (uλ,1, . . . , uλ,m) ∈ Pω such that Tλ(uλ, vλ) = uλ. Hence, in view of
the fact that fi(y) = gi(y) + hi(y) (see (H1)), we have

uλ,i(t) = λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)[gi(uλ(s)) + hi(uλ(s))]ds
)
dτ

= λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)fi(uλ(s))ds
)
dτ.

By Lemma 2.1, we see that (1.2) has a unique solution uλ = (uλ,1, . . . , uλ,m) in Pω,
which is obviously positive on [0, 1). From the “moreover” part of Lemma 2.4, part
(ii) of Theorem 3.1 holds.

It is clear that, to show that (1.2) has a unique positive solution in X, it suffices
to prove the following claim.
Claim: If, for any λ = (λ1, . . . , λm) > 0, ûλ(t) = (ûλ,1, . . . , ûλ,m) is a positive
solution of problem (1.2), then ûλ ∈ Pω.

In fact, if ûλ(t) = (ûλ,1, . . . , ûλ,m) is a positive solution of problem (1.2), then
by Lemma 2.1,

ûλ,i(t) = λ
1
p−1
i

∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)[gi(ûλ(s)) + hi(ûλ(s))]ds
)
dτ.

Hence, by similar arguments as in showing (3.2) and (3.3), we see that there exist
d2 > c2 > 0 such that

c2ω(t) ≤ ûλ,i(t) ≤ d2ω(t) for t ∈ [0, 1] and i = 1, . . . ,m.

This shows that ûλ ∈ Pω, i.e., the claim is true. Now, by the claim, problem (1.2)
has a unique positive solution in X. Thus, part (i) of Theorem 3.1 holds.

In the rest of the proof, we show part (iii) of Theorem 3.1. For i = 1, . . . ,m,
define an operator Ai : Pω × Pω → X by

Ai(u, v)(t) =
∫ 1

0

k(t, τ)φq
(∫ 1

0

k(τ, s)wi(s)[gi(u(s)) + hi(v(s))]ds
)
dτ. (3.5)

Clearly, Ai is mixed monotone, and as in showing (3.4), we have

Ai(κu, κ−1v)(t) ≥ καAi(u, v)(t) for κ ∈ (0, 1). (3.6)

Moreover, in view of (3.1), we have

Tλ,i(u, v)(t) = λ
1
p−1
i Ai(u, v)(t), i = 1, . . . ,m. (3.7)
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We first show property (a). Assume that µ = (µ1, . . . , µm) > ν = (ν1, . . . , νm) >
0. Let uµ = (uµ,1, . . . , uµ,m) and uν = (uν,1 . . . , uν,m) be the unique positive
solutions of (1.2) corresponding to (λ1, . . . , λm) = (µ1, . . . , µm) and (λ1, . . . , λm) =
(ν1, . . . , νm), respectively. Then, from (3.7), it follows that

uµ,i(t) = Tµ,i(uµ, uµ)(t) = µ
1
p−1
i Ai(uµ, vµ)(t)

uν,i(t) = Tν,i(uν , uν)(t) = ν
1
p−1
i Ai(uν , vν)(t).

(3.8)

Define the set

S(µ, ν) =
{
γ > 0 : uµ,i(t) ≥ γuν,i(t) and uν,i(t) ≥ γuµ,i(t) on [0, 1], i = 1, . . . ,m

}
.

We show that S(µ, ν) 6= ∅. In fact, by the above claim, uµ, uν ∈ Pω. Then, for
t ∈ [0, 1] and i = 1, . . . ,m, there exist dµ > cµ > 0 and dν > cν > 0 such that

cµω(t) ≤ uµ,i(t) ≤ dµω(t) and cνω(t) ≤ uν,i(t) ≤ dνω(t).

Thus, we have

uµ,i ≥ cµω(t) ≥ cµ
dν
uν,i and uν,i ≥ cνω(t) ≥ cν

dµ
uµ,i.

Hence, any γ satisfying 0 < γ < min{cµ/dν , cν/dµ} is in S(µ, ν). This shows that
S(µ, ν) 6= ∅. Let γ = supS(µ, ν). Then, 0 < γ < 1 and

uµ,i(t) ≥ γuν,i(t) and uν,i(t) ≥ γuµ,i(t) for t ∈ [0, 1] and i = 1, . . . ,m. (3.9)

In fact, (3.9) is obviously true. If γ > 1, then (3.9) implies that uµ,i(t) > uν,i(t) >
uµ,i(t) on t ∈ [0, 1). This is a contradiction. If γ = 1, then, by (3.9), uµ,i(t) = uν,i(t)
for t ∈ [0, 1] and i = 1, . . . ,m. So, uµ(t) = uν(t) on [0, 1]. Hence, from (3.8),

uµ,i(t) = µ
1
p−1
i Ai(uµ, uµ)(t) > ν

1
p−1
i Ai(uν , uν)(t) = uν,i.

Again, this is a contradiction. Thus, 0 < γ < 1.
Since Ai is mixed monotone, from (3.6), (3.8), and (3.9), we have

uµ,i(t) = µ
1
p−1
i Ai(uµ, uµ)(t) ≥ µ

1
p−1
i Ai(γuν , γ−1uν)(t)

≥ (γ)αµ
1
p−1
i ν

− 1
p−1

i ν
1
p−1
i Ai(uν , uν)(t)

= (γ)αµ
1
p−1
i ν

− 1
p−1

i uν,i(t)

and

uν,i(t) = ν
1
p−1
i Ai(uν , uν)(t) ≥ ν

1
p−1
i Ai(γuµ, γ−1uµ)(t)

≥ (γ)αν
1
p−1
i µ

− 1
p−1

i µ
1
p−1
i Ai(uµ, uµ)(t)

= (γ)αν
1
p−1
i µ

− 1
p−1

i uµ,i(t),

i.e.,

uµ,i(t) ≥ (γ)αµ
1
p−1
i ν

− 1
p−1

i uν,i(t) and uν,i(t) ≥ (γ)αν
1
p−1
i µ

− 1
p−1

i uµ,i(t) (3.10)

for t ∈ [0, 1] and i = 1, . . . ,m. In view of the fact (γ)αµ
1
p−1
i ν

− 1
p−1

i ≥ (γ)αν
1
p−1
i µ

− 1
p−1

i ,
we have

uµ,i(t) ≥ (γ)αν
1
p−1
i µ

− 1
p−1

i uν,i(t).
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Then, by the definition of γ, we have (γ)αν
1
p−1
i µ

− 1
p−1

i ≤ γ. Hence,

γ ≥
( νi
µi

) 1
(p−1)(1−α) .

Thus, from (3.10), we obtain that

uµ,i(t) ≥
( νi
µi

) α
(p−1)(1−α)µ

1
p−1
i ν

− 1
p−1

i uν,i(t) =
(µi
νi

) 1−2α
(p−1)(1−α)uν,i(t) (3.11)

and

uν,i(t) ≥
( νi
µi

) α
(p−1)(1−α) ν

1
p−1
i µ

− 1
p−1

i uµ,i(t) =
( νi
µi

) 1
(p−1)(1−α)uµ,i(t) (3.12)

for t ∈ [0, 1] and i = 1, . . . ,m. Since α ∈ (0, 1/2), we have
(
µi
νi

) 1−2α
(p−1)(1−α) > 1, and

so from (3.11), uµ,i(t) > uν,i(t) for t ∈ [0, 1) and i = 1, . . . ,m. This proves property
(a) of part (iii).

Next, we prove property (b). Assume µ = (µ1, . . . , µm) > ν = (ν1, . . . , νm) > 0.
From (3.11), we have

uν,i(t) ≤
( νi
µi

) 1−2α
(p−1)(1−α)uµ,i(t) for t ∈ [0, 1] and i = 1, . . . ,m,

which in turn implies that

‖uν‖ ≤ max
{( νi
µi

) 1−2α
(p−1)(1−α) , i = 1, . . . ,m

}
‖uµ‖.

Thus, ‖uν‖ → 0 as ν → 0+. Similarly, (3.11) also implies that

‖uµ‖ ≥ min
{(µi
νi

) 1−2α
(p−1)(1−α) , i = 1, . . . ,m

}
‖uν‖.

Hence, ‖uµ‖ → ∞ as µ→∞.
Finally, we prove property (c). When µ = (µ1, . . . , µm) > ν = (ν1, . . . , νm) > 0,

from (3.12), we have

uµ,i(t) ≤
(µi
νi

) 1
(p−1)(1−α)uν,i(t) for t ∈ [0, 1] and i = 1, . . . ,m. (3.13)

Then,

‖uµ − uν‖ ≤ max
{((µi

νi

) 1
(p−1)(1−α) − 1

)
, i = 1, . . . ,m

}
‖uν‖.

As a result, ‖uµ − uν‖ → 0 as µ→ ν+.
When 0 < µ = (µ1, . . . , µm) < ν = (ν1, . . . , νm), from (3.13) with µ and ν

switched, we have

uν,i(t) ≥
( νi
µi

) 1
(p−1)(1−α)uµ,i(t) for t ∈ [0, 1] and i = 1, . . . ,m.

This, together with uµ,i(t) ≤ uν,i(t) on [0, 1], implies that

‖uµ − uν‖ ≤ max
{(

1−
( νi
µi

) 1
(p−1)(1−α)

)
, i = 1, . . . ,m

}
‖uµ‖.

Then, ‖uµ − uν‖ → 0 as µ → ν−. Hence, property (c) holds. This completes the
proof of the theorem. �

Finally, we present a proof for Corollary 3.2.
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Proof of Corollary 3.2. With fi(y1, . . . , ym) = gi(y1, . . . , ym) + hi(y1, . . . , ym),
where

gi(y1, . . . , ym) =
m∑
k=1

aiky
bik
k and hi(y1, . . . , ym) =

m∑
k=1

ciky
−dik
k ,

it is clear that problem (1.3) is of the form of problem (1.2) and (H1) holds. Let
ζ be defined in (A1). Then, (A1) and (A2) imply that (H2) and (H3) hold with
α = ζ. The conclusion now readily follows from Theorem 3.1. �
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