Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 301, pp. 1-6.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

A VARIATIONAL PRINCIPLE FOR BOUNDARY-VALUE
PROBLEMS WITH NON-LINEAR BOUNDARY CONDITIONS

DIANWU YANG

ABSTRACT. In this article, we establish a variational principle for a class of
boundary-value problems with a suitable non-linear boundary conditions. As
an application of the variational principle, we study the existence of classical
solutions for boundary-value problems.

1. INTRODUCTION

By using the variational principle, boundary-value problems have been studied by
numerous mathematicians (see [T}, 2] [3, 4 [5] [6, [7, [8], @, 10} 1T}, 12, T3] and references
therein). In [IL 2], the authors studied equations with the boundary condition
u(0) = u(1) = 0. In [, 5 6], the authors studied Sturm-Liouville boundary-value
problems. In [3 [7], the authors studied Neumann boundary-value problems. In
[8], Han studied the periodic boundary-value problems. In [9, [10] [T} 12} [13], the
authors applied variational methods to impulsive differential equations. In all the
references above, the boundary conditions are linear. In this article, we consider a
boundary-value problem with non-linear boundary conditions:

a" = f(t,l’), te [07 1}7
H(z(0),z(1)) =0, (1.1)
VH (2(0), 2(1))J[(2'(0), =2 (1)) = VI(x(0), 2(1))]" = 0.

Here, H and I : R? — R are continuously differentiable, and

0 -1
=1 )
is the standard symplectic matrix. Also, we assume that the set A = {(z,y) :
H(x,y) = 0} is nonempty. If H(z,y) = x? + y? and I(z,y) = 0, problem (1.1
becomes a Dirichlet boundary value problem. If H(z,y) = x — y and I(x,y) = 0,

problem ([1.1)) becomes a periodic boundary value problem. If H(z,y) = = +y and
I(x,y) = 0, then problem (|1.1)) becomes a antiperiodic boundary value problem.
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This article is organized as follows: in section 2, we construct a variational
functional for (1.1f). In section 3, we obtain sufficient conditions for (L.1)) to have a
solution.

2. VARIATIONAL STRUCTURE

Let W be the Sobolev space of functions z : [0,1] — R with a weak derivative
2’ € L?(0,1; R). The inner product on W is

1
(2,5) = / ! () (£) + e(t)y(E))dt (2.1)

and the corresponding norm is || - ||. For each x € W, there exists a real number
€ € (0,1) such that

x(f):/o x(t)dt.
Then ,
z(t)] = |z x'(s)ds
0] = le(€) + [ )

< (/leQ(t)dt>1/2 + (/Ol(a:'(t))th)l/Q < V2|2

To establish a variational principle for (l.1)), we assume that f satisfies the
condition

(2.2)

(H1) f(t,z) is measurable in ¢ for each x € R, continuous in = for almost every
t € [0,1], and there exists hy € L1(0,1) for any k > 0 such that

£t 2)] < hi(t)
for almost every ¢ € [0, 1] and all |z| < k.
Under this condition, we define the functional ¢ on W by

@) = [ 150 + F(t.ale)lat +1(a(0), (1) (23)

where F(t,x) = fom f(t,u)du. Then ¢ is continuously differentiable, weakly lower
semi-continuous and

(¢’(x),y)=/0 [/ (0)y'(8) + f (&, 2(t)y(D)]dt + VI((0),2(1))(y(0), y(1))  (2.4)

for all y € W, see [14]. Let Y be a C'-manifold defined by
Y ={zeW:H(x(0),z(1)) =0}.

Then, Y is weakly closed since W can be compactly imbedded in C[0,1]. The
following theorem is our main result.
Theorem 2.1. Assume that f satisfies (H1) and that the following condition is
satisfied,

(H2) VH(z,y) # 0 for each (x,y) satisfying H(x,y) =0, or A is a discrete set.
If © is a critical point of the functional ¢ defined by (2.3) on Y, then z(t) is a
solution of (1.1)).
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Proof. For a given u in Y, let DY (u) denote the tangent space to Y at w. If
x is a critical point of the functional ¢ on Y, then for any y € DY (x) we have

(¢'(z),y) = 0. It follows from ([2.4) that

/0 [ (0)y' (1) + [, 2(0)y(B)]dt + VI((0), z(1)) - (y(0),y(1)) = 0. (2.5)
We define w € C(0,1; R) by

w(t) :/0 f(s,z(s))ds. (2.6)

By Fubini’s theorem and (2.5)), we obtain that for any y € DY (),
1
| - v
0

1
= 7/ f(t2()y(t)dt — VI(x(0),z(1)) - (y(0), y(1))
0 (2.7)

—/0 y(t)/o F(s,2(s))dsdt
= —y(l)/o f(t,z(t))dt — VI(2z(0),2(1)) - (y(0),y(1)).

We complete this proof by considering two cases. When VH (2(0),z(1)) # 0, we
have

DY (z) ={y € W : VH(x(0),z(1)) - (y(0), y(1)) = 0}. (2.8)
In , we can choose
y(t) =sin(2nwt), n=1,2,...,

and
y(t) =1 —cos(2nzt), n=1,2,....
It follows from (2.7)) that

/ () — w(t)] sin(2nmt)d = / () — w(t) cosnmt)dt =0, n=1.92,....
0 0

A theorem for Fourier series implies that

2/ (t) — w(t) = 2/(0) (2.9)
on [0,1]. Thus, we have z'(t) = f(t,x(t)) and
1

/O £t 2(8)dt = 2/ (1) — 2/ (0). (2.10)

Integrating both sides of over [0,1], we have

1
(1) — 2(0) — / (1= ) f(t, 2(8))dt = 2/ (0). (2.11)
0

Set y(t) = VH(x(0),z(1)) - (t,t — 1). It is easy to show that y € DY (z) as
= JVH(x(0),z(1)). Inserting y(t) into (2.5) we obtain

(1) —2(0) - / (1= 0)£(t,2(0))dt] VH (2(0), 2(1) - (1,1)
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+ VI(2(0),z(1))JVH(x(0),z(1)) +/O f(t,z(¢)dtVH(z(0),z(1)) - (1,0) = 0.

From and , the above equality implies
VH (2(0), 2(1))J[(«'(0), =2 (1)) = VI(2(0),2(1))]" = 0.
When the A is a discrete set, (2(0),z(1)) is a isolated point of A. Applying the
implicit function theorem we obtain VH (x(0), (1)) = 0, so that
DY (z) ={y € W : y(0) = y(1) = 0}

It is easy to show that z(t) is a solution of problem (I.1). This completes the
proof. O

3. SOLUTIONS TO BOUNDARY-VALUE PROBLEMS

As an application of Theorem [2.I] we consider the existence of solutions for

problem (1.1).

Theorem 3.1. Assume that (H1), (H2) hold, and that the following conditions are
satisfied:
(H3) The set A is bounded.
(H4) There is a positive constant | with | < 2, and a positive function c € L*(0,1)
such that
F(t,x) > —c(t)(1 + |z[')
for almost every t € [0,1] and all z € R.
Then has at least one solution.

Proof. Let y be in Y. By (H3), there exists a positive number M such that
y?(0) + y*(1) < M2
This implies

MW=M®+AM@MSM+AW%WMM%HAW@WW” (3.1)

M=  nimn  I(2,9).
Then, from (H4), (2.3) and (3.1)), we have

1 ! / 2 '
o) = 3 [ WOPa— [ o0+ oNar+ 2

> 5 [ woPa [ @i}

for some Ms and Mjs. It follows that
lim ¢(y) = oo,

llyll—o0
since ||y|| — oo if and only if fol [v/ (t)]?dt — oo. Hence, ¢|Y is bounded from blow.
Therefore, there exists a critical point of ¢ on Y. By Theorem problem (|1.1))
has at least one solution. |

Theorem 3.2. Assume that (H1)—-(H3) hold, and that the following conditions are
satisfied:
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(H5) There is a positive function ¢ € L*(0,1) such that
F(t,z) > —c(t)(1 + 2?)

for almost every t € [0,1] and all z € R.
(H6) 2 [ e(t)dt < 1.
Then (1.1) has at least one solution.

Proof. For each y € Y, from (H5), (2.3) and (3.1)), we obtain

1 1
o) > 3 | WOFa = [ o0+ 520+
> (5= [ ewn) [ WoRa [ opay s+

for some My and Ms. Assumption (H6) implies

P(y) = +oo0.

llyll—oo

Therefore, problem (1.1)) has at least one solution. O

Theorem 3.3. Assume that (H1), (H2) hold, and that the following conditions are
satisfied:

(H7) There is a positive function ¢ € L'(0,1) and positive constants ki, | with
l < 2 such that
F(t,z) > kia® — e(t)(1 + |z[')

for almost every t € [0,1] and all z € R.
(H8) There are positive constants ko and ks such that I(z,y) > —kox? — k3y?.
(H9) 4(k2 + k3) < min{1,2k;}.

Then (1.1)) has at least one solution.
Proof. Assumptions (H7) and (HS), and (2.3)) imply

o) = 3 [ WO+ [y [+ i k0 - ki)

Y

lmin 15— 2 — 3 2_ 1C !
(5 min{l, 21} — 2kz — 2k3) |yl /O(t)(1+|y(t)|)dt)~

for each y € Y. From (H9) we obtain

lim ¢(y) = +oo.

llyll—o0

Therefore ([L.1) has at least one solution. O

Acknowledgments. This research was supported by the Natural Science Foun-
dation of Shandong Province of PR China (ZR2011AL00T).



6 D. YANG EJDE-2015/301

REFERENCES

[1] D. Averna, G. Bonanno; A three critical points theorem and its applications to the ordinary
Dirichlet problem, Topol. Methods Nonlinear Anal., 22 (2003): 93-104.

[2] G. Bonanno, A. Chinni; Exzistence of three solutions for a perturbed two-point boundary value
problem, Appl. Math. Lett., 23 (2010): 807-811.

[3] J. Xie, Z. Luo; Ezistence of three distinct solutions to boundary value problem of nonlinear
differential equations with a p-Laplacian operator, Appl. Math. Lett., 27 (2014): 101-106.

[4] Y. Tian, W. Ge; Multiple solutions of Sturm-Liouville boundary value problem via lower and
upper solutions and variational methods, Nonlinear Anal. TMA, 74 (2011): 6733-6746.

[5] Q. Zhang, F. Li, X. Zhu; Multiple sign-changing solutions to the Sturm-Liouville boundary
value problem with resonance, Appl. Math. Comput., 219 (2012): 1061-1072.

[6] G. Bonanno, G. Riccobono; Multiplicity results for Sturm-Liouville boundary value problems,
Appl. Math. Comput., 210 (2009): 294-297.

[7] G. Bonanno, G. D’Agui; A critical point theorem and existence results for a nonlinear bound-
ary value problem, Nonlinear Anal., 72 (2010): 1977-1982.

[8] Z. Han, Solutions of periodic boundary value problems for second-order nonlinear differential
equations via variational methods, Appl. Math. Comput., 217(2011): 6516-6525.

[9] H. Sun, Y. Li, J. J. Nieto, Q. Tang; FEwistence of Solutions for Sturm-Liouville Boundary
Value Problem of Impulsive Differential Equations, Abstr. Appl. Anal., (2012) Article ID
707163, 19 pages.

[10] J. J. Nieto, D. O’Regan; Variational approach to impulsive differential equations, Nonlinear
Anal. RWA, 10 (2009): 680-690.

[11] Y. Tian, W. Ge; Variational methods to Sturm-Liouville boundary value problem for impul-
swe differential equations, Nonlinear Anal. TMA, 72 (2010): 277-287.

[12] Y. Tian, W. Ge; Multiple solutions of impulsive Sturm-Liouville boundary value problem
via lower and upper solutions and variational methods, J. Math. Anal. Appl., 387 (2012):
475-489.

[13] H. Zhang, Z. Li; Variational approach to impulsive differential equations with periodic bound-
ary conditions, Nonlinear Anal. RWA, 11(2010): 67-78.

[14] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springer-Verlag,
New York (1989).

DiANWU YANG
SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF JINAN, JINAN 250022, CHINA
E-mail address: ss_yangdw@ujn.edu.cn



	1. Introduction
	2. Variational structure
	3. Solutions to boundary-value problems
	Acknowledgments

	References

