Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 302, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ASYMPTOTIC BEHAVIOR FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH NONLINEAR SLOWLY TIME-DECAYING DAMPING AND INTEGRABLE SOURCE

MOUNIR BALTI

ABSTRACT. In this article we establish convergence to the equilibrium of all global and bounded solutions of a gradient-like system of second-order with slow dissipation. Also we estimate the rate of convergence.

1. INTRODUCTION AND MAIN RESULTS

In this article we study the asymptotic behaviour of global and bounded solutions of the following gradient like system

$$\ddot{x}(t) + a(t) \| \dot{x}(t) \|^{\alpha} \dot{x}(t) + \nabla \Phi(x(t)) = g(t) x(0) = x_0 \in \mathbb{R}^N, \quad \dot{x}(0) = x_1 \in \mathbb{R}^N$$
(1.1)

where $N \in \mathbb{N}^*$, $\alpha \ge 0$, $\Phi \in W^{2,\infty}_{\text{loc}}(\mathbb{R}^N, \mathbb{R})$, $g \in L^1(\mathbb{R}_+, \mathbb{R}^N)$, $a \in L^{\infty}(\mathbb{R}_+)$, $a \ge 0$. We denote by S the set of critical points of Φ :

$$S = \{ x \in \mathbb{R}^N : \nabla \Phi(x) = 0 \}.$$

Recently, Haraux and Jendoubi [13] studied the asymptotic behavior of global solutions to the nonlinear differential equation

$$\ddot{x}(t) + a(t)\dot{x}(t) + \nabla\Phi(x(t)) = 0.$$
(1.2)

They prove among other things that if $a(t) \geq \frac{c}{(1+t)^{\beta}}$ with $\beta \geq 0$ small enough and $S = \arg \min \Phi$ then the solution converge as t goes to infinity to S. Moreover, they proved that if the potential Φ satisfies an adapted uniform Lojasiewicz gradient inequality then the solution converge to some point $b \in S$. The purpose of this paper is to generalize the results obtained by the authors of [13] to the equation (1.1).

Before stating the results of this paper, recall that equation (1.2) with a(t) = 1 has been studied by several authors. When Φ is analytic, Haraux and Jendoubi [11] (see also [2, 7, 8, 12]) proved convergence to equilibrium of all global and bounded solutions. Now when the potential Φ is assumed to be convex and still in the case where a(t) = 1, Attouch et al [1] proved a similar convergence result.

²⁰¹⁰ Mathematics Subject Classification. 34A12, 34A34, 34A40, 34D05.

Key words and phrases. Dissipative dynamical system; asymptotic behavior; nonautonomous asymptotically small dissipation; gradient system.

^{©2015} Texas State University.

Submitted November 24, 2015. Published December 11, 2015.

Equation (1.2) in the case where a(t) tends to 0 was initiated by Cabot et al [4] in the case where the potential Φ is convex (see also [5, 14]).

The main results of this paper read as follows.

Theorem 1.1. Let $\Phi \in W^{2,\infty}_{\text{loc}}(\mathbb{R}^N, \mathbb{R})$, $a \in L^{\infty}(\mathbb{R}_+)$ be a positive function, and $x \in W^{2,1}_{\text{loc}} \cap L^{\infty}(\mathbb{R}_+, \mathbb{R}^N)$ be a solution of (1.1). Assume that

- (H1) $S = \arg \min \Phi$.
- (H2) There exists $\delta > 0$, d > 0 such that $||g(t)|| \leq \frac{d}{(1+t)^{1+\delta}}$.
- (H3) There exists $\beta \in]0,1[, c > 0 \text{ for all } t \ge 0, a(t) \ge \frac{c}{(1+t)^{\beta}}.$

Then

$$\lim_{t \to +\infty} \|\dot{x}(t)\| + \operatorname{dist}(x(t), S) = 0.$$
(1.3)

Theorem 1.2. Let $\Phi \in W^{2,\infty}_{\text{loc}}(\mathbb{R}^N, \mathbb{R})$, $a \in L^{\infty}(\mathbb{R}_+)$ be a positive function. Let $x \in W^{2,1}_{\text{loc}} \cap W^{1,\infty}(\mathbb{R}_+, \mathbb{R}^N)$ a solution of (1.1). Assume (H1), (H2) and that

- (H4) There exists $\theta \in [0, \frac{1}{2}]$ for all $b \in S \exists \sigma_b > 0$, $\exists C_b > 0$ for all $x \in B(b, \sigma_b)$, $\|\nabla \Phi(x)\| \ge C_b |\Phi(x) - \Phi(b)|^{1-\theta}$.
- (H5) There exists c > 0, $\exists \beta \ge 0$: $\alpha + \beta \in]0, \inf(\frac{\theta}{1-\theta}; \delta)[$ and $a(t) \ge c/(1+t)^{\beta}$ for all $t \ge 0$.

Then there exists $b^* \in S$, T > 0 and M > 0 such that for every t > T

$$\|x(t) - b^*\| \leqslant Mt^{-1}$$

where

$$\lambda = \inf\left(\left[\frac{\theta - (\alpha + \beta)(1 - \theta)}{(1 - \theta)(\alpha + 2) - 1}\right], \left[\frac{\delta - (\alpha + \beta)}{(\alpha + 1)}\right]\right).$$

Remark 1.3. (1) If g = 0 and $\alpha = 0$, we recover a result previously obtained by Haraux and Jendoubi, see [13, Theorem 2.3]. (2) If $\beta = 0$, we recover a result obtained by Ben Hassen and Chergui, see [3, Theorem 1.6].

Remark 1.4. Assumption (H4) is satisfied if one of the following two conditions is satisfied

- F is a polynomial [9], or
- F is analytic and S is compact [6].

Remark 1.5. Let us observe that the condition $\alpha + \beta < \delta$ in (H5) is necessary. Here is an example of a nonconvergent solution of the following scalar equation

$$\ddot{x}(t) + |\dot{x}(t)|^{\alpha} \frac{\dot{x}(t)}{(1+t)^{\beta}} = g(t).$$
(1.4)

Let $x(t) = \cos(\ln(1+t))$ be a solution of (1.4). Then we can easily see that g satisfies assumption (H2) with $\delta = \alpha + \beta$ and that x is a non convergent solution of (1.4) with $\Phi = 0$. Note also that in this case assumption (H4) holds true with $\theta = 1/2$.

Remark 1.6. The hypothesis that $\alpha + \beta < \frac{\theta}{1-\theta}$ in (H5) is in some sense optimal. Haraux [10] gives an example of a function f such that the ω -limit set of a global and bounded solution of the following equation

$$\ddot{x}(t) + |\dot{x}(t)|\dot{x}(t) + f(x) = 0$$

is equal to an interval and then this solution does not converge. The nonlinearity can be chosen such that its primitive satisfies assumption (H4) with $\theta = 1/2$.

 $\mathbf{2}$

Remark 1.7. Theorems 1.1 and 1.2 remain true if the dissipation term $a(t) \|\dot{x}(t)\|^{\alpha} \dot{x}(t)$ in the equation 1.1 is replaced by $a(t)\gamma(\dot{x}(t))$ where $\gamma : \mathbb{R}^N \to \mathbb{R}^N$ is a continuous function satisfying

$$\langle \gamma(v), v \rangle \ge \rho_1 \|v\|^{\alpha+2}, \quad \|\gamma(v)\| \le \rho_2 \|v\|^{\alpha+1} \quad \forall v \in \mathbb{R}^N,$$

with $0 < \rho_1 < \rho_2 < \infty$ and α is as in Theorems 1.1 and 1.2.

2. Proof of Theorem 1.1

We define the two functions

$$E(t) = \frac{1}{2} \|\dot{x}(t)\|^2 + \Phi(x(t)) - \min \Phi,$$

$$K(t) = E(t) + \int_t^{+\infty} \frac{M}{(1+s)^{\frac{-\beta + (1+\delta)(\alpha+2)}{\alpha+1}}} ds$$
(2.1)

where

$$M = \left(\frac{c}{2}\right)^{-\frac{1}{\alpha+1}} d^{\frac{\alpha+2}{\alpha+1}},$$

c is as in (H6) and d is as in (H2). Note that by hypotheses (H4)–(H6), we have $\frac{-\beta+(1+\delta)(\alpha+2)}{\alpha+1} > 1$ and K is well defined. Now by differentiating E we obtain

$$E'(t) = -a \|\dot{x}(t)\|^{2+\alpha} + \langle g(t); \dot{x}(t) \rangle.$$

By the Cauchy-Schwarz inequality we obtain

$$E'(t) \le -\frac{c}{(1+t)^{\beta}} \|\dot{x}(t)\|^{2+\alpha} + \left(\frac{c}{2(1+t)^{\beta}}\right)^{\frac{1}{\alpha+2}} \|\dot{x}(t)\| \left(\frac{c}{2(1+t)^{\beta}}\right)^{-\frac{1}{\alpha+2}} \|g(t)\|.$$

Thanks to Young's inequality we obtain

$$\begin{aligned} E'(t) &\leq -\frac{c}{2(1+t)^{\beta}} \|\dot{x}(t)\|^{2+\alpha} + \left(\frac{c}{2(1+t)^{\beta}}\right)^{-\frac{1}{\alpha+1}} \|g(t)\|^{\frac{\alpha+2}{\alpha+1}} \\ &\leq -\frac{c}{2(1+t)^{\beta}} \|\dot{x}(t)\|^{2+\alpha} + \frac{M}{(1+t)^{\frac{-\beta+(1+\delta)(\alpha+2)}{\alpha+1}}}. \end{aligned}$$

Now by differentiating K we obtain

$$K'(t) \le -\frac{c}{2(1+t)^{\beta}} \|\dot{x}(t)\|^{2+\alpha}$$

So K is a decreasing and positive function. Hence

$$\dot{x} \in L^{\infty}(\mathbb{R}_+, \mathbb{R}^N) \tag{2.2}$$

and there exists $l \in \mathbb{R}_+$ such that

$$\lim_{t \to +\infty} K(t) = \lim_{t \to +\infty} E(t) = l.$$

We define the function

$$\mathcal{E}(t) = E(t) + \int_{t}^{+\infty} \langle g(s), \dot{x}(s) \rangle ds$$

Using (2.2) and (H2) which implies that $g \in L^1$, we see that $\lim_{t\to\infty} \mathcal{E}(t) = \lim_{t\to+\infty} E(t)$ and $\mathcal{E}'(t) = -a(t) \|\dot{x}(t)\|^{2+\alpha}$. Then we obtain

$$\int_{0}^{\infty} a(t) \|\dot{x}(t)\|^{2+\alpha} \, dt < \infty.$$
(2.3)

Let r > 0 and assume that there exists $\varepsilon > 0$ and $t_0 > 0$ such that for all $t \ge t_0$

$$\int_{t}^{t+r} \|\dot{x}(s)\|^{2+\alpha} ds \ge \varepsilon.$$

Then

$$\int_{t}^{t+r} a(s) \|\dot{x}(s)\|^{2+\alpha} ds \ge \frac{\varepsilon c}{(1+t+r)^{\beta}} \quad \forall t \ge t_0 \,.$$

It follows that

$$\begin{split} \int_{t_0}^{+\infty} a(s) \|\dot{x}(s)\|^{2+\alpha} ds &\geq \sum_{n=0}^{+\infty} \int_{t_0+nr}^{t_0+(n+1)r} a(s) \|\dot{x}(s)\|^{2*\alpha} ds \\ &\geq \sum_{n=0}^{+\infty} \frac{\varepsilon c}{(1+t_0+(n+1)r)^{\beta}} = \infty \end{split}$$

which contradicts (2.3). Then for every $n \in \mathbb{N}^*$, there exists $t_n \ge n$ such that

$$\int_{t_n}^{t_n+r} \|\dot{x}(t)\|^{2+\alpha} dt \le \frac{1}{n}.$$

Hence there exists a real sequence $(t_n)_n$ such that $\lim_{n\to\infty} t_n = \infty$ and

$$\lim_{n \to +\infty} \int_{t_n}^{t_n + r} \|\dot{x}(t)\|^{2+\alpha} dt = 0.$$
(2.4)

By (2.2), x and \dot{x} are bounded, and then by the equation (1.1), \ddot{x} is bounded. Hence \dot{x} is Lipschitz continuous. Thanks to the Cauchy-Schwarz inequality we obtain for all $t \in [t_n, t_n + r]$

$$\begin{aligned} |\|\dot{x}(t_n+t)\|^{2+\alpha} - \|\dot{x}(t_n)\|^{2+\alpha} &|= (2+\alpha) |\int_{t_n}^{t_n+t} \|\dot{x}(s)\|^{\alpha} < \dot{x}(s), \ddot{x}(s) > ds| \\ &\leq (2+\alpha) (\int_{t_n}^{t_n+t} \|\dot{x}(s)\|^{\alpha+1} \|\ddot{x}(s)\| ds) \\ &\leqslant (2+\alpha) \|\dot{x}\|_{\infty}^{\alpha/2} \|\ddot{x}\|_{\infty} (\int_{t_n}^{t_n+r} \|\dot{x}(s)\|^{\frac{\alpha}{2}+1} ds) \\ &\leq (2+\alpha) \|\dot{x}\|_{\infty}^{\alpha/2} \|\ddot{x}\|_{\infty} \sqrt{r} (\int_{t_n}^{t_n+r} \|\dot{x}(s)\|^{\alpha+2} ds)^{1/2}. \end{aligned}$$

Then from (2.4) we obtain

$$\lim_{n \to \infty} \sup_{s \in [0,r]} \|\dot{x}(t_n + s)\| = 0.$$
(2.5)

Since x is a bounded function and $\nabla \Phi$ is a Lipschitz continuous function on every bounded domain, then there exists $\lambda > 0$ such that for all $(t, s) \in \mathbb{R}^2_+$

$$\|\nabla\Phi(x(t)) - \nabla\Phi(x(s))\| \le \lambda \|x(t) - x(s)\|.$$

Then

$$\left\| r \nabla \Phi(x(t_n)) - \int_{t_n}^{t_n + r} \nabla \Phi(x(s)) \, ds \right\| \leq \int_{t_n}^{t_n + r} \left\| \nabla \Phi(x(t_n)) - \nabla \Phi(x(s)) \right\| ds$$

$$\leq \lambda \int_{t_n}^{t_n + r} \left\| x(t_n) - x(s) \right\| ds$$

$$\leq \lambda \int_{t_n}^{t_n + r} \int_{t_n}^{s} \left\| \dot{x}(u) \right\| du \, ds$$

$$\leq \lambda r^2 \sup_{s \in [0, r]} \left\| \dot{x}(t_n + s) \right\|.$$
(2.6)

Since

$$\int_{t_n}^{t_n+r} \nabla \Phi(x(s)) ds = -\int_{t_n}^{t_n+r} \ddot{x}(t) dt - \int_{t_n}^{t_n+r} a(t) \|\dot{x}(t)\|^{\alpha} \dot{x}(t) dt + \int_{t_n}^{t_n+r} g(t) dt,$$

then
$$\lim_{t_n} \int_{t_n+r}^{t_n+r} \nabla \Phi(x(s)) ds = 0.$$
(2.7)

$$\lim_{d \to +\infty} \int_{t_n}^{t_n} \nabla \Phi(x(s)) ds = 0.$$
(2.7)

Combining (2.5), (2.6) and (2.7) yields

n

$$\lim_{n \to +\infty} \|\nabla \Phi(x(t_n))\| = 0.$$
(2.8)

Hence

$$l = \lim_{t \to +\infty} E(t) = \lim_{n \to +\infty} E(t_n) = \lim_{n \to +\infty} \Phi(x(t_n)) - \min \Phi.$$

Since $(x(t_n))_n$ is a bounded sequence, we can extract a subsequence, still denoted by $(x(t_n))_n$ such that $\lim_{n\to\infty} x(t_n) = a$. From (2.8) we obtain

$$\lim_{n \to +\infty} \nabla \Phi(x(t_n)) = 0 = \nabla \Phi(a).$$

Then $a \in S$. By (H1), $S = \arg \min \Phi$, and then it follows that $\lim_{t\to\infty} E(t) = 0$, so $\lim_{t\to\infty} \|\dot{x}(t)\| = 0$ and $\lim_{t\to\infty} \Phi(x(t)) = \min \Phi$. Assume that

$$\lim_{t \to \infty} \operatorname{dist}(x(t), S) \neq 0.$$

Then there exists $\varepsilon > 0$ and $t_n \to \infty$ such that

$$d(x(t_n), S) \geqslant \varepsilon. \tag{2.9}$$

Therefore, we can extract a subsequence still denoted by (t_n) such that

$$\lim_{n \to +\infty} x(t_n) = a.$$

Then $\lim_{n\to\infty} \Phi(x(t_n)) = \Phi(a) = \min \Phi$ that is $a \in S$, which contradicts (2.9).

3. Proof of theorem 1.2

To prove Theorem 1.2, we need some lemmas. We begin with the following lemma proved by Alvarez et al [2], here we give a slightly different proof.

Lemma 3.1. Under hypothesis (H4), let Γ be a compact subset of \mathbb{R}^N such that

$$\exists K \in \mathbb{R} : \forall a \in \Gamma \ \Phi(a) = K.$$

Then there exist $\sigma, C > 0$ and $\theta \in (0, 1/2)$ such that

$$[d(u,\Gamma) \le \sigma \Rightarrow \|\nabla \Phi(u)\| \ge C |\Phi(u) - K|^{1-\theta}].$$
(3.1)

Proof. Using (H4), there exists $\theta \in]0, 1/2]$ such that for all $a \in \Gamma$ there exists $C_a > 0, \sigma_a > 0$ such that

$$\|\nabla\Phi(u)\| \ge C_a |\Phi(u) - \Phi(a)|^{1-\theta} \quad \forall u \in B(a, \sigma_a).$$
(3.2)

Since Γ is compact, then there exists $(a_1, \ldots, a_n) \in \Gamma^n$ such that

$$\Gamma \subset (\cup_{i=1}^{n} B(a_i, \frac{\sigma_{a_i}}{2})).$$

We choose $\sigma = \inf \sigma_{a_i}/2$ and $C = \inf C_{a_i}$. Let $u \in \mathbb{R}^N$ such that $d(u, \Gamma) \leq \sigma$. Then there exists $a \in \Gamma$ such that $d(u, a) \leq \sigma$ and $i \in \{1, 2, \ldots, n\}$ such that $a \in B(a_i, \frac{\sigma_{a_i}}{2})$. Hence we obtain $d(u, a_i) \leq \sigma_{a_i}$. From (3.2) we obtain

$$\|\nabla\Phi(u)\| \ge C_a |\Phi(u) - \Phi(a)|^{1-\theta} \ge C |\Phi(u) - K|^{1-\theta}.$$

Lemma 3.2. Let f and $g : \mathbb{R}_+ \to \mathbb{R}_+$ be two continuously differentiable functions, $h : \mathbb{R}^2_+ \to \mathbb{R}$ be continuously differentiable function, and $T \ge 0$ be such that for all $t \ge T$,

$$f'(t) + h(t, f(t)) \le g'(t) + h(t, g(t)),$$

 $f(T) \le g(T).$

Then for all $t \ge T$, $f(t) \le g(t)$.

Proof. Let $k : \mathbb{R}_+ \to \mathbb{R}$ be a function such that

$$k'(t) = \begin{cases} \frac{h(t,g(t)) - h(t,f(t))}{g(t) - f(t)} & \text{if } g(t) \neq f(t) \\ \partial_2 h(t,f(t)) & \text{if } g(t) = f(t) \end{cases}$$

and $\phi : \mathbb{R}_+ \to \mathbb{R}; t \longmapsto e^{k(t)}(g-f)(t)$. Then for all $t \ge T$,

$$\phi'(t) = [(g-f)'(t) + k'(t)(g-f)(t)]e^{k(t)} \ge 0.$$

So ϕ is an increasing function in $[T, +\infty[$. Finally we see that for all $t \in [T, +\infty[$ we obtain $f(t) \leq g(t)$.

Lemma 3.3. Let $H \in W^{1,1}_{\text{loc}}(\mathbb{R}_+, \mathbb{R}_+)$. Assume that there exist constants $k_1 > 0$, $k_2 \ge 0$, T > 0, $\mu > 1 > \beta$ and $\gamma > \beta > 0$ such that for almost every $t \ge T$ we have

$$H'(t) + \frac{k_1}{(1+t)^{\beta}} (H(t))^{\mu} \le \frac{k_2}{(1+t)^{\gamma}}.$$

Then there exists M > 0 such that for all $t \ge T$,

$$H(t) \le \frac{M}{(1+t)^c}$$

where

$$c = \inf\left(\frac{\gamma - \beta}{\mu}, \frac{1 - \beta}{\mu - 1}\right).$$

Proof. Let M > 0 such that $k_1 M^{\mu} - cM > k_2$ and $M > H(T)(1+T)^c$. We define the function $\phi : \mathbb{R}_+ \to \mathbb{R}$ by

$$\phi(t) = \frac{M}{(1+t)^c}.$$

Hence for all $t \geq T$, we have

$$\begin{split} \phi'(t) + \frac{k_1}{(1+t)^{\beta}} (\phi(t))^{\mu} &= \frac{k_1 M^{\mu}}{(1+t)^{\beta+c\mu}} (1 - \frac{c M^{1-\mu}}{k_1 (1+t)^{1-\beta+c(1-\mu)}}) \\ &\geq \frac{k_1 M^{\mu}}{(1+t)^{\beta+c\mu}} (1 - \frac{c M^{1-\mu}}{k_1}) \\ &\geq \frac{k_2}{(1+t)^{\gamma}} \\ &\geq H'(t) + \frac{k_1}{(1+t)^{\beta}} (H(t))^{\mu}. \end{split}$$

Since $\phi(T) \ge H(T)$, thanks to Lemma 3.2, for all $t \ge T$, we obtain

$$H(t) \le \phi(t) = \frac{M}{(1+t)^c}.$$

Proof of Theorem 1.2. Let $\varepsilon > 0$. We define the function

$$H(t) = \mathcal{E}(t) + \frac{\varepsilon \|\nabla \Phi(x(t))\|^{\alpha}}{(1+t)^{\beta}} \langle \nabla \Phi(x(t)), \dot{x}(t) \rangle + \frac{\varepsilon}{2} \int_{t}^{\infty} \frac{\|\nabla \Phi(x(s))\|^{\alpha} \|g(s)\|^{2}}{(1+s)^{\beta}} \, ds.$$

$$(3.3)$$

By differentiating H we obtain

$$\begin{split} H'(t) &= -a(t) \|\dot{x}(t)\|^{\alpha+2} - \frac{\varepsilon\beta}{(1+t)^{\beta+1}} \|\nabla\Phi(x(t))\|^{\alpha} \langle \nabla\Phi(x(t)), \dot{x}(t) \rangle \\ &+ \frac{\varepsilon}{(1+t)^{\beta}} \|\nabla\Phi(x(t))\|^{\alpha} \langle \nabla^{2}\Phi(x(t))\dot{x}(t), \dot{x}(t) \rangle \\ &+ \frac{\varepsilon}{(1+t)^{\beta}} \alpha \|\nabla\Phi(x(t))\|^{\alpha-2} \langle \nabla^{2}\Phi(x(t))\dot{x}(t), \nabla\Phi(x(t)) \rangle \langle \nabla\Phi(x(t)), \dot{x}(t) \rangle \\ &- \frac{\varepsilon a(t)}{(1+t)^{\beta}} \|\dot{x}(t)\|^{\alpha} \|\nabla\Phi(x(t))\|^{\alpha} \langle \nabla\Phi(x(t)), \dot{x}(t) \rangle - \frac{\varepsilon}{(1+t)^{\beta}} \|\nabla\Phi(x)\|^{2+\alpha} \\ &+ \frac{\varepsilon}{(1+t)^{\beta}} \|\nabla\Phi(x(t))\|^{\alpha} \langle \nabla\Phi(x(t)), g(t) \rangle - \frac{\varepsilon}{2} \frac{\|\nabla\Phi(x(t))\|^{\alpha} \|g(t)\|^{2}}{(1+t)^{\beta}}. \end{split}$$

By the Cauchy-Schwarz inequality and by setting $M_1 = \|\nabla^2 \Phi(x)\|_{\infty}$ and $M_2 = \|a\|_{\infty}$ we obtain

$$\begin{split} H'(t) &\leq -a(t) \|\dot{x}(t)\|^{\alpha+2} - \frac{\varepsilon}{(1+t)^{\beta}} \|\nabla\Phi(x)\|^{2+\alpha} + \frac{\varepsilon\beta}{(1+t)^{\beta+1}} \|\dot{x}(t)\| \|\nabla\Phi(x(t))\|^{\alpha+1} \\ &+ \frac{\varepsilon M_1(\alpha+1)}{(1+t)^{\beta}} \|\dot{x}(t)\|^2 \|\nabla\Phi(x(t))\|^{\alpha} + \frac{\varepsilon M_2}{(1+t)^{\beta}} \|\dot{x}(t)\|^{\alpha+1} \|\nabla\Phi(x(t))\|^{\alpha+1} \\ &+ \frac{\varepsilon}{(1+t)^{\beta}} \|\nabla\Phi(x(t))\|^{\alpha} \|\nabla\Phi(x(t))\| \|g(t)\| - \frac{\varepsilon}{2} \frac{\|\nabla\Phi(x(t))\|^{\alpha} \|g(t)\|^2}{(1+t)^{\beta}}. \end{split}$$

By Young's inequality, there exist $C_1, C_2 > 0$ such that

$$H'(t) \le -a(t) \|\dot{x}(t)\|^{2+\alpha} - \frac{\varepsilon}{2(1+t)^{\beta}} \|\nabla\Phi(x(t))\|^{2+\alpha} + \frac{\varepsilon\beta}{(1+t)^{\beta+1}} (\|\dot{x}(t)\|^{\alpha+2} + \|\nabla\Phi(x(t))\|^{\alpha+2})$$

$$+ \frac{\varepsilon}{(1+t)^{\beta}} (C_1 \| \dot{x}(t) \|^{\alpha+2} + \frac{1}{8} \| \nabla \Phi(x(t)) \|^{\alpha+2}) + \frac{\varepsilon}{(1+t)^{\beta}} (C_2 \| \dot{x}(t) \|^{(\alpha+2)(\alpha+1)} + \frac{1}{8} \| \nabla \Phi(x(t)) \|^{\alpha+2}).$$

By using (1.3), there exists T > 0 such that

$$\|\dot{x}(t)\| < 1 \quad \forall t \ge T. \tag{3.4}$$

Then we obtain that for all $t \ge T$ (with T large enough so that $(1/((1+T)^{\beta}) \le 1/8))$,

$$H'(t) \leqslant \left(\frac{-c + \varepsilon(\beta + C_1 + C_2)}{(1+t)^{\beta}}\right) \|\dot{x}(t)\|^{2+\alpha} - \frac{\varepsilon}{8(1+t)^{\beta}} \|\nabla\Phi(x(t))\|^{2+\alpha}$$

By choosing ε small enough, we obtain that for all $t \ge T$,

$$H'(t) \leq -\frac{\varepsilon}{8(1+t)^{\beta}} (\|\dot{x}(t)\|^{2+\alpha} + \|\nabla\Phi(x(t))\|^{2+\alpha}).$$
(3.5)

So *H* is nonincreasing on $[T, \infty)$ and $\lim_{t\to\infty} H(t) = 0$. From (3.3) together with the Cauchy-Schwarz inequality we obtain for all t > T,

$$\begin{aligned} &[H(t)]^{(1-\theta)(\alpha+2)} \\ &\leq \left[\mathcal{E}(t) + \frac{\varepsilon \|\nabla \Phi(x(t))\|^{\alpha+1}}{(1+t)^{\beta}} \|\dot{x}(t)\| + \frac{\varepsilon}{2} \int_{t}^{\infty} \frac{\|\nabla \Phi(x(s))\|^{\alpha} \|g(s)\|^{2}}{(1+s)^{\beta}} \, ds \right]^{(1-\theta)(\alpha+2)} \end{aligned}$$

By using the inequality $\left(\sum_{i=1}^{5} a_i\right)^{\lambda} \leq 5^{\lambda} \sum_{i=1}^{5} a_i^{\lambda}$ for a_i nonnegative for all i and $0 \leq \lambda \leq 2$, we obtain that for all $t \geq T$,

$$[H(t)]^{(1-\theta)(\alpha+2)} \leq C_{3} \Big[\frac{1}{2} \|\dot{x}(t)\|^{2} \Big]^{(1-\theta)(\alpha+2)} + C_{3} [\Phi(x(t)) - \min \Phi]^{(1-\theta)(\alpha+2)} + C_{3} \Big[\int_{t}^{+\infty} \langle g(s), \dot{x}(s) \rangle \, ds \Big]^{(1-\theta)(\alpha+2)} + C_{3} \Big[\frac{\varepsilon \|\nabla \Phi(x(t))\|^{\alpha+1}}{(1+t)^{\beta}} \|\dot{x}(t)\| \Big]^{(1-\theta)(\alpha+2)} + C_{3} \Big[\frac{\varepsilon}{2} \int_{t}^{\infty} \frac{\|\nabla \Phi(x(s))\|^{\alpha} \|g(s)\|^{2}}{(1+s)^{\beta}} \, ds \Big]^{(1-\theta)(\alpha+2)}.$$
(3.6)

where $C_3 = 5^{(1-\theta)(\alpha+2)}$. By using (3.4) and since $2(1-\theta)(\alpha+2) \ge \alpha+2$ we have

$$[\|\dot{x}(t)\|^2]^{(1-\theta)(\alpha+2)} \le \|\dot{x}(t)\|^{\alpha+2}$$
(3.7)

Now by using (H4) and Lemma 3.1 we obtain that for all $t \ge T$,

$$[\Phi(x(t)) - \min \Phi]^{(1-\theta)(\alpha+2)} \le \|\nabla \Phi(x(t))\|^{\alpha+2}.$$
(3.8)

Young's inequality yields

$$\begin{split} \left| \int_{t}^{\infty} \langle g(s), \dot{x}(s) \rangle \, ds \right|^{(1-\theta)(\alpha+2)} \\ &\leq K(\rho) \Big(\int_{t}^{+\infty} \|g(s)\|^{\frac{\alpha+2}{\alpha+1}} (1+t)^{\frac{\beta}{\alpha+1}} \, ds \Big)^{(\alpha+2)(1-\theta)} \\ &+ \rho (\int_{t}^{+\infty} \frac{\|\dot{x}(s)\|^{\alpha+2}}{(1+t)^{\beta}} \, ds)^{(1-\theta)(\alpha+2)}, \end{split}$$
(3.9)

where ρ is a small positive constant which will be fixed in the sequel. Using (H2) we obtain

$$\left(\int_{t}^{+\infty} \|g(s)\|^{\frac{\alpha+2}{\alpha+1}} (1+t)^{\frac{\beta}{\alpha+1}} \, ds\right)^{(\alpha+2)(1-\theta)} \le C_4 (1+t)^{-\chi},\tag{3.10}$$

where

$$\chi = \frac{1 + \alpha \delta + 2\delta - \beta}{1 + \alpha} (\alpha + 2)(1 - \theta).$$

Once again, by applying Young's inequality and using the fact that $(1-\theta)(\alpha+2) \ge 1$, we obtain that for all $t \ge T$,

$$C_{3} \left[\frac{\varepsilon \| \nabla \Phi(x(t)) \|^{\alpha+1}}{(1+t)^{\beta}} \| \dot{x}(t) \| \right]^{(1-\theta)(\alpha+2)}$$

$$\leq C_{5} \left[\frac{\| \nabla \Phi(x(t)) \|^{\alpha+2} + \| \dot{x}(t) \|^{\alpha+2}}{(1+t)^{\beta}} \right]^{(1-\theta)(\alpha+2)}$$

$$\leq C_{5} (\| \nabla \Phi(x(t)) \|^{\alpha+2} + \| \dot{x}(t) \|^{\alpha+2}).$$
(3.11)

Now, since x is bounded and by (H2), we obtain

$$C_3 \left[\frac{\varepsilon}{2} \int_t^\infty \frac{\|\nabla \Phi(x(s))\|^\alpha \|g(s)\|^2}{(1+s)^\beta} \, ds \right]^{(1-\theta)(\alpha+2)} \le C_6 (1+t)^{-\eta}, \tag{3.12}$$

where $\eta = (1 + 2\delta + \beta)(1 - \theta)(\alpha + 2)$.

By combining (3.6), (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12) we obtain $[H(t)]^{(1-\theta)(\alpha+2)}$

$$\leq C_{7}(\|\dot{x}(t)\|^{\alpha+2} + \|\nabla\Phi(x(t))\|^{\alpha+2})
+ C_{8}(1+t)^{-\chi} + C_{9}(1+t)^{-\eta} + \rho \Big(\int_{t}^{+\infty} \frac{\|\dot{x}(s)\|^{\alpha+2}}{(1+t)^{\beta}} ds\Big)^{(1-\theta)(\alpha+2)}
\leq C_{7}(\|\dot{x}(t)\|^{\alpha+2} + \|\nabla\Phi(x(t))\|^{\alpha+2})
+ C_{10}(1+t)^{-\chi} + \rho \Big(\int_{t}^{+\infty} \frac{\|\dot{x}(s)\|^{\alpha+2}}{(1+t)^{\beta}} ds\Big)^{(1-\theta)(\alpha+2)},$$
(3.13)

where we use the fact that $\eta > \chi$ in the last inequality. On the other hand, by integrating (3.5) over (t, ∞) , we obtain

$$\left(\int_t^\infty \frac{\|\dot{x}(s)\|^{\alpha+2}}{(1+t)^\beta} \, ds\right)^{(1-\theta)(\alpha+2)} \le \left(\frac{8}{\varepsilon} H(t)\right)^{(1-\theta)(\alpha+2)}.$$

Now by choosing ρ in (3.9) such that $\rho(8/\varepsilon)^{(1-\theta)(\alpha+2)} < 1/2$, estimate (3.13) becomes

$$[H(t)]^{(1-\theta)(\alpha+2)} \le C_{11}(\|\dot{x}(t)\|^{\alpha+2} + \|\nabla\Phi(x(t))\|^{\alpha+2}) + C_{12}(1+t)^{-\chi}.$$
 (3.14)

Now, by combining (3.5) with the above inequality, we obtain that for all $t \ge T$

$$-H'(t) \ge \frac{\varepsilon}{8(1+t)^{\beta}} (\|\dot{x}(t)\|^{2+\alpha} + \|\nabla\Phi(x(t))\|^{2+\alpha})$$
$$\ge C_{13} \frac{[H(t)]^{(1-\theta)(\alpha+2)}}{(1+t)^{\beta}} - C_{14}(1+t)^{-\chi-\beta}.$$

We finally obtain the differential inequality

$$H'(t) + \frac{C_{13}}{(1+t)^{\beta}} [H(t)]^{(2+\alpha)(1-\theta)} \leqslant \frac{C_{14}}{(1+t)^{\chi+\beta}}.$$

By using Lemma 3.3, there exists M > 0 such that for all $t \ge T$,

$$H(t) \le \frac{M}{(1+t)^{\nu}}$$

where

$$\nu = \inf\left(\frac{\chi}{(2+\alpha)(1-\theta)}, \frac{1-\beta}{(2+\alpha)(1-\theta)-1}\right)$$
$$= \inf\left(\delta + \frac{1+\delta-\beta}{1+\alpha}, \frac{1-\beta}{(2+\alpha)(1-\theta)-1}\right).$$

Once again from (3.5),

$$\frac{\varepsilon}{8(1+t)^{\beta}} \|\dot{x}(t)\|^{2+\alpha} \le -H'(t).$$

Then for all t > T,

$$\int_t^{2t} \frac{\varepsilon}{8(1+s)^\beta} \|\dot{x}(s)\|^{2+\alpha} ds \le H(t) \le \frac{M}{(1+t)^\nu}.$$

Hölder's inequality yields

$$\begin{split} \int_{t}^{2t} \|\dot{x}(s)\| ds &\leq t^{\frac{1+\alpha}{2+\alpha}} \Big(\int_{t}^{2t} \|\dot{x}(s)\|^{2+\alpha} ds \Big)^{\frac{1}{2+\alpha}} \\ &\leq t^{\frac{1+\alpha}{2+\alpha}} \Big(\frac{8(1+2t)^{\beta}}{\varepsilon} \int_{t}^{2t} \frac{\varepsilon}{8(1+s)^{\beta}} \|\dot{x}(s)\|^{2+\alpha} ds \Big)^{\frac{1}{2+\alpha}} \\ &\leq t^{\frac{1+\alpha}{2+\alpha}} \Big(\frac{8(1+2t)^{\beta}}{\varepsilon} \frac{M}{(1+t)^{\nu}} \Big)^{\frac{1}{2+\alpha}} \leq \frac{C_{15}}{t^{\lambda}}, \end{split}$$

where

$$\begin{split} \lambda &= \frac{\nu}{2+\alpha} - \frac{\alpha+1+\beta}{2+\alpha} \\ &= \inf\left(\left[\frac{\theta - (\alpha+\beta)(1-\theta)}{(1-\theta)(\alpha+2)-1} \right], \left[\frac{\delta - (\alpha+\beta)}{(\alpha+1)} \right] \right) > 0. \end{split}$$

Then

$$\begin{split} \int_{t}^{+\infty} \|\dot{x}(s)\| ds &\leq \sum_{n=0}^{+\infty} \int_{2^{n}t}^{2^{n+1}t} \|\dot{x}(s)\| ds \\ &\leq \sum_{n=0}^{+\infty} \frac{C_{15}}{2^{n\lambda}t^{\lambda}} \\ &\leq \frac{C_{15}}{t^{\lambda}(1-2^{-\lambda})} \end{split}$$

and the result follows since

$$||x(t) - x(\tau)|| \le \int_t^\tau ||\dot{x}(s)|| \, ds \le \int_t^\infty ||\dot{x}(s)|| \, ds.$$

References

- H. Attouch, X. Goudou, P. Redont; The heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function asymptotic by analysis of a dissipative dynamical system. Commun. Contemp. Math. 2 (2000),1-34.
- [2] F. Alvarez, H. Attouch, J. Bolte, P. Redont; A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. J. Math. Pures Appl. (9) 81 (2002), 747-779.
- [3] I. Ben Hassen, L. Chergui; Convergence of global and bounded solutions of some nonautonomous second order evolution equations with nonlinear dissipation. J. Dyn. Differ. Equations 23 (2011), 315-332.
- [4] A. Cabot, H. Engler, S. Gadat; On the long time behavior of second order differential equations with asymptotically small dissipation. Trans. Amer. Math. Soc. 361 (2009), 5983-6017.
- [5] A. Cabot, P. Frankel; Asymptotics for some semilinear hyperbolic equations with nonautonomous damping. J. Differential Equations 252 (2012), 294-322.
- [6] L. Chergui; Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity, J. Dyn. Differ. Equations 20 (2008), 643-652.
- [7] R. Chill; On the Lojasiewicz-Simon gradient inequality. J. Funct. Anal. 201 (2003), 57-601.
- [8] R. Chill, A. Haraux, M. A. Jendoubi; Applications of the Lojasiewicz-Simon gradient inequality to gradient-like evolution equations. Anal. Appl. (Singap.) 7 (2009), 35-372.
- [9] D. D'Acunto, K. Kurdyka; Explicit bounds for the Lojasiewicz exponent in the gradient inequality for polynomials, Ann. Polon. Math. 87 (2005), 51-61.
- [10] A. Haraux; Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1990.
- [11] A. Haraux, M. A. Jendoubi; Convergence of solutions of second-order gradient-like systems with analytic nonlinearities. J. Differential Equations 144 (1998), 313-320.
- [12] A. Haraux, M. A. Jendoubi; Decay estimates of the solutions to some evolution problems with an analytic nonlinearity. Asymptotic Analysis. 26 (2001) 21-36.
- [13] A. Haraux, M. A. Jendoubi; Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term. Evol. Equ. Control Theory 2 (2013), 461-470.
- [14] M. A. Jendoubi, R. May; Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term. Applicable Analysis 94 (2015), 435-443.

Mounir Balti

UNIVERSITÉ DE CARTHAGE, INSTITUT PRÉPARATOIRE AUX ETUDES SCIENTIFIQUES ET TECHNIQUES, B.P. 51, 2070 LA MARSA, TUNISIA.

FACULTÉ DES SCIENCES DE TUNIS, LABORATOIRE EDP-LR03ES04 UNIVERSITÉ DE TUNIS EL MANAR, TUNIS, TUNISIA

E-mail address: mounir.balti@gmail.com