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ASYMPTOTIC BEHAVIOR FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS WITH NONLINEAR SLOWLY
TIME-DECAYING DAMPING AND INTEGRABLE SOURCE

MOUNIR BALTI

Abstract. In this article we establish convergence to the equilibrium of all

global and bounded solutions of a gradient-like system of second-order with
slow dissipation. Also we estimate the rate of convergence.

1. Introduction and main results

In this article we study the asymptotic behaviour of global and bounded solutions
of the following gradient like system

ẍ(t) + a(t)‖ẋ(t)‖αẋ(t) +∇Φ(x(t)) = g(t)

x(0) = x0 ∈ RN , ẋ(0) = x1 ∈ RN
(1.1)

where N ∈ N∗, α ≥ 0, Φ ∈ W 2,∞
loc (RN ,R), g ∈ L1(R+,RN ), a ∈ L∞(R+), a ≥ 0.

We denote by S the set of critical points of Φ:

S = {x ∈ RN : ∇Φ(x) = 0}.
Recently, Haraux and Jendoubi [13] studied the asymptotic behavior of global so-
lutions to the nonlinear differential equation

ẍ(t) + a(t)ẋ(t) +∇Φ(x(t)) = 0. (1.2)

They prove among other things that if a(t) ≥ c
(1+t)β

with β ≥ 0 small enough and
S = arg min Φ then the solution converge as t goes to infinity to S. Moreover, they
proved that if the potential Φ satisfies an adapted uniform Lojasiewicz gradient
inequality then the solution converge to some point b ∈ S. The purpose of this
paper is to generalize the results obtained by the authors of [13] to the equation
(1.1).

Before stating the results of this paper, recall that equation (1.2) with a(t) = 1
has been studied by several authors. When Φ is analytic, Haraux and Jendoubi [11]
(see also [2, 7, 8, 12]) proved convergence to equilibrium of all global and bounded
solutions. Now when the potential Φ is assumed to be convex and still in the case
where a(t) = 1, Attouch et al [1] proved a similar convergence result.
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Equation (1.2) in the case where a(t) tends to 0 was initiated by Cabot et al [4]
in the case where the potential Φ is convex (see also [5, 14]).

The main results of this paper read as follows.

Theorem 1.1. Let Φ ∈ W 2,∞
loc (RN ,R), a ∈ L∞(R+) be a positive function, and

x ∈W 2,1
loc ∩ L∞(R+,RN ) be a solution of (1.1). Assume that

(H1) S = arg min Φ.
(H2) There exists δ > 0, d > 0 such that ‖g(t)‖ 6 d

(1+t)1+δ
.

(H3) There exists β ∈]0, 1[, c > 0 for all t > 0, a(t) > c
(1+t)β

.

Then
lim

t→+∞
‖ẋ(t)‖+ dist(x(t), S) = 0. (1.3)

Theorem 1.2. Let Φ ∈ W 2,∞
loc (RN ,R), a ∈ L∞(R+) be a positive function. Let

x ∈W 2,1
loc ∩W 1,∞(R+,RN ) a solution of (1.1). Assume (H1), (H2) and that

(H4) There exists θ ∈]0, 1
2 ] for all b ∈ S∃σb > 0, ∃Cb > 0 for all x ∈ B(b, σb),

‖∇Φ(x)‖ > Cb|Φ(x)− Φ(b)|1−θ.
(H5) There exists c > 0, ∃β ≥ 0: α + β ∈]0, inf( θ

1−θ ; δ)[ and a(t) ≥ c/(1 + t)β

for all t ≥ 0.
Then there exists b∗ ∈ S, T > 0 and M > 0 such that for every t > T

‖x(t)− b∗‖ 6Mt−λ

where

λ = inf
([θ − (α+ β)(1− θ)

(1− θ)(α+ 2)− 1
]
,
[δ − (α+ β)

(α+ 1)
])
.

Remark 1.3. (1) If g = 0 and α = 0, we recover a result previously obtained
by Haraux and Jendoubi, see [13, Theorem 2.3]. (2) If β = 0, we recover a result
obtained by Ben Hassen and Chergui, see [3, Theorem 1.6].

Remark 1.4. Assumption (H4) is satisfied if one of the following two conditions
is satisfied

• F is a polynomial [9], or
• F is analytic and S is compact [6].

Remark 1.5. Let us observe that the condition α + β < δ in (H5) is necessary.
Here is an example of a nonconvergent solution of the following scalar equation

ẍ(t) + |ẋ(t)|α ẋ(t)
(1 + t)β

= g(t). (1.4)

Let x(t) = cos(ln(1 + t)) be a solution of (1.4). Then we can easily see that g
satisfies assumption (H2) with δ = α + β and that x is a non convergent solution
of (1.4) with Φ = 0. Note also that in this case assumption (H4) holds true with
θ = 1/2.

Remark 1.6. The hypothesis that α+ β < θ
1−θ in (H5) is in some sense optimal.

Haraux [10] gives an example of a function f such that the ω−limit set of a global
and bounded solution of the following equation

ẍ(t) + |ẋ(t)|ẋ(t) + f(x) = 0

is equal to an interval and then this solution does not converge. The nonlinearity
can be chosen such that its primitive satisfies assumption (H4) with θ = 1/2.
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Remark 1.7. Theorems 1.1 and 1.2 remain true if the dissipation term a(t)‖ẋ(t)‖αẋ(t)
in the equation 1.1 is replaced by a(t)γ(ẋ(t)) where γ : RN → RN is a continuous
function satisfying

〈γ(v), v〉 ≥ ρ1‖v‖α+2, ‖γ(v)‖ ≤ ρ2‖v‖α+1 ∀v ∈ RN ,

with 0 < ρ1 < ρ2 <∞ and α is as in Theorems 1.1 and 1.2.

2. Proof of Theorem 1.1

We define the two functions

E(t) =
1
2
‖ẋ(t)‖2 + Φ(x(t))−min Φ,

K(t) = E(t) +
∫ +∞

t

M

(1 + s)
−β+(1+δ)(α+2)

α+1

ds (2.1)

where
M =

( c
2
)− 1

α+1 d
α+2
α+1 ,

c is as in (H6) and d is as in (H2). Note that by hypotheses (H4)–(H6), we have
−β+(1+δ)(α+2)

α+1 > 1 and K is well defined. Now by differentiating E we obtain

E′(t) = −a‖ẋ(t)‖2+α + 〈g(t); ẋ(t)〉.

By the Cauchy-Schwarz inequality we obtain

E′(t) ≤ − c

(1 + t)β
‖ẋ(t)‖2+α +

( c

2(1 + t)β
) 1
α+2 ‖ẋ(t)‖

( c

2(1 + t)β
)− 1

α+2 ‖g(t)‖.

Thanks to Young’s inequality we obtain

E′(t) ≤ − c

2(1 + t)β
‖ẋ(t)‖2+α +

( c

2(1 + t)β
)− 1

α+1 ‖g(t)‖
α+2
α+1

≤ − c

2(1 + t)β
‖ẋ(t)‖2+α +

M

(1 + t)
−β+(1+δ)(α+2)

α+1

.

Now by differentiating K we obtain

K ′(t) ≤ − c

2(1 + t)β
‖ẋ(t)‖2+α.

So K is a decreasing and positive function. Hence

ẋ ∈ L∞(R+,RN ) (2.2)

and there exists l ∈ R+ such that

lim
t→+∞

K(t) = lim
t→+∞

E(t) = l.

We define the function

E(t) = E(t) +
∫ +∞

t

〈g(s), ẋ(s)〉ds.

Using (2.2) and (H2) which implies that g ∈ L1, we see that limt→∞ E(t) =
limt→+∞E(t) and E ′(t) = −a(t)‖ẋ(t)‖2+α. Then we obtain∫ ∞

0

a(t)‖ẋ(t)‖2+α dt <∞. (2.3)
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Let r > 0 and assume that there exists ε > 0 and t0 > 0 such that for all t > t0∫ t+r

t

‖ẋ(s)‖2+αds ≥ ε.

Then ∫ t+r

t

a(s)‖ẋ(s)‖2+αds ≥ εc

(1 + t+ r)β
∀t > t0 .

It follows that∫ +∞

t0

a(s)‖ẋ(s)‖2+αds ≥
+∞∑
n=0

∫ t0+(n+1)r

t0+nr

a(s)‖ẋ(s)‖2∗αds

≥
+∞∑
n=0

εc

(1 + t0 + (n+ 1)r)β
=∞

which contradicts (2.3). Then for every n ∈ N∗, there exists tn ≥ n such that∫ tn+r

tn

‖ẋ(t)‖2+αdt ≤ 1
n
.

Hence there exists a real sequence (tn)n such that limn→∞ tn =∞ and

lim
n→+∞

∫ tn+r

tn

‖ẋ(t)‖2+αdt = 0. (2.4)

By (2.2), x and ẋ are bounded, and then by the equation (1.1), ẍ is bounded. Hence
ẋ is Lipschitz continuous. Thanks to the Cauchy-Schwarz inequality we obtain for
all t ∈ [tn, tn + r]

|‖ẋ(tn + t)‖2+α − ‖ẋ(tn)‖2+α| = (2 + α)|
∫ tn+t

tn

‖ẋ(s)‖α < ẋ(s), ẍ(s) > ds|

≤ (2 + α)(
∫ tn+t

tn

‖ẋ(s)‖α+1‖ẍ(s)‖ds)

6 (2 + α)‖ẋ‖α/2∞ ‖ẍ‖∞(
∫ tn+r

tn

‖ẋ(s)‖α2 +1ds)

≤ (2 + α)‖ẋ‖α/2∞ ‖ẍ‖∞
√
r(
∫ tn+r

tn

‖ẋ(s)‖α+2ds)1/2.

Then from (2.4) we obtain

lim
n→∞

sup
s∈[0,r]

‖ẋ(tn + s)‖ = 0. (2.5)

Since x is a bounded function and ∇Φ is a Lipschitz continuous function on every
bounded domain, then there exists λ > 0 such that for all (t, s) ∈ R2

+

‖∇Φ(x(t))−∇Φ(x(s))‖ ≤ λ‖x(t)− x(s)‖.
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Then∥∥r∇Φ(x(tn))−
∫ tn+r

tn

∇Φ(x(s)) ds
∥∥ ≤ ∫ tn+r

tn

‖∇Φ(x(tn))−∇Φ(x(s))‖ds

≤ λ
∫ tn+r

tn

‖x(tn)− x(s)‖ds

≤ λ
∫ tn+r

tn

∫ s

tn

‖ẋ(u)‖du ds

≤ λr2 sup
s∈[0,r]

‖ẋ(tn + s)‖.

(2.6)

Since∫ tn+r

tn

∇Φ(x(s))ds = −
∫ tn+r

tn

ẍ(t)dt−
∫ tn+r

tn

a(t)‖ẋ(t)‖αẋ(t)dt+
∫ tn+r

tn

g(t)dt,

then

lim
n→+∞

∫ tn+r

tn

∇Φ(x(s))ds = 0. (2.7)

Combining (2.5), (2.6) and (2.7) yields

lim
n→+∞

‖∇Φ(x(tn))‖ = 0. (2.8)

Hence
l = lim

t→+∞
E(t) = lim

n→+∞
E(tn) = lim

n→+∞
Φ(x(tn))−min Φ.

Since (x(tn))n is a bounded sequence, we can extract a subsequence, still denoted
by (x(tn))n such that limn→∞ x(tn) = a. From (2.8) we obtain

lim
n→+∞

∇Φ(x(tn)) = 0 = ∇Φ(a).

Then a ∈ S. By (H1), S = arg min Φ, and then it follows that limt→∞E(t) = 0, so
limt→∞ ‖ẋ(t)‖ = 0 and limt→∞Φ(x(t)) = min Φ. Assume that

lim
t→∞

dist(x(t), S) 6= 0.

Then there exists ε > 0 and tn →∞ such that

d(x(tn), S) > ε. (2.9)

Therefore, we can extract a subsequence still denoted by (tn) such that

lim
n→+∞

x(tn) = a.

Then limn→∞ Φ(x(tn)) = Φ(a) = min Φ that is a ∈ S, which contradicts (2.9).

3. Proof of theorem 1.2

To prove Theorem 1.2, we need some lemmas. We begin with the following
lemma proved by Alvarez et al [2], here we give a slightly different proof.

Lemma 3.1. Under hypothesis (H4), let Γ be a compact subset of RN such that

∃K ∈ R : ∀a ∈ Γ Φ(a) = K.

Then there exist σ,C > 0 and θ ∈ (0, 1/2) such that

[d(u,Γ) ≤ σ ⇒ ‖∇Φ(u)‖ ≥ C|Φ(u)−K|1−θ]. (3.1)
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Proof. Using (H4), there exists θ ∈]0, 1/2] such that for all a ∈ Γ there exists
Ca > 0, σa > 0 such that

‖∇Φ(u)‖ ≥ Ca|Φ(u)− Φ(a)|1−θ ∀u ∈ B(a, σa). (3.2)

Since Γ is compact, then there exists (a1, . . . , an) ∈ Γn such that

Γ ⊂ (∪ni=1B(ai,
σai
2

)).

We choose σ = inf σai/2 and C = inf Cai . Let u ∈ RN such that d(u,Γ) ≤ σ.
Then there exists a ∈ Γ such that d(u, a) ≤ σ and i ∈ {1, 2, . . . , n} such that
a ∈ B(ai,

σai
2 ). Hence we obtain d(u, ai) ≤ σai . From (3.2) we obtain

‖∇Φ(u)‖ ≥ Ca|Φ(u)− Φ(a)|1−θ ≥ C|Φ(u)−K|1−θ.

�

Lemma 3.2. Let f and g : R+ → R+ be two continuously differentiable functions,
h : R2

+ → R be continuously differentiable function, and T ≥ 0 be such that for all
t ≥ T ,

f ′(t) + h(t, f(t)) ≤ g′(t) + h(t, g(t)),

f(T ) ≤ g(T ).

Then for all t ≥ T , f(t) ≤ g(t).

Proof. Let k : R+ → R be a function such that

k′(t) =

{h(t,g(t))−h(t,f(t))
g(t)−f(t) if g(t) 6= f(t)

∂2h(t, f(t)) if g(t) = f(t)

and φ : R+ → R; t 7−→ ek(t)(g − f)(t). Then for all t ≥ T ,

φ′(t) = [(g − f)′(t) + k′(t)(g − f)(t)]ek(t) ≥ 0.

So φ is an increasing function in [T,+∞[. Finally we see that for all t ∈ [T,+∞[
we obtain f(t) ≤ g(t). �

Lemma 3.3. Let H ∈ W 1,1
loc (R+,R+). Assume that there exist constants k1 > 0,

k2 ≥ 0, T > 0, µ > 1 > β and γ > β > 0 such that for almost every t ≥ T we have

H ′(t) +
k1

(1 + t)β
(H(t))µ ≤ k2

(1 + t)γ
.

Then there exists M > 0 such that for all t ≥ T ,

H(t) ≤ M

(1 + t)c

where

c = inf
(γ − β

µ
,

1− β
µ− 1

)
.

Proof. Let M > 0 such that k1M
µ − cM > k2 and M > H(T )(1 + T )c. We define

the function φ : R+ → R by

φ(t) =
M

(1 + t)c
.
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Hence for all t ≥ T , we have

φ′(t) +
k1

(1 + t)β
(φ(t))µ =

k1M
µ

(1 + t)β+cµ
(1− cM1−µ

k1(1 + t)1−β+c(1−µ)
)

≥ k1M
µ

(1 + t)β+cµ
(1− cM1−µ

k1
)

≥ k2

(1 + t)γ

≥ H ′(t) +
k1

(1 + t)β
(H(t))µ.

Since φ(T ) ≥ H(T ), thanks to Lemma 3.2, for all t ≥ T , we obtain

H(t) ≤ φ(t) =
M

(1 + t)c
.

�

Proof of Theorem 1.2. Let ε > 0. We define the function

H(t) = E(t) +
ε‖∇Φ(x(t))‖α

(1 + t)β
〈∇Φ(x(t)), ẋ(t)〉+

ε

2

∫ ∞
t

‖∇Φ(x(s))‖α‖g(s)‖2

(1 + s)β
ds.

(3.3)
By differentiating H we obtain

H ′(t) = −a(t)‖ẋ(t)‖α+2 − εβ

(1 + t)β+1
‖∇Φ(x(t))‖α〈∇Φ(x(t)), ẋ(t)〉

+
ε

(1 + t)β
‖∇Φ(x(t))‖α〈∇2Φ(x(t))ẋ(t), ẋ(t)〉

+
ε

(1 + t)β
α‖∇Φ(x(t))‖α−2〈∇2Φ(x(t))ẋ(t),∇Φ(x(t))〉〈∇Φ(x(t)), ẋ(t)〉

− εa(t)
(1 + t)β

‖ẋ(t)‖α‖∇Φ(x(t))‖α〈∇Φ(x(t)), ẋ(t)〉 − ε

(1 + t)β
‖∇Φ(x)‖2+α

+
ε

(1 + t)β
‖∇Φ(x(t))‖α〈∇Φ(x(t)), g(t)〉 − ε

2
‖∇Φ(x(t))‖α‖g(t)‖2

(1 + t)β
.

By the Cauchy-Schwarz inequality and by setting M1 = ‖∇2Φ(x)‖∞ and M2 =
‖a‖∞ we obtain

H ′(t) ≤ −a(t)‖ẋ(t)‖α+2 − ε

(1 + t)β
‖∇Φ(x)‖2+α +

εβ

(1 + t)β+1
‖ẋ(t)‖‖∇Φ(x(t))‖α+1

+
εM1(α+ 1)

(1 + t)β
‖ẋ(t)‖2‖∇Φ(x(t))‖α +

εM2

(1 + t)β
‖ẋ(t)‖α+1‖∇Φ(x(t))‖α+1

+
ε

(1 + t)β
‖∇Φ(x(t))‖α‖∇Φ(x(t))‖‖g(t)‖ − ε

2
‖∇Φ(x(t))‖α‖g(t)‖2

(1 + t)β
.

By Young’s inequality, there exist C1, C2 > 0 such that

H ′(t) ≤ −a(t)‖ẋ(t)‖2+α − ε

2(1 + t)β
‖∇Φ(x(t))‖2+α

+
εβ

(1 + t)β+1
(‖ẋ(t)‖α+2 + ‖∇Φ(x(t))‖α+2)
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+
ε

(1 + t)β
(C1‖ẋ(t)‖α+2 +

1
8
‖∇Φ(x(t))‖α+2)

+
ε

(1 + t)β
(C2‖ẋ(t)‖(α+2)(α+1) +

1
8
‖∇Φ(x(t))‖α+2).

By using (1.3), there exists T > 0 such that

‖ẋ(t)‖ < 1 ∀t ≥ T. (3.4)

Then we obtain that for all t ≥ T (with T large enough so that (1/((1+T )β) ≤ 1/8),

H ′(t) 6
(−c+ ε(β + C1 + C2)

(1 + t)β
)
‖ẋ(t)‖2+α − ε

8(1 + t)β
‖∇Φ(x(t))‖2+α.

By choosing ε small enough, we obtain that for all t > T ,

H ′(t) 6 − ε

8(1 + t)β
(‖ẋ(t)‖2+α + ‖∇Φ(x(t))‖2+α). (3.5)

So H is nonincreasing on [T,∞) and limt→∞H(t) = 0. From (3.3) together with
the Cauchy-Schwarz inequality we obtain for all t > T ,

[H(t)](1−θ)(α+2)

≤
[
E(t) +

ε‖∇Φ(x(t))‖α+1

(1 + t)β
‖ẋ(t)‖+

ε

2

∫ ∞
t

‖∇Φ(x(s))‖α‖g(s)‖2

(1 + s)β
ds
](1−θ)(α+2)

By using the inequality
(∑5

i=1 ai
)λ ≤ 5λ

∑5
i=1 a

λ
i for ai nonnegative for all i and

0 ≤ λ ≤ 2, we obtain that for all t ≥ T ,

[H(t)](1−θ)(α+2) ≤ C3

[1
2
‖ẋ(t)‖2

](1−θ)(α+2) + C3[Φ(x(t))−min Φ](1−θ)(α+2)

+ C3

[ ∫ +∞

t

〈g(s), ẋ(s)〉 ds
](1−θ)(α+2)

+ C3

[ε‖∇Φ(x(t))‖α+1

(1 + t)β
‖ẋ(t)‖

](1−θ)(α+2)

+ C3

[ε
2

∫ ∞
t

‖∇Φ(x(s))‖α‖g(s)‖2

(1 + s)β
ds
](1−θ)(α+2)

.

(3.6)

where C3 = 5(1−θ)(α+2). By using (3.4) and since 2(1− θ)(α+ 2) ≥ α+ 2 we have

[‖ẋ(t)‖2](1−θ)(α+2) ≤ ‖ẋ(t)‖α+2 (3.7)

Now by using (H4) and Lemma 3.1 we obtain that for all t ≥ T ,

[Φ(x(t))−min Φ](1−θ)(α+2) ≤ ‖∇Φ(x(t))‖α+2. (3.8)

Young’s inequality yields∣∣∣ ∫ ∞
t

〈g(s), ẋ(s)〉 ds
∣∣∣(1−θ)(α+2)

≤ K(ρ)
(∫ +∞

t

‖g(s)‖
α+2
α+1 (1 + t)

β
α+1 ds

)(α+2)(1−θ)

+ ρ(
∫ +∞

t

‖ẋ(s)‖α+2

(1 + t)β
ds)(1−θ)(α+2),

(3.9)
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where ρ is a small positive constant which will be fixed in the sequel. Using (H2)
we obtain (∫ +∞

t

‖g(s)‖
α+2
α+1 (1 + t)

β
α+1 ds

)(α+2)(1−θ)
≤ C4(1 + t)−χ, (3.10)

where
χ =

1 + αδ + 2δ − β
1 + α

(α+ 2)(1− θ).

Once again, by applying Young’s inequality and using the fact that (1−θ)(α+2) ≥ 1,
we obtain that for all t ≥ T ,

C3

[ε‖∇Φ(x(t))‖α+1

(1 + t)β
‖ẋ(t)‖

](1−θ)(α+2)

≤ C5[
‖∇Φ(x(t))‖α+2 + ‖ẋ(t)‖α+2

(1 + t)β
](1−θ)(α+2)

≤ C5(‖∇Φ(x(t))‖α+2 + ‖ẋ(t)‖α+2).

(3.11)

Now, since x is bounded and by (H2), we obtain

C3

[ε
2

∫ ∞
t

‖∇Φ(x(s))‖α‖g(s)‖2

(1 + s)β
ds
](1−θ)(α+2)

≤ C6(1 + t)−η, (3.12)

where η = (1 + 2δ + β)(1− θ)(α+ 2).
By combining (3.6), (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12) we obtain

[H(t)](1−θ)(α+2)

≤ C7(‖ẋ(t)‖α+2 + ‖∇Φ(x(t))‖α+2)

+ C8(1 + t)−χ + C9(1 + t)−η + ρ
(∫ +∞

t

‖ẋ(s)‖α+2

(1 + t)β
ds
)(1−θ)(α+2)

≤ C7(‖ẋ(t)‖α+2 + ‖∇Φ(x(t))‖α+2)

+ C10(1 + t)−χ + ρ
(∫ +∞

t

‖ẋ(s)‖α+2

(1 + t)β
ds
)(1−θ)(α+2)

,

(3.13)

where we use the fact that η > χ in the last inequality. On the other hand, by
integrating (3.5) over (t,∞), we obtain(∫ ∞

t

‖ẋ(s)‖α+2

(1 + t)β
ds
)(1−θ)(α+2)

≤
(8
ε
H(t)

)(1−θ)(α+2)

.

Now by choosing ρ in (3.9) such that ρ(8/ε)(1−θ)(α+2) < 1/2, estimate (3.13) be-
comes

[H(t)](1−θ)(α+2) ≤ C11(‖ẋ(t)‖α+2 + ‖∇Φ(x(t))‖α+2) + C12(1 + t)−χ. (3.14)

Now, by combining (3.5) with the above inequality, we obtain that for all t ≥ T

−H ′(t) ≥ ε

8(1 + t)β
(‖ẋ(t)‖2+α + ‖∇Φ(x(t))‖2+α)

≥ C13
[H(t)](1−θ)(α+2)

(1 + t)β
− C14(1 + t)−χ−β .

We finally obtain the differential inequality

H ′(t) +
C13

(1 + t)β
[H(t)](2+α)(1−θ) 6

C14

(1 + t)χ+β .
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By using Lemma 3.3, there exists M > 0 such that for all t ≥ T ,

H(t) ≤ M

(1 + t)ν

where

ν = inf
( χ

(2 + α)(1− θ)
,

1− β
(2 + α)(1− θ)− 1

)
= inf

(
δ +

1 + δ − β
1 + α

,
1− β

(2 + α)(1− θ)− 1

)
.

Once again from (3.5),

ε

8(1 + t)β
‖ẋ(t)‖2+α ≤ −H ′(t).

Then for all t > T ,∫ 2t

t

ε

8(1 + s)β
‖ẋ(s)‖2+αds ≤ H(t) ≤ M

(1 + t)ν
.

Hölder’s inequality yields∫ 2t

t

‖ẋ(s)‖ds ≤ t
1+α
2+α

(∫ 2t

t

‖ẋ(s)‖2+αds
) 1

2+α

≤ t
1+α
2+α

(8(1 + 2t)β

ε

∫ 2t

t

ε

8(1 + s)β
‖ẋ(s)‖2+αds

) 1
2+α

≤ t
1+α
2+α

(8(1 + 2t)β

ε

M

(1 + t)ν
) 1

2+α ≤ C15

tλ
,

where

λ =
ν

2 + α
− α+ 1 + β

2 + α

= inf
([θ − (α+ β)(1− θ)

(1− θ)(α+ 2)− 1
]
,
[δ − (α+ β)

(α+ 1)
])
> 0.

Then ∫ +∞

t

‖ẋ(s)‖ds ≤
+∞∑
n=0

∫ 2n+1t

2nt

‖ẋ(s)‖ds

≤
+∞∑
n=0

C15

2nλtλ

≤ C15

tλ(1− 2−λ)

and the result follows since

‖x(t)− x(τ)‖ ≤
∫ τ

t

‖ẋ(s)‖ ds ≤
∫ ∞
t

‖ẋ(s)‖ds.

�



EJDE-2015/302 ASYMPTOTIC BEHAVIOR 11

References

[1] H. Attouch, X. Goudou, P. Redont; The heavy ball with friction method, I. The continuous
dynamical system: global exploration of the local minima of a real-valued function asymptotic

by analysis of a dissipative dynamical system. Commun. Contemp. Math. 2 (2000),1-34.

[2] F. Alvarez, H. Attouch, J. Bolte, P. Redont; A second-order gradient-like dissipative dy-
namical system with Hessian-driven damping. Application to optimization and mechanics. J.

Math. Pures Appl. (9) 81 (2002), 747-779.

[3] I. Ben Hassen, L. Chergui; Convergence of global and bounded solutions of some nonau-
tonomous second order evolution equations with nonlinear dissipation. J. Dyn. Differ. Equa-

tions 23 (2011), 315-332.
[4] A. Cabot, H. Engler, S. Gadat; On the long time behavior of second order differential equa-

tions with asymptotically small dissipation. Trans. Amer. Math. Soc. 361 (2009), 5983-6017.

[5] A. Cabot, P. Frankel; Asymptotics for some semilinear hyperbolic equations with non-
autonomous damping. J. Differential Equations 252 (2012), 294-322.

[6] L. Chergui; Convergence of global and bounded solutions of a second order gradient like

system with nonlinear dissipation and analytic nonlinearity, J. Dyn. Differ. Equations 20
(2008), 643-652.

[7] R. Chill; On the Lojasiewicz-Simon gradient inequality. J. Funct. Anal. 201 (2003), 57-601.

[8] R. Chill, A. Haraux, M. A. Jendoubi; Applications of the Lojasiewicz-Simon gradient in-
equality to gradient-like evolution equations. Anal. Appl. (Singap.) 7 (2009), 35-372.

[9] D. D’Acunto, K. Kurdyka; Explicit bounds for the Lojasiewicz exponent in the gradient

inequality for polynomials, Ann. Polon. Math. 87 (2005), 51-61.
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