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BLOW-UP FOR THE EULER-BERNOULLI VISCOELASTIC
EQUATION WITH A NONLINEAR SOURCE

ZHIFENG YANG, GUOBING FAN

Abstract. In this article, we consider the Euler-Bernoulli viscoelastic equa-

tion

utt(x, t) + ∆2u(x, t)−
Z t

0
g(t− s)∆2u(x, s)ds = |u|p−1u

together with some suitable initial data and boundary conditions in Ω ×
(0, +∞). Some sufficient conditions on blow-up of solutions are obtained under
different initial energy states. And from these results we can clearly understand

the competitive relationship between the viscoelastic damping and source.

1. Introduction

The Euler-Bernoulli equation

utt(x, t) + ∆2u(x, t) + h(ut) = f(u), (x, t) ∈ Rn × (0,+∞), (1.1)

describes the deflection u(x, t) of a beam (when n = 1) or a plate (when n = 2).
Where

∆2u := ∆(∆u) =
n∑
j=1

( n∑
i=1

uxixi

)
xjxj

,

h and f represent the friction damping and the source respectively. The blow-up
properties of this model have been extensively studied. For example, Messaoudi
[13] studied the equation

utt(x, t) + ∆2u(x, t) + a|ut|m−2ut = b|u|p−2u, (1.2)

where a, b > 0 and p,m > 2 and proved that the solution blows up in finite time
with negative initial energy when m < p. Later, this result was improved to the
case of positive initial energy by Chen and Zhou[5]. All these results reflect a
competition between the source and the friction damping.

When we take the viscoelastic materials into consideration, the model (1.1) be-
comes

utt(x, t) + ∆2u(x, t)−
∫ t

0

g(t− s)∆2u(x, s)ds+ h(ut) = f(u), (1.3)
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where g is so-called viscoelastic kernel. The term
∫ t

0
g(t − s)∆2u(x, s)ds describes

the hereditary properties of the viscoelastic materials[6]. It expresses the fact that
the stress at any instant t depends on the past history of strains which the material
has undergone from time 0 up to t. When h ≡ 0 and f ≡ 0, Tatar [16] obtained the
property of the energy decay of the model (1.3). And from this, we know that the
term

∫ t
0
g(t−s)∆2u(x, s)ds, similar to the friction damping, can cause the inhibition

of the energy.
When various damping, such as friction damping, strong damping and viscoelas-

tic damping, come together, some blow-up results are obtained. For example,
Tahamtani and Peyravi [18] considered the equation

utt(x, t) + ∆2u(x, t)−
∫ t

0

g(t− s)∆2u(x, s)ds−∆ut −∆utt + |ut|m−1ut = |u|p−1u,

(1.4)
together with some initial-boundary conditions and proved that the Lp+1 norm of
any solution grows as an exponential function if m < p and the initial energy is
negative. Very recently, Gang Li et al.[11] studied the asymptotic behavior and
blow-up properties of solutions of (1.4) in the case where the positive initial energy
has an upper bound. From their result, we can see the competition mechanism be-
tween source and all the dampings. For the better comprehension of our motivation,
we point out that the system (1.4) has weak damping |ut|m−1ut, strong damping
∆ut and viscoelastic damping

∫ t
0
g(t − s)∆2u(x, s)ds at the same time. But, how

much influence on blow-up the each damping has? This question did not seem to
be answered in the literature. That is, we can not know the specific effect of each
damping among this competition mechanism. And this is the motivation of our
present work. More precisely, we will discuss the initial-boundary value problem

utt(x, t) + ∆2u(x, t)−
∫ t

0

g(t− s)∆2u(x, s)ds = |u|p−1u,

(x, t) ∈ Ω× (0, T ),

u(x, t) =
∂u(x, t)
∂ν

= 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.5)

where Ω ∈ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω. ν is the
unit outward normal vector on ∂Ω. And u0, u1 are given initial data belonging
to suitable spaces. We try to discuss the influence of the competition between
viscoelastic damping and source on the blow-up of solutions. And we hope that
we have a more in-depth understanding of the interaction mechanism between the
source and the viscoelastic damping. Compared with the relevant literature, this
is a distinctive feature of the present paper.

We will discuss this problem in three cases: E(0) < 0, 0 < E(0) < E0 and
E(0) > 0. When E(0) < 0 and 0 < E(0) < E0, our approach is the same as in
[4, 14, 15], in which the authors studied the equation

utt(x, t)−∆u(x, t) +
∫ t

0

g(t− s)∆u(x, s)ds+ |ut|m−1ut = |u|p−1u (1.6)

and obtained some blow-up results. But, in the case of E(0) > 0, we here solve
(1.5) by introducing the so-called positive type function.
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2. Preliminaries and statement of main results

Throughout this article, C denotes a generic positive constant. It may be dif-
ferent from line to line. And we use the standard Lebesgue space Lp(Ω) with their
usual norms ‖ · ‖p. We first state the general assumptions on g and p as follows:

(A1) g ∈ C1([0,∞)) is a non-negative and non-increasing function satisfying

0 < k :=
∫ ∞

0

g(s)ds < 1. (2.1)

(A2) The function e
t
2 g(t) is of positive type in the following sense:∫ t

0

v(s)
∫ s

0

e
s−τ
2 g(s− τ)v(τ)dτds ≥ 0, ∀v ∈ C1([0,∞)), ∀t > 0.

(A3) If the space dimension n = 1, 2, 3, 4, then 1 < p < ∞; If n ≥ 5, then
1 < p ≤ n

n−4 .

Remark 2.1. Assumption (A1) was used in [4, 14, 15] and it points out that the
kernel function g must be “small”. For the definition of positive type function in
detail, we refer readers to [8]. A typical example of such function is

g(t) = εe−t, 0 < ε < 1.

Moreover, since e
t
2 g(t) is of positive type, we have∫ t

0

es
∫ s

0

g(s− τ)
∫

Ω

∆u(x, s)∆u(x, τ) dx dτ ds

=
∫

Ω

∫ t

0

(
es/2∆u(x, s)

)∫ s

0

(
e
s−τ
2 g(s− τ)

)(
eτ/2∆u(x, τ)

)
dτ ds dx ≥ 0.

Thus, we deduce that ∫
Ω

∫ t

0

g(t− s)∆u(t)∆u(s) ds dx ≥ 0.

To simplify notation, we set

(φ ◦ ψ)(t) :=
∫ t

0

φ(t− s)
∫

Ω

|ψ(t)− ψ(s)|2 dx ds,

where ψ may be a scalar, or a vector valued function. A direct computation shows
that, for any g ∈ C1(R) and u ∈ H2(0, T, L2(Ω)), the following equality holds:∫ t

0

g(t− s) (∆u(s),∆ut(t)) ds

=
1
2

(g′ ◦∆u)(t)− 1
2
g(t)‖∆u(t)‖22

− 1
2
d

dt

{
(g ◦∆u)(t)−

(∫ t

0

g(s)ds
)
‖∆u(t)‖22

}
.

(2.2)

Now, we state the existence of a local solution which can be established by
adopting the arguments in [13, 1].

Theorem 2.2. Assume that (A1) and (A3) hold. Let u0 ∈ H2
0 (Ω) and u1 ∈ H1

0 (Ω)
be given. Then, there exists a unique weak solution u(t) of (1.5) such that

u ∈ C([0, T ];H2
0 (Ω)) ∩ C1([0, T ];L2(Ω)), ut ∈ L2([0, T ];H1

0 (Ω)). (2.3)
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for T > 0 small enough.

Now, we define the following two functionals:

I(t) := I(u(t)) = ‖∆u‖22 − ‖u‖
p+1
p+1, (2.4)

E(t) := E(u(t)) =
1
2
‖ut‖22 +

1
2

(
1−

∫ t

0

g(s)ds
)
‖∆u‖22

+
1
2

(g ◦∆u)(t)− 1
p+ 1

‖u‖p+1
p+1.

(2.5)

By (2.2) and the assumption (A1), some direct computations yield

E′(t) =
1
2

(g′ ◦∆u)(t)− 1
2
g(t)‖∆u‖22 ≤ 0. (2.6)

The following four lemmas are necessary to prove our main results. The first one
is the Sobolev-Poincaré inequality [2, Chapter 4].

Lemma 2.3. Let q be a number with 2 ≤ q < ∞(n = 1, 2, 3, 4) or 2 ≤ q ≤
2n/(n − 4)(n ≥ 5), then for u ∈ H2

0 (Ω) there exists a positive C∗ = C(Ω, q) such
that ‖u‖q ≤ C∗‖∆u‖2.

Lemma 2.4. . Assume that (A1) holds. If ‖u0‖p+1 > λ0 ≡ B
−2
p−1
0 and E(0) <

E0 = ( 1
2 −

1
p+1 )B

−2(p+1)
p−1

0 , then we have ‖u‖p+1 > λ0 and ‖∆u‖2 > B
−(p+1)
p−1

0 for all
t ≥ 0, where B0 = B√

1−k for ‖u‖p+1 ≤ B‖∆u‖2.

Proof. By (2.5), we have

E(t) ≥ 1
2

(
1−

∫ t

0

g(s)ds
)
‖∆u‖22 −

1
p+ 1

‖u‖p+1
p+1

≥ 1− k
2
‖∆u‖2p+1 −

1
p+ 1

‖u‖p+1
p+1

≥ 1
2B2

0

‖u‖22 −
1

p+ 1
‖u‖p+1

p+1.

(2.7)

Denote
f(x) =

1
2B2

0

x2 − 1
p+ 1

xp+1, x ≥ 0.

Then, we easily deduce that f(x) takes its maximum value E0 at λ0. Since E0 >
E(0) ≥ e(t) ≥ f(‖u‖p+1) for all t ≥ 0, there is no time t∗ such that ‖u(t∗)‖p+1 = λ0.
By the continuity of the ‖u(t)‖p+1-norm with respect to the time variable, one has
‖u(t)‖p+1 > λ0 for all t ≥ 0, and consequently,

‖∆u‖2 ≥
1√

1− kB0

‖u‖p+1 >
1√

1− k
B
−(p+1)
p−1

0 > B
−(p+1)
p−1

0 .

This completes the proof. �

Lemma 2.5. Assume that g(t) satisfies (A1) and (A2), and u(t) is the correspond-
ing solution of the problem (1.5). Moreover, the function Φ(t) is twice continuously
differentiable, satisfying

Φ′′(t) + Φ′(t) >
∫ t

0

g(t− s)
∫

Ω

∆u(x, s)∆u(x, t) dx ds

Φ(0) > 0, Φ′(0) > 0,
(2.8)
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for every t ∈ [0, T0). Then Φ(t) is strictly increasing on [0, T0).

Proof. We first consider the auxiliary ODE

ϕ′′(t) + ϕ′(t) =
∫ t

0

g(t− s)
∫

Ω

∆u(x, s)∆u(x, t) dx ds

ϕ(0) = Φ(0), ϕ′(0) = 0
(2.9)

for every t ∈ [0, T0). The solution of the problem (2.9) is

ϕ(t) = ϕ(0) +
∫ t

0

e−s − e−t

e−s

∫ s

0

g(s− τ)
∫

Ω

∆u(x, s)∆u(x, τ) dx dτds, (2.10)

t ∈ [0, T0). Then, by (A2) we obtain

ϕ′(t)

=
∫ t

0

es−t
∫ s

0

g(s− τ)
∫

Ω

∆u(x, s)∆u(x, τ) dx dτds

= e−t
∫

Ω

∫ t

0

(
es/2∆u(x, s)

) ∫ s

0

(
e
s−τ
2 g(s− τ)

)(
eτ/2∆u(x, τ)

)
dτ ds dx

≥ 0, ∀t ∈ [0, T0).

(2.11)

Therefore, we have ϕ(t) ≥ ϕ(0) = Φ(0).
Note that Φ′(0) > ϕ′(0). We next show that

Φ′(t) > ϕ′(t), ∀t ≥ 0. (2.12)

Assume that (2.12) is not valid. This implies that there exists t0 > 0 satisfying

t0 = min{t ≥ 0 : Φ′(t) = ϕ′(t)}. (2.13)

Then we have the problem

Φ′′(t)− ϕ′′(t) + Φ′(t)− ϕ′(t) > 0

Φ(0)− ϕ(0) = 0, Φ′(0)− ϕ′(0) > 0
(2.14)

for every t ∈ [0, T0). This problem can be solved as

Φ′(t0)− ϕ′(t0) > e−t0(Φ′(0)− ϕ′(0)) > 0

which contradicts (2.13). Thus, we see that Φ′(t) > 0, which implies our desired
result. �

Lemma 2.6. Assume that (u0, u1) ∈ (H2
0 (Ω)×H1

0 (Ω)) satisfies
∫

Ω
u0(x)u1(x)dx ≥

0. If the solution u(t) of (1.5) exists on [0, T ) and satisfies I(u) < 0, then ‖u‖22 is
strictly increasing on [0, T ).
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Proof. A direct computation yields

1
2
d2

dt2
‖u(t)‖22

=
∫

Ω

(
|ut(t)|2 + uutt

)
dx

= ‖ut‖22 + ‖u‖p+1
p+1 − ‖∆u‖22 +

∫
Ω

∆u(t)
∫ t

0

g(t− s)∆u(s) ds dx

= ‖ut‖22 − I(u(t)) +
∫

Ω

∆u(t)
∫ t

0

g(t− s)∆u(s) ds dx

>

∫
Ω

∆u(t)
∫ t

0

g(t− s)∆u(s) ds dx ≥ 0,

(2.15)

where the last inequality comes from Remark 2.1. This implies
d

dt
‖u(t)‖22 > 2

∫
Ω

u0(x)u1(x)dx ≥ 0. (2.16)

Thus, we obtain

d2

dt2
‖u(t)‖22 +

d

dt
‖u(t)‖22 >

∫
Ω

∆u(t)
∫ t

0

g(t− s)∆u(s) ds dx. (2.17)

Therefore, this lemma follows from Lemma 2.5. �

Our main results read as follows.

Theorem 2.7. Assume that (A1) and (A3) hold. If k < p2−1
p2 , then, for any initial

data u0 ∈ H2
0 (Ω) and u1 ∈ H1

0 (Ω) satisfying E(0) < 0, the corresponding solution
of the problem (1.5) blows up in finite time.

Theorem 2.8. Assume that (A1) and (A3) hold. If k < p2−1
p2 , then, for any initial

data u0 ∈ H2
0 (Ω) and u1 ∈ H1

0 (Ω) satisfying ‖u0‖p+1 > λ0 and E(0) < E0, the
corresponding solution of (1.5) blows up in finite time. (Here, λ0, E0 > 0)

Theorem 2.9. Assume that (A1)–(A3) hold. If k < p−1
p+1 , then, for any initial data

u0 ∈ H2
0 (Ω) and u1 ∈ H1

0 (Ω) satisfying E(0) > 0,
∫

Ω
u0u1dx > 0, I(u0) < 0 and

‖u0‖22 >
4(p+ 1)C2

∗
(p− 1)− (p+ 1)k

E(0), (2.18)

where C∗ is the constant of Poincare inequality on Ω, the corresponding solution of
the problem (1.5) blows up in finite time.

Remark 2.10. From condition (2.18), when the initial energy is in the high state,
the solution of (1.5) also blows up in finite time if we can ensure that the initial
value u0 satisfy (2.18). In other words, (2.18) is a restrictive condition to u0, not
to E(0).

3. Proof of main results

The method of the proof of Theorem 2.7 and Theorem 2.8 is standard. And
the idea comes from H. A. Levine etc.. For the convenience of readers, we here
write out the process of the proof in detail. And the improved convexity method
will be used to prove Theorem 2.9. Readers can refer to the relevant literatures
[3, 7, 9, 10, 12, 17, 19, 20] and the references therein.
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3.1. Proof of Theorem 2.7. Let

L(t) = H1−α(t) + ε

∫
Ω

uutdx. (3.1)

Here, H(t) = −E(t), 0 < α ≤ p−1
2(p+1) and ε > 0 to be choose later. First, by

(2.6), we easily obtain H ′(t) ≥ 0 and 0 < H(0) ≤ H(t) ≤ 1
p+1‖u‖

p+1
p+1. Second, by

differentiating the equality (3.1) and applying (1.5) and (2.5), we have

L′(t) = (1− α)H−α(t)H ′(t) + ε

∫
Ω

|ut|2dx+ ε

∫
Ω

uuttdx

≥ ε
∫

Ω

|ut|2dx+ ε

∫
Ω

uuttdx

= ε‖ut‖22 + ε
(
− ‖∆u‖22 +

∫
Ω

∆u(t)
∫ t

0

g(t− s)∆u(s) ds dx+ ‖u‖p+1
p+1

)
= ε‖ut‖22 − ε‖∆u‖22 + ε

∫
Ω

∆u(t)
∫ t

0

g(t− s)∆u(s)ds− ε(p+ 1)E(t)

+
ε(p+ 1)

2

[
‖ut‖22 +

(
1−

∫ t

0

g(s)ds
)
‖∆u‖22 + (g ◦∆u)(t)

]
.

(3.2)

In addition, by Young and Schwarz inequalities, we have

∫
Ω

∆u(t)
∫ t

0

g(t− s)∆u(s) ds dx

= −
∫

Ω

∆u(t)
∫ t

0

g(t− s) (∆u(t)−∆u(s)) ds dx+
(∫ t

0

g(s)ds
)
‖∆u‖22

≥
(∫ t

0

g(s)ds
)
‖∆u‖22 −

∫ t

0

g(t− s)‖∆u(t)‖2‖∆u(s)−∆u(t)‖2ds

≥
(∫ t

0

g(s)ds
)
‖∆u‖22 −

∫ t
0
g(s)ds
4δ

‖∆u‖22 − δ(g ◦∆u)(t), ∀δ > 0

(3.3)

Thus, by (3.2) and (3.3), we obtain

L′(t) ≥ εp+ 3
2
‖ut‖22 + ε(p+ 1)H(t) + ε

(
p+ 1

2
− δ
)

(g ◦∆u)(t)

+ ε
[p− 1

2
−
(p− 1

2
+

1
4δ
) ∫ t

0

g(s)ds
]
‖∆u‖22.

(3.4)

Now, choosing 0 < δ < p+1
2 and according to the hypothesis k < p2−1

p2 , we have
p+1

2 − δ > 0 and p−1
2 −

(
p−1

2 + 1
4δ

) ∫ t
0
g(s)ds > 0. So we can deduce that

L′(t) ≥ C
(
H(t) + ‖ut‖22 + ‖∆u‖22 + (g ◦∆u)(t)

)
. (3.5)
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Next, thanks to Hölder and Young inequalities, we have∣∣∣ ∫
Ω

uutdx
∣∣∣ 1
1−α ≤ ‖u‖

1
1−α
2 ‖ut‖

1
1−α
2

≤ C‖u‖
1

1−α
p+1 ‖ut‖

1
1−α
2

≤ C
(
‖u‖sp+1 + ‖ut‖22

)
≤ C

(
‖∆u‖22 + ‖u‖p+1

p+1 + ‖ut‖22
)

≤ C
(
‖∆u‖22 +H(t) + (g ◦∆u)(t) + ‖ut‖22

)
,

(3.6)

where 2 ≤ s = 2
1−2α ≤ p+ 1. Thus, we obtain

L
1

1−α (t) =
(
H1−α(t) + ε

∫
Ω

uutdx
) 1

1−α

≤ 2
1

1−α

(
H(t) +

∣∣ ∫
Ω

uutdx
∣∣ 1
1−α
)

≤ C
(
‖∆u‖22 +H(t) + (g ◦∆u)(t) + ‖ut‖22

)
,

(3.7)

which implies

L′(t) ≥ λL
1

1−α (t),

where λ is a positive constant depending on C and ε. Therefore

L(t) =
(
L

α
α−1 (0) +

α

α− 1
λt
)α−1

α

.

So L(t) approaches infinite as t tends to 1−α
αλL

α
1−α (0)

. And this completes the proof.

3.2. Proof of Theorem 2.8. Let G(t) = E0 +H(t), then we have G′(t) ≥ 0. By
Lemma 2.4 we have

0 < G(t) =
(1

2
− 1
p+ 1

)
B
−2(p+1)
p−1

0 +H(t)

<
(1

2
− 1
p+ 1

)
‖∆u‖22 +H(t)

< C
(
‖∆u‖22 +H(t)

)
.

(3.8)

Now, we set

F (t) = G1−α(t) + ε

∫
Ω

uutdx. (3.9)

Then, similar to (3.2), we have

F ′(t) = (1− α)G−α(t)G′(t) + ε

∫
Ω

|ut|2dx+ ε

∫
Ω

uuttdx

≥ ε
∫

Ω

|ut|2dx+ ε

∫
Ω

uuttdx

≥ εp+ 3
2
‖ut‖22 + ε(p+ 1)H(t) + ε

(p+ 1
2
− δ
)

(g ◦∆u)(t)

+ ε
[p− 1

2
−
(p− 1

2
+

1
4δ

)∫ t

0

g(s)ds
]
‖∆u‖22 ∀δ > 0.

(3.10)
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Next, similar to the proof of Theorem 2.7, we easily deduce that

F ′(t) ≥ λF
1

1−α (t)

which shows that F (t) blows up in time T ∗ ≤ 1−α
αλF

α
1−α (0)

.

3.3. Proof of Theorem 2.9. We first claim that

I(u(t)) < 0, (3.11)

‖u(t, ·)‖22 >
4(p+ 1)C2

∗
(p− 1)− (p+ 1)k

E(0) (3.12)

for every t ∈ [0, T ).
In fact, if (3.11) does not hold, then there exists a time t1 such that

t1 = min{t ∈ (0, T ) : I(u(t)) = 0} > 0. (3.13)

By the continuity of the solution u(x, t) as a function of t, we deduce that I(u(t)) <
0, for all t ∈ [0, t1) and I(u(t1)) = 0. Thus, by Lemma 2.6 we obtain

‖u(t, ·)‖22 > ‖u0‖22 >
4(p+ 1)C2

∗
(p− 1)− (p+ 1)k

E(0), ∀t ∈ [0, t1).

In addition, it is obvious that ‖u(t, ·)‖22 is continuous on [0, t1], which implies that

‖u(t1, ·)‖22 >
4(p+ 1)C2

∗
(p− 1)− (p+ 1)k

E(0). (3.14)

On the other hand, it follows from (2.5), (2.6) and (3.13) that(1− k
2
− 1
p+ 1

)
‖∆u(t1, ·)‖22

<
1
2

(
1−

∫ t1

0

g(s)ds
)
‖∆u(t1, ·)‖22 −

1
p+ 1

‖u(t1, ·)‖p+1
p+1 ≤ E(0).

(3.15)

Thus, by Lemma 2.3 and the hypothesis k < p−1
p+1 , we deduce that

‖u(t1, ·)‖22 ≤
2(p+ 1)C2

∗
(p− 1)− (p+ 1)k

E(0). (3.16)

Obviously, there is a contradiction between (3.14) and (3.16). Thus, we have proved
that (3.11) is true for every t ∈ [0, T ). Furthermore, by Lemma 2.6 we see that
(3.12) is also valid on [0, T ).

Now, we prove that the solution of (1.5) blows up in a finite time. To this end,
we define the following auxiliary function

M(t) = ‖u(t, ·)‖22 +
∫ t

0

‖u(s, ·)‖22ds+ (b− t)‖u0‖22 + a(c+ t)2, (3.17)

where a, b and c are positive constants which will be determined in the sequel.
Direct computation yields

M ′(t) = 2(u(t), ut(t)) + 2
∫ t

0

(u(s), us(s))ds+ 2a(c+ t), (3.18)

M ′′(t) = 2‖ut‖22 + 2(u, utt) + 2(u, ut) + 2a. (3.19)
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By (2.16) and (1.5), we see that

M ′′(t)

≥ 2‖ut‖22 + 2(u, utt) + 2a

= 2‖ut‖22 + 2(u,−∆2u+
∫ t

0

g(t− s)∆2u(s)ds+ |u|p−1u) + 2a

= 2‖ut‖22 + 2‖u‖p+1
p+1 − 2‖∆u‖22 + 2a+ 2

∫ t

0

g(t− s)
∫

Ω

|∆u(t)|2 dx ds

+ 2
∫ t

0

g(t− s)
∫

Ω

∆u(t)(∆u(s)−∆u(t))ds.

(3.20)

Next, by using Young’s inequality to estimate the last term in (3.20), we have∫ t

0

g(t− s)
∫

Ω

∆u(t)(∆u(s)−∆u(t))ds ≤
∫ t

0
g(s)ds
2δ

‖∆u‖22 +
δ

2
(g ◦∆u)(t), (3.21)

for all δ > 0. Now, we pick δ = 2k
(p−1)(1−k) . Since k < p−1

p+1 < p2−1
p2+1 , we have

p+ 1− δ > 0. And we easily obtain

M ′′(t)

≥ (p+ 3)‖ut‖22 +
[
(p− 1)

(
1−

∫ t

0

g(s)ds
)
− 1
δ

∫ t

0

g(s)ds
]
‖∆u‖22

+ (p+ 1− δ)(g ◦∆u)(t)− 2(p+ 1)E(t) + 2a

≥ (p+ 3)‖ut‖22 +
[
(p− 1) (1− k)− k

δ

]
‖∆u‖22 + (p+ 1− δ)(g ◦∆u)(t)

− 2(p+ 1)E(0) + 2(p+ 1)
∫ t

0

‖us(s, ·)‖22ds+ 2a

≥ (p+ 3)‖ut‖22 + 2(p+ 1)
∫ t

0

‖us(s, ·)‖22ds+ 2a

+
(p− 1)(1− k)

2C2
∗

‖u0‖22 − 2(p+ 1)E(0),

(3.22)

where the last inequality follows from Lemma 2.3 and Lemma 2.6. Noting the
condition (2.18) and k < p−1

p+1 , we see that

(p− 1)(1− k)
2C2
∗

‖u0‖22 − 2(p+ 1)E(0) > 0.

Thus, we have M ′′(t) > 0 for every t ∈ (0, T ). Then, by M ′(0) > 0, we see that
M(t) and M ′(t) are strictly increasing on [0, T ).

Next, we select the positive constants a, b and c such that

(p+ 1)a <
(p− 1)(1− k)

2C2
∗

‖u0‖22 − 2(p+ 1)E(0),

b ≥ p− 1
4

M(0)
M ′(0)

,

p− 1
2

(∫
Ω

u0u1dx+ ac
)
≥ ‖u0‖22.
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In addition, we denote

P := ‖u(t, ·)‖22 +
∫ t

0

‖u(s, ·)‖22ds+ a(c+ t)2,

Q :=
M ′(t)

2
, R := ‖ut(t, ·)‖22 +

∫ t

0

‖us(s, ·)‖22ds+ a.

Thus, we have M(t) ≥ P and M ′′(t) ≥ (p+ 3)R for every t ∈ [0, b). It follows that

M ′′(t)M ′(t)− p+ 3
4

(M ′(t))2 ≥ (p+ 3)(PR−Q2) ≥ 0, (3.23)

where the last inequality comes from Pθ2 − 2Qθ +R ≥ 0 for every θ ∈ R.
Now, we pick β = p−1

4 > 0. Direct computation yields

(M−β)′ = −βM−β−1M ′(t) < 0,

(M−β)′′ = −βM−β−2
(
M ′′(t)M ′(t)− p+ 3

4
(M ′(t))2

)
< 0.

This means that M−β is concave. Noting that M(0) > 0, we see that the function
M−β → 0 as t → T ∗− and T ∗ < (p−1)M(0)

4M ′(0) . Therefore, there exists a finite time
T ∗ > 0 such that

lim
t→T∗−

‖u(t, ·)‖22 →∞.

Thus, the proof of Theorem 2.9 is complete.

Remark 3.1. A comparison of Theorems 2.7, 2.8 and 2.9 indicates that we must
reduce the effect of viscoelastic damping, or increase the source, or both of them to
ensure that the solution of the concerned system blows up in finite time when the
initial energy state transitions from low to high.
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