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FIRST-ORDER PRODUCT-TYPE SYSTEMS OF DIFFERENCE
EQUATIONS SOLVABLE IN CLOSED FORM

STEVO STEVIĆ

Abstract. We show that the first-order system of difference equations

zn+1 = αza
nw

b
n, wn+1 = βzc

nw
d
n, n ∈ N0,

where a, b, c, d ∈ Z, α, β ∈ C \ {0}, z0, w0 ∈ C \ {0}, is solvable in closed form,

by finding closed form formulas of its solutions.

1. Introduction

The study of nonlinear difference equations and systems is of a great recent
interest (see, for example, [1]-[6], [8], [10]-[23]). The classical area of solving dif-
ference equations and systems has re-attracted a quite recent attention (see, for
example, [1]-[3], [6], [12], [18]-[21], [23] and the related references therein). Our
recent idea of transforming some complicated difference equations and systems into
simpler solvable ones, used for the first time in explaining the solvability of the
equation appearing in [6], has been employed recently in several papers (see, for
example, [1, 3, 12, 18, 21, 23] and the references therein). Another area of some
recent interest, essentially initiated by Papaschinopoulos and Schinas, is studying
symmetric and close to symmetric systems of difference equations (see, for example,
[3, 5, 10, 11, 15, 16], [19]-[23]). Our important observation in some of above quoted
papers on solvability of difference equations was that suitable changes of variables
transform relatively complicated equations considered therein into special cases of
the linear first-order difference equation

xn = anxn−1 + bn, n ∈ N, (1.1)

which is a basic solvable difference equation (for a nice presentation of some methods
for solving equation (1.1) and some related ones see, for example, monograph [9]).
This was also essentially the case with some of the equations in [1, 12, 18]. Actually,
in this or that way, many equations and systems are related to equation (1.1) or to
the corresponding difference inequalities or to the corresponding system of linear
difference equations (for example, some of the equations, inequalities and systems
in [3]-[5], [8, 9, 21, 23] are of this type). For some results on general theory of
difference equations and systems or on some other types of results on various classes
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of difference equations and systems see, for example, [4, 5], [7]-[9], [13, 14], and the
references therein.

On the other hand, the present author also essentially triggered a systematic
study of non-rational concrete difference equations and systems, from one side those
obtained by the scalar translation operator (see, for example, [17] and the references
therein) and from the other side those obtained by using some max-type operators
(see, for example, [22]). It can be noticed that behavior of only positive solutions of
the difference equations and systems in [17, 22], are investigated. As we have men-
tioned in [20], in [22] was studied the boundedness character of positive solutions
to the system

xn+1 = max
{
a,

ypn
xqn−1

}
, yn+1 = max

{
a,

xpn
yqn−1

}
, n ∈ N0,

with min{a, p, q} > 0, which is obtained from the product-type one

xn+1 =
ypn
xqn−1

, yn+1 =
xpn
yqn−1

, n ∈ N0, (1.2)

by acting with a max-type operator onto the right-hand sides of both equations in
(1.2) ([17] deals with a related scalar equation). If initial values of system (1.2) are
positive, then it can be solved by taking the logarithm to the both sides of both
equations (this transforms the system to a solvable linear second-order system of
difference equations, whose general theory can be found in [7]). However, the
method is not possible if initial values are not positive, due to the fact that the
logarithm of a complex number is not uniquely defined. Another reason for a
detailed study of product-type difference equations and systems is found in the fact
that behavior of their solutions are not so rarely related to the ones of the equations
and systems obtained from them by acting with the translation, max-type or some
other natural operators.

These observations lead us to the investigation of some product-type difference
equations and systems with real and/or complex initial values. Namely, in [19]
and [20], the present author and his collaborators started studying such systems
by modifying methods and ideas from above mentioned papers, not only those on
solving difference equations and systems, but also using some ideas on non-rational
difference equations and systems appearing, for example, in [17] and [22].

In this article we continue our investigation of solvability of nonlinear difference
equations and systems by studying the solvability of the following product-type
system of difference equations

zn+1 = αzanw
b
n, wn+1 = βzcnw

d
n, n ∈ N0, (1.3)

where a, b, c, d ∈ Z, α, β ∈ C and initial values z0, w0 ∈ C.
The reason why the parameters a, b, c and d are chosen to be integers is that

solutions to system (1.3) are uniquely defined.
Note that if any of numbers a, b, c, d is a negative integer then the domain of

undefinable solutions to system (1.3) is a subset of the set

U = {(z0, w0) ∈ C2 : z0 = 0 or w0 = 0}.

Otherwise, if additionally α, β ∈ C \ {0}, system (1.3) is defined on the whole
complex space C2. Hence, from now on we will assume that our initial values
belong to the set C2 \ U .
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Throughout the paper we use the following standard convention
∑k−1
j=k aj = 0,

if k ∈ Z.

2. Main result

In this section we formulate and prove the main results of this paper. Before
this we quote two lemmas which will be frequently used in the rest of the paper.
The following lemma was essentially proved in [20], so we will omit its proof.

Lemma 2.1. Let η ∈ C \ {0}, f ∈ Z \ {0} and u0 ∈ C \ {0}. Then the difference
equation

un = ufn−1η, n ∈ N, (2.1)
is solvable and

un = uf
n

0 η
Pn−1
j=0 f

j

, n ∈ N0. (2.2)

Remark 2.2. Note that if η = 0, then from (2.1) we have that un = 0, n ∈ N,
while if f = 0 then un = η, n ∈ N. If u0 = 0, then un = 0, n ∈ N, if f ∈ N, while
if f < 0 then such a solution is not defined.

The following elementary lemma is well-know (see, e.g., [9]).

Lemma 2.3. Let Sk(z) = 1 + 2z + 3z2 + · · ·+ kzk−1. Then

Sk(z) =
1− (k + 1)zk + kzk+1

(1− z)2
,

for z ∈ C \ {1}.

Now, first note that if α = 0, then from the first equation in (1.3) we have zn = 0,
n ∈ N, from which along with the second equation in (1.3) it follows that wn = 0
for n ≥ 2, if c > 0, while if c = 0 we have

wn = wdn−1β, n ∈ N,

so by Lemma 2.1, if β 6= 0 and w0 6= 0, we have

wn = wd
n

0 β
1−dn
1−d ,

if d 6= 1, and
wn = w0β

n, n ∈ N0,

if d = 1.
Similarly, if β = 0, then from the second equation in (1.3) we have wn = 0,

n ∈ N, from which along with the first equation in (1.3) it follows that zn = 0 for
n ≥ 2, if b > 0, while if b = 0 we have

zn = zan−1α, n ∈ N,

so by Lemma 2.1, if α 6= 0 6= z0 we have that

zn = za
n

0 α
1−an
1−a ,

if a 6= 1, and
zn = z0α

n, n ∈ N0,

if a = 1. Hence, from now on we may also assume that α 6= 0 6= β.
Our first result deals with the case when all the parameters a, b, c and d are

integers different from zero.
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Theorem 2.4. Assume that a, b, c, d ∈ Z\{0}, α, β ∈ C\{0}, and z0, w0 ∈ C\{0}.
Then system (1.3) is solvable in closed form.

Proof. First note that the assumption α, β, z0, w0 ∈ C \ {0} along with a simple
inductive argument shows that all such solutions are well-defined.

From the first equation in (1.3), we have that for every well-defined solution of
the system

wbn = α−1zn+1z
−a
n , n ∈ N0. (2.3)

Taking the second equation in (1.3) to the power b (the condition b 6= 0 is essential
here), we obtain

wbn+1 = βbzbcn w
bd
n , n ∈ N0. (2.4)

Employing equality (2.3) into (2.4), we obtain

α−1zn+2z
−a
n+1 = βbzbcn α

−dzdn+1z
−ad
n , n ∈ N0,

from which it follows that

zn+2 = za+d
n+1z

bc−ad
n α1−dβb, n ∈ N0. (2.5)

Note also that
z0 ∈ C \ {0}, z1 = za0w

b
0α. (2.6)

Let γ = α1−dβb and

a1 = a+ d, b1 = bc− ad, c1 = 1. (2.7)

Then equation (2.5) can be written in the following form

zn = za1
n−1z

b1
n−2γ

c1 , n ≥ 2. (2.8)

By using the equality
zn−1 = za1

n−2z
b1
n−3γ

c1 , n ≥ 3,
in (2.8), it follows that

zn = (za1
n−2z

b1
n−3γ

c1)a1zb1n−2γ
c1

= za1a1+b1
n−2 za1b1

n−3γ
a1c1+c1

= za2
n−2z

b2
n−3γ

c2 ,

(2.9)

for n ≥ 3, where

a2 := a1a1 + b1, b2 := a1b1, c2 := a1c1 + c1. (2.10)

If we use the equality

zn−2 = za1
n−3z

b1
n−4γ

c1 , n ≥ 4,

in (2.9), we obtain

zn = (za1
n−3z

b1
n−4γ

c1)a2zb2n−3γ
c2 = za1a2+b2

n−3 zb1a2
n−4γ

c1a2+c2 = za3
n−3z

b3
n−4γ

c3 , (2.11)

for n ≥ 4, where

a3 := a1a2 + b2, b3 := b1a2, c3 := c1a2 + c2. (2.12)

Now, assume that the following equality was proven,

zn = zakn−kz
bk
n−k−1γ

ck , (2.13)

for some k ∈ N such that n ≥ k + 1, and that

ak = a1ak−1 + bk−1, bk = b1ak−1, ck = c1ak−1 + ck−1. (2.14)
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Then, employing the equality

zn−k = za1
n−k−1z

b1
n−k−2γ

c1 ,

for n ≥ k + 2, into (2.13) we obtain

zn = (za1
n−k−1z

b1
n−k−2γ

c1)akzbkn−k−1γ
ck

= za1ak+bk
n−k−1 zb1akn−k−2γ

c1ak+ck

= z
ak+1
n−k−1z

bk+1
n−k−2γ

ck+1 ,

(2.15)

for n ≥ k + 2, where

ak+1 := a1ak + bk, bk+1 := b1ak, ck+1 := c1ak + ck. (2.16)

From (2.9), (2.10), (2.15), (2.16) and by using the method of induction it follows
that (2.13) and (2.14) hold for all natural numbers k and n such that 2 ≤ k ≤ n−1.

Plugging k = n− 1 into (2.13), we obtain

zn = z
an−1
1 z

bn−1
0 γcn−1 (2.17)

=
(
za0w

b
0α
)an−1

z
bn−1
0 γcn−1

= z
aan−1+bn−1
0 w

ban−1
0 αan−1γcn−1

= z
aan−1+bn−1
0 w

ban−1
0 αan−1+(1−d)cn−1βbcn−1 , n ∈ N0. (2.18)

From the first two equations in (2.14) we see that

ak = a1ak−1 + b1ak−2, k ≥ 3,

which by (2.7) can be rewritten as

ak+2 − (a+ d)ak+1 + (ad− bc)ak = 0, k ∈ N. (2.19)

Case ad 6= bc. To calculate ak more easily in this case, note that from the first two
relations in (2.16) with k = 0, we have

a1 = a1a0 + b0, b1 = b1a0,

from which along with the assumption b1 = bc− ad 6= 0, it follows that

a0 = 1, b0 = 0. (2.20)

The characteristic polynomial associated to equation (2.19) is

P (λ) = λ2 − (a+ d)λ+ ad− bc,

from which it follows that the characteristic values are

λ1,2 =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
,

which implies that
ak = ĉ1λ

k
1 + ĉ2λ

k
2 , k ∈ N0,

for some constants ĉ1 and ĉ2, if ∆ := (a+ d)2 − 4(ad− bc) 6= 0, while

ak = (ĉ3 + kĉ4)λk1 , k ∈ N0,

for some constants ĉ3 and ĉ4, if ∆ = 0 (in this case λ1 = λ2 = (a+ d)/2).
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Using the initial conditions a0 = 1 and a1 = a+ d, after some calculations, it is
not difficult to see that

ak =
λk+1

1 − λk+1
2

λ1 − λ2
, k ∈ N0, (2.21)

when ∆ 6= 0, while
ak = (k + 1)λk1 , k ∈ N0, (2.22)

when ∆ = 0.
From (2.21), (2.22) and the second equation in (2.14), we have

bk = (bc− ad)
λk1 − λk2
λ1 − λ2

, k ∈ N0, (2.23)

when ∆ 6= 0, while
bk = (bc− ad)kλk−1

1 , k ∈ N0, (2.24)

when ∆ = 0.
From the third equation in (2.14) and since c1 = 1, we obtain

ck = ck−1 + ak−1, k ≥ 2,

from which it follows that

ck = 1 +
k−1∑
j=1

aj , k ≥ 2. (2.25)

Using (2.21) in (2.25) we have

ck =
(λ2 − 1)(λk+1

1 − 1)− (λ1 − 1)(λk+1
2 − 1)

(λ1 − λ2)(λ1 − 1)(λ2 − 1)
, k ∈ N, (2.26)

if ∆ 6= 0, while by Lemma 2.1

ck =
1− (k + 1)λk1 + kλk+1

1

(1− λ1)2
, k ∈ N, (2.27)

if ∆ = 0.
Hence, if ∆ 6= 0 using (2.21), (2.23) and (2.26) in (2.18), we obtain

zn = z
a
λn1−λ

n
2

λ1−λ2
+(bc−ad)

λ
n−1
1 −λn−1

2
λ1−λ2

0 w
b
λn1−λ

n
2

λ1−λ2
0

× α
λn1−λ

n
2

λ1−λ2
+(1−d)

(
(λ2−1)(λn1−1)−(λ1−1)(λn2−1)

(λ1−λ2)(λ1−1)(λ2−1)

)
× βb

(λ2−1)(λn1−1)−(λ1−1)(λn2−1)
(λ1−λ2)(λ1−1)(λ2−1) ,

(2.28)

for n ∈ N0, while if ∆ = 0 using (2.22), (2.24) and (2.27) in (2.18), we obtain

zn = z
anλn−1

1 +(bc−ad)(n−1)λn−2
1

0 w
bnλn−1

1
0

× αnλ
n−1
1 +(1−d)

1−nλn−1
1 +(n−1)λn1
(1−λ1)2 β

b
1−nλn−1

1 +(n−1)λn1
(1−λ1)2 ,

(2.29)

for n ∈ N0.
On the other hand, from the second equation in (1.3), we have that for every

well-defined solution of the system

zcn = β−1w−dn wn+1, n ∈ N0. (2.30)
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Taking the first equation in (1.3) to the c th power (the condition c 6= 0 is essential
here), we obtain

zcn+1 = zacn w
bc
n α

c, n ∈ N0. (2.31)
Employing (2.30) in (2.31), we obtain

β−1w−dn+1wn+2 = β−aw−adn wan+1w
bc
n α

c, n ∈ N0,

which can be written as

wn+2 = wa+d
n+1w

bc−ad
n β1−aαc, n ∈ N0. (2.32)

Let δ = β1−aαc and a1, b1 and c1 are given by (2.7). Then (2.32) can be written as

wn+2 = wa1
n+1w

b1
n δ

c1 , n ∈ N0. (2.33)

Note also that
w0 ∈ C \ {0}, w1 = zc0w

d
0β. (2.34)

Since (2.33) has the same form as equation (2.8), where only γ is replaced by
δ, we have that the recurrent relations in (2.14) hold, and consequently formulas
(2.21)-(2.24), (2.26) and (2.27). Also we have that (2.17) holds with γ replaced by
δ, and z replaced by w. From this, by using (2.34) and the definition of δ, we have

wn = w
an−1
1 w

bn−1
0 δcn−1

= (zc0w
d
0β)an−1w

bn−1
0 δcn−1

= z
can−1
0 w

dan−1+bn−1
0 βan−1+(1−a)cn−1αccn−1 , n ∈ N0.

(2.35)

Thus, if ∆ 6= 0 using (2.21), (2.23) and (2.26) in (2.35), we obtain

wn = z
c
λn1−λ

n
2

λ1−λ2
0 w

d
λn1−λ

n
2

λ1−λ2
+(bc−ad)

λ
n−1
1 −λn−1

2
λ1−λ2

0

× β
λn1−λ

n
2

λ1−λ2
+(1−a)

(λ2−1)(λn1−1)−(λ1−1)(λn2−1)
(λ1−λ2)(λ1−1)(λ2−1)

× αc
(λ2−1)(λn1−1)−(λ1−1)(λn2−1)

(λ1−λ2)(λ1−1)(λ2−1) ,

(2.36)

for n ∈ N0, while if ∆ = 0 using (2.22), (2.24) and (2.27) in (2.35), we obtain

wn = z
cnλn−1

1
0 w

dnλn−1
1 +(bc−ad)(n−1)λn−2

1
0

× βnλ
n−1
1 +(1−a)

1−nλn−1
1 +(n−1)λn1
(1−λ1)2 α

c
1−nλn−1

1 +(n−1)λn1
(1−λ1)2 ,

(2.37)

for n ∈ N0.
Case ad = bc. Since b 6= 0 6= c, we see that (2.5) and (2.32) hold, from which along
with the assumption we have that

zn+1 = za+d
n α1−dβb = za1

n γ, (2.38)

wn+1 = wa+d
n β1−aαc = wa1

n δ, (2.39)

for n ∈ N. By Lemma 2.1 we have

zn = z
an−1
1

1 γ
Pn−2
j=0 a

j
1 = (αza0w

b
0)a

n−1
1 γ

Pn−2
j=0 a

j
1 , (2.40)

for n ∈ N. Hence, if a1 6= 1, then from (2.40) we obtain

zn = (αza0w
b
0)a

n−1
1 γ

1−an−1
1

1−a1

= z
a(a+d)n−1

0 w
b(a+d)n−1

0 α
1−d−a(a+d)n−1

1−a−d βb
1−(a+d)n−1

1−a−d , (2.41)
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for n ∈ N, while if a1 = 1, from (2.40) we obtain

zn = αza0w
b
0γ
n−1 = za0w

b
0α

(1−d)n+dβb(n−1), (2.42)

for n ∈ N.
On the other hand, from (2.39) and by using Lemma 2.1, we obtain

wn = w
an−1
1

1 δ
Pn−2
j=0 a

j
1 = (βzc0w

d
0)a

n−1
1 δ

Pn−2
j=0 a

j
1 , (2.43)

for n ∈ N. Hence, if a1 6= 1, then from (2.43) we obtain

wn = (βzc0w
d
0)a

n−1
1 δ

1−an−1
1

1−a1

= z
c(a+d)n−1

0 w
d(a+d)n−1

0 αc
1−(a+d)n−1

1−a−d β
1−a−d(a+d)n−1

1−a−d , (2.44)

for n ∈ N, while if a1 = 1, from (2.43) we obtain

wn = βzc0w
d
0δ
n−1 = zc0w

d
0α

c(n−1)β(1−a)n+a, (2.45)

for n ∈ N.
It is easy to see that formulas (2.28) and (2.36) in the case ad 6= bc and ∆ 6= 0,

(2.29) and (2.37) in the case ad 6= bc and ∆ = 0, (2.41) and (2.44) in the case
ad = bc and a + d 6= 1, and (2.42) and (2.45) in the case ad = bc and a + d = 1,
annihilate system (1.3). So, they are solutions to the system, and it is solvable
indeed, as claimed. �

Remark 2.5. In the case ad 6= bc, this condition enables to prolong solutions to
system (2.14) for every non-positive integer k. For example, using (2.20) in the
third equation in (2.14) it is obtained c0 = 0. From this along with (2.20) and
(2.14) with k = 0 it is further easily obtained a−1 = 0 = c−1 and b−1 = 1. This
fact, among others, shows that equalities (2.18) and (2.35) really hold for every
n ∈ N0.

The following corollary is a consequence of Theorem 2.4.

Corollary 2.6. Consider system (1.3) with a, b, c, d ∈ Z \ {0} and α, β ∈ C \ {0}.
Assume that z0, w0 ∈ C \ {0}. Then the following statements are true.

(a) If ad 6= bc and ∆ 6= 0, then the general solution to system (1.3) is given by
(2.28) and (2.36).

(b) If ad 6= bc and ∆ = 0, then the general solution to system (1.3) is given by
(2.29) and (2.37).

(c) If ad = bc and a+ d 6= 1, then the general solution to system (1.3) is given
by (2.41) and (2.44).

(d) If ad = bc and a+ d = 1, then the general solution to system (1.3) is given
by (2.42) and (2.45).

Now we consider the cases when some of the coefficients a, b, c, d are equal to
zero.
Case a = 0. Since a = 0, then the first equation in (1.3) becomes

zn+1 = αwbn, n ∈ N0. (2.46)

By substituting (2.46) into the second equation in (1.3), we obtain

wn+1 = αcβwdnw
bc
n−1, n ∈ N. (2.47)
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Equation (2.47) is nothing but equation (2.33) with a = 0. Hence, we can apply
formulas for wn obtained in the proof of Theorem 2.4 along with (2.46) and get the
following result.

Theorem 2.7. Consider system (1.3) with b, c, d ∈ Z, a = 0 and α, β ∈ C \ {0}.
Assume that z0, w0 ∈ C \ {0}. Then the following statements are true.

(a) If bc 6= 0 and ∆ 6= 0, then the general solution to system (1.3) is

zn = z
bc
λ
n−1
1 −λn−1

2
λ1−λ2

0 w
bd
λ
n−1
1 −λn−1

2
λ1−λ2

+b2c
λ
n−2
1 −λn−2

2
λ1−λ2

0

× βb
λ
n−1
1 −λn−1

2
λ1−λ2

+b
(λ2−1)(λn−1

1 −1)−(λ1−1)(λn−1
2 −1)

(λ1−λ2)(λ1−1)(λ2−1)

× α1+bc
(λ2−1)(λn−1

1 −1)−(λ1−1)(λn−1
2 −1)

(λ1−λ2)(λ1−1)(λ2−1) ,

wn = z
c
λn1−λ

n
2

λ1−λ2
0 w

d
λn1−λ

n
2

λ1−λ2
+bc

λ
n−1
1 −λn−1

2
λ1−λ2

0 β
λn1−λ

n
2

λ1−λ2
+

(λ2−1)(λn1−1)−(λ1−1)(λn2−1)
(λ1−λ2)(λ1−1)(λ2−1)

× αc
(λ2−1)(λn1−1)−(λ1−1)(λn2−1)

(λ1−λ2)(λ1−1)(λ2−1) ,

for n ∈ N, where

λ1,2 =
d±
√
d2 + 4bc
2

.

(b) If bc 6= 0 and ∆ = 0, then the general solution to system (1.3) is

zn = z
bc(n−1)λn−2

1
0 w

bd(n−1)λn−2
1 +b2c(n−2)λn−3

1
0

× βb(n−1)λn−2
1 +b

1−(n−1)λn−2
1 +(n−2)λn−1

1
(1−λ1)2 α

1+bc
1−(n−1)λn−2

1 +(n−2)λn−1
1

(1−λ1)2 ,

wn = z
cnλn−1

1
0 w

dnλn−1
1 +bc(n−1)λn−2

1
0

× βnλ
n−1
1 +

1−nλn−1
1 +(n−1)λn1
(1−λ1)2 α

c
1−nλn−1

1 +(n−1)λn1
(1−λ1)2 ,

for n ∈ N, where λ1 = d/2.
(c) If bc = 0 and d 6= 1, then the general solution to system (1.3) is

zn = wbd
n−1

0 αβb
1−dn−1

1−d

wn = zcd
n−1

0 wd
n

0 αc
1−dn−1

1−d β
1−dn
1−d ,

for n ∈ N.
(d) If bc = 0 and d = 1, then the general solution to system (1.3) is

zn = wb0αβ
b(n−1)

wn = zc0w0α
c(n−1)βn,

for n ∈ N.

Case b = 0. Since b = 0, then the first equation in (1.3) becomes

zn+1 = αzan, n ∈ N0. (2.48)

By using Lemma 2.1 see that

zn = za
n

0 α
Pn−1
j=0 a

j

, n ∈ N0. (2.49)
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From (2.49) we have that

zn = za
n

0 α
1−an
1−a , n ∈ N0, (2.50)

when a 6= 1, while
zn = z0α

n, n ∈ N0, (2.51)
when a = 1.

Hence, if a 6= 1, substituting (2.50) into the second equation in (1.3), we obtain

wn = wdn−1βz
can−1

0 αc
1−an−1

1−a , n ∈ N. (2.52)

By repeating use of (2.52) we obtain that for n ≥ 3,

wn =
(
wdn−2βz

can−2

0 αc
1−an−2

1−a

)d
βzca

n−1

0 αc
1−an−1

1−a

= wd
2

n−2β
1+dzca

n−1+cdan−2

0 αc
1−an−1

1−a +cd 1−an−2
1−a

=
(
wdn−3βz

can−3

0 αc
1−an−3

1−a

)d2
β1+dzca

n−1+cdan−2

0 αc
1−an−1

1−a +cd 1−an−2
1−a

= wd
3

n−3β
1+d+d2zca

n−1+cdan−2+cd2an−3

0 αc
1−an−1

1−a +cd 1−an−2
1−a +cd2 1−an−3

1−a .

(2.53)

An inductive argument shows that

wn = wd
n

0 β
Pn−1
j=0 d

j

z
c

Pn−1
j=0 a

n−1−jdj

0 αc
Pn−1
j=0

1−an−1−j
1−a dj , n ∈ N. (2.54)

Hence, from (2.54) we obtain

wn = wd
n

0 β
1−dn
1−d z

c a
n−dn
a−d

0 αc
(

1−dn
(1−a)(1−d)−

an−dn
(1−a)(a−d)

)
, n ∈ N0, (2.55)

if d 6= 1 and a 6= d,

wn = wd
n

0 β
1−dn
1−d zcnd

n−1

0 α
c
(

1−dn

(1−d)2
−ndn−1

1−d

)
, n ∈ N0, (2.56)

if d 6= 1 and a = d, and

wn = w0β
nz
c 1−an

1−a
0 α

c
(

n
1−a−

1−an

(1−a)2

)
, n ∈ N0, (2.57)

if d = 1 and a 6= 1.
If a = 1, substituting (2.51) into the second equation in (1.3), we obtain

wn = wdn−1βz
c
0α

c(n−1), n ∈ N. (2.58)

By repeated use of (2.58) we obtain

wn =
(
wdn−2βz

c
0α

c(n−2)
)d
βzc0α

c(n−1)

= wd
2

n−2β
1+dzc+cd0 αc(n−1)+cd(n−2)

=
(
wdn−3βz

c
0α

c(n−3)
)d2

β1+dzc+cd0 αc(n−1)+cd(n−2)

= wd
3

n−3β
1+d+d2zc+cd+cd2

0 αc(n−1)+cd(n−2)+cd2(n−3), n ≥ 3.

(2.59)

An inductive argument shows that

wn = wd
n

0 β
Pn−1
j=0 d

j

z
c

Pn−1
j=0 d

j

0 αc
Pn−1
j=0 d

j(n−1−j), (2.60)

for n ∈ N. Hence, from (2.60) and by using Lemma 2.3, we obtain

wn = wd
n

0 β
1−dn
1−d z

c 1−dn
1−d

0 α
c
(

(n−1) 1−dn
1−d −d

1−ndn−1+(n−1)dn

(1−d)2

)
, n ∈ N0, (2.61)
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if d 6= 1, and
wn = w0β

nzcn0 αc
n(n−1)

2 , n ∈ N0, (2.62)
if d = 1. From the above considerations we see that the following result holds.

Theorem 2.8. Consider system (1.3) with a, c, d ∈ Z, b = 0 and α, β ∈ C \ {0}.
Assume that z0, w0 ∈ C \ {0}. Then the following statements are true.

(a) If a 6= 1, d 6= 1 and a 6= d, then the general solution to system (1.3) is given
by (2.50) and (2.55).

(b) If a 6= 1, d 6= 1 and a = d, then the general solution to system (1.3) is given
by (2.50) and (2.56).

(c) If a 6= 1 and d = 1, then the general solution to system (1.3) is given by
(2.50) and (2.57).

(d) If a = 1 and d 6= 1, then the general solution to system (1.3) is given by
(2.51) and (2.61).

(e) If a = d = 1, then the general solution to system (1.3) is given by (2.51)
and (2.62).

Case c = 0. Since c = 0, then the second equation in (1.3) becomes

wn+1 = βwdn, n ∈ N0. (2.63)

By using Lemma 2.1 in (2.63) we obtain

wn = wd
n

0 β
Pn−1
j=0 d

j

, n ∈ N0. (2.64)

Then we have
wn = wd

n

0 β
1−dn
1−d , n ∈ N0, (2.65)

when d 6= 1, while
wn = w0β

n, n ∈ N0, (2.66)
when d = 1. Hence, if d 6= 1, substituting (2.65) into the first equation in (1.3), we
obtain

zn = zan−1αw
bdn−1

0 βb
1−dn−1

1−d , n ∈ N. (2.67)
By repeated use of (2.67) we have that for n ≥ 3,

zn =
(
zan−2αw

bdn−2

0 βb
1−dn−2

1−d

)a
αwbd

n−1

0 βb
1−dn−1

1−d

= za
2

n−2α
1+awbd

n−1+badn−2

0 βb
1−dn−1

1−d +ba 1−dn−2
1−d

=
(
zan−3αw

bdn−3

0 βb
1−dn−3

1−d

)a2

α1+awbd
n−1+badn−2

0 βb
1−dn−1

1−d +ba 1−dn−2
1−d

= za
3

n−3α
1+a+a2

wbd
n−1+badn−2+ba2dn−3

0 βb
1−dn−1

1−d +ba 1−dn−2
1−d +ba2 1−dn−3

1−a .

(2.68)

An inductive argument shows that

zn = za
n

0 α
Pn−1
j=0 a

j

w
b

Pn−1
j=0 d

n−1−jaj

0 βb
Pn−1
j=0

1−dn−1−j
1−d aj , (2.69)

for n ∈ N. Hence, from (2.69) we obtain

zn = za
n

0 α
1−an
1−a w

b a
n−dn
a−d

0 βb
(

1−an
(1−a)(1−d)−

an−dn
(1−d)(a−d)

)
, n ∈ N0, (2.70)

if a 6= 1 and a 6= d,

zn = zd
n

0 α
1−dn
1−d wbnd

n−1

0 β
b
(

1−dn

(1−d)2
−ndn−1

1−d

)
, n ∈ N0, (2.71)



12 S. STEVIĆ EJDE-2015/308

if a 6= 1 and a = d, and

zn = z0α
nw

b 1−dn
1−d

0 β
b
(

n
1−d−

1−dn

(1−d)2

)
, n ∈ N0, (2.72)

if a = 1 and d 6= 1.
If d = 1, substituting (2.66) into the first equation in (1.3), we obtain

zn = zan−1αw
b
0β

b(n−1), n ∈ N. (2.73)

By repeated use of (2.73) we obtain

zn =
(
zan−2αw

b
0β

b(n−2)
)a
αwb0β

b(n−1)

= za
2

n−2α
1+awb+ba0 βb(n−1)+ba(n−2)

=
(
zan−3αw

b
0β

b(n−3)
)a2

α1+awb+ba0 βb(n−1)+ba(n−2)

= za
3

n−3α
1+a+a2

wb+ba+ba2

0 βb(n−1)+ba(n−2)+ba2(n−3),

(2.74)

for n ≥ 3. An inductive argument shows that

zn = za
n

0 α
Pn−1
j=0 a

j

w
b

Pn−1
j=0 a

j

0 βb
Pn−1
j=0 a

j(n−1−j), (2.75)

for n ∈ N. Hence, from (2.75) we obtain

zn = za
n

0 α
1−an
1−a w

b 1−an
1−a

0 β
b
(

(n−1) 1−an
1−a −a

1−nan−1+(n−1)an

(1−a)2

)
, n ∈ N0, (2.76)

if a 6= 1, and
zn = z0α

nwbn0 βb
n(n−1)

2 , n ∈ N0, (2.77)
if a = 1. From the above considerations we see that the following result holds.

Theorem 2.9. Consider system (1.3) with a, b, d ∈ Z, c = 0 and α, β ∈ C \ {0}.
Assume that z0, w0 ∈ C \ {0}. Then the following statements are true.

(a) If d 6= 1, a 6= 1 and a 6= d, then the general solution to system (1.3) is given
by (2.65) and (2.70).

(b) If d 6= 1, a 6= 1 and a = d, then the general solution to system (1.3) is given
by (2.65) and (2.71).

(c) If d 6= 1 and a = 1, then the general solution to system (1.3) is given by
(2.65) and (2.72).

(d) If d = 1 and a 6= 1, then the general solution to system (1.3) is given by
(2.66) and (2.76).

(e) If a = d = 1, then the general solution to system (1.3) is given by (2.66)
and (2.77).

Case d = 0. Since d = 0, then the second equation in (1.3) becomes

wn+1 = βzcn, n ∈ N0. (2.78)

By substituting (2.78) into the first equation in (1.3), we obtain

zn+1 = αβbzanz
bc
n−1, n ∈ N. (2.79)

This equation is nothing but (2.5) with d = 0. Hence, we can use the formulas for
zn obtained in the proof of Theorem 2.4 along with (2.78) and get the following
result.

Theorem 2.10. Consider system (1.3) with a, b, c ∈ Z, d = 0 and α, β ∈ C \ {0}.
Assume that z0, w0 ∈ C \ {0}. Then the following statements are true.
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(a) If bc 6= 0 and ∆ 6= 0, then the general solution to system (1.3) is

zn = z
a
λn1−λ

n
2

λ1−λ2
+bc

λ
n−1
1 −λn−1

2
λ1−λ2

0 w
b
λn1−λ

n
2

λ1−λ2
0 α

λn1−λ
n
2

λ1−λ2
+

(λ2−1)(λn1−1)−(λ1−1)(λn2−1)
(λ1−λ2)(λ1−1)(λ2−1)

× βb
(λ2−1)(λn1−1)−(λ1−1)(λn2−1)

(λ1−λ2)(λ1−1)(λ2−1) ,

wn = z
ac
λ
n−1
1 −λn−1

2
λ1−λ2

+bc2
λ
n−2
1 −λn−2

2
λ1−λ2

0 w
bc
λ
n−1
1 −λn−1

2
λ1−λ2

0

× αc
λ
n−1
1 −λn−1

2
λ1−λ2

+c
(λ2−1)(λn−1

1 −1)−(λ1−1)(λn−1
2 −1)

(λ1−λ2)(λ1−1)(λ2−1)

× β1+cb
(λ2−1)(λn−1

1 −1)−(λ1−1)(λn−1
2 −1)

(λ1−λ2)(λ1−1)(λ2−1) ,

for n ∈ N, where

λ1,2 =
a+
√
a2 + 4bc
2

.

(b) If bc 6= 0 and ∆ = 0, then the general solution to system (1.3) is

zn = z
anλn−1

1 +bc(n−1)λn−2
1

0 w
bnλn−1

1
0 α

nλn−1
1 +

1−nλn−1
1 +(n−1)λn1
(1−λ1)2 β

b
1−nλn−1

1 +(n−1)λn1
(1−λ1)2

wn = z
ac(n−1)λn−2

1 +bc2(n−2)λn−3
1

0 w
bc(n−1)λn−2

1
0

× αc(n−1)λn−2
1 +c

1−(n−1)λn−2
1 +(n−2)λn−1

1
(1−λ1)2 β

1+bc
1−(n−1)λn−2

1 +(n−2)λn−1
1

(1−λ1)2

for n ∈ N, where λ1 = a/2.
(c) If bc = 0 and a 6= 1, then the general solution to system (1.3) is

zn = za
n

0 wba
n−1

0 α
1−an
1−a βb

1−an−1
1−a

wn = zca
n−1

0 αc
1−an−1

1−a β,

for n ∈ N.
(d) If bc = 0 and a = 1, then the general solution to system (1.3) is

zn = z0w
b
0α

nβb(n−1)

wn = zc0α
c(n−1)β,

for n ∈ N.

Remark 2.11. The formulaes obtained in this article can be used in describing the
long-term behavior of solutions to system (1.3) in many cases. The formulations
and proofs of the results we leave to the reader as some exercises.
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[3] L. Berg, S. Stević; On some systems of difference equations, Appl. Math. Comput. 218 (2011),

1713-1718.
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