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QUENCHING BEHAVIOR OF SEMILINEAR HEAT EQUATIONS
WITH SINGULAR BOUNDARY CONDITIONS

BURHAN SELCUK, NURI OZALP

Abstract. In this article, we study the quenching behavior of solution to the

semilinear heat equation
vt = vxx + f(v),

with f(v) = −v−r or (1− v)−r and

vx(0, t) = v−p(0, t), vx(a, t) = (1− v(a, t))−q .

For this, we utilize the quenching problem ut = uxx with ux(0, t) = u−p(0, t),
ux(a, t) = (1 − u(a, t))−q . In the second problem, if u0 is an upper solution

(a lower solution) then we show that quenching occurs in a finite time, the

only quenching point is x = 0 (x = a) and ut blows up at quenching time.
Further, we obtain a local solution by using positive steady state. In the first

problem, we first obtain a local solution by using monotone iterations. Finally,

for f(v) = −v−r ((1− v)−r), if v0 is an upper solution (a lower solution) then
we show that quenching occurs in a finite time, the only quenching point is

x = 0 (x = a) and vt blows up at quenching time.

1. Introduction

In this article, we study the quenching behavior of solutions to the semilinear
heat equation with singular boundary conditions:

vt = vxx + f(v), 0 < x < a, 0 < t < T,

vx(0, t) = v−p(0, t), vx(a, t) = (1− v(a, t))−q, 0 < t < T,

v(x, 0) = v0(x), 0 ≤ x ≤ a,
(1.1)

where p, q, r > 0, T ≤ ∞, f(u) = −v−r or f(u) = (1 − v)−r. The initial function
v0 : [0, a]→ (0, 1) satisfies the compatibility conditions

v′0(0) = v−p0 (0), v′0(a) = (1− v0(a))−q.

Our main purpose is to examine the quenching behavior of the solutions of the
problem (1.1) having two singular heat sources. A solution v(x, t) of the problem
(1.1) is said to quench if there exists a finite time T such that

lim
t→T−

max{v(x, t) : 0 ≤ x ≤ a} → 1 or lim
t→T−

min{v(x, t) : 0 ≤ x ≤ a} → 0.
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For the rest of this article, we denote the quenching time of (1.1) with T .
To study Problem (1.1), we utilize the following problem

ut = uxx, 0 < x < a, 0 < t < T,

ux(0, t) = u−p(0, t), ux(a, t) = (1− u(a, t))−q, 0 < t < T,

u(x, 0) = u0(x), 0 ≤ x ≤ a,
(1.2)

where p, q are positive constants and T ≤ ∞. The initial function u0 : [0, a]→ (0, 1)
satisfies the compatibility conditions

u′0(0) = u−p0 (0), u′0(a) = (1− u0(a))−q.

Since 1975, quenching problems with various boundary conditions have been studied
extensively. Recently, the quenching problems which have been studied with two
nonlinear heat sources can be seen in [3, 7, 8, 10, 11]. For example, Chan and Yuen
[3] considered the problem

ut = uxx, in Ω,

ux(0, t) = (1− u(0, t))−p, ux(a, t) = (1− u(a, t))−q, 0 < t < T,

u(x, 0) = u0(x), 0 ≤ u0(x) < 1, in D̄,

where a, p, q > 0, T ≤ ∞, D = (0, a), Ω = D × (0, T ). They showed that x = a is
the unique quenching point in finite time if u0 is a lower solution, and ut blows up
at quenching time. Further, they obtained criteria for nonquenching and quenching
by using the positive steady states. Selcuk and Ozalp [10] considered the problem

ut = uxx + (1− u)−p, 0 < x < 1, 0 < t < T,

ux(0, t) = 0, ux(1, t) = −u−q(1, t), 0 < t < T,

u(x, 0) = u0(x), 0 < u0(x) < 1, 0 ≤ x ≤ 1.

They showed that x = 0 is the quenching point in finite time, limt→T− u(0, t)→ 1, if
u(x, 0) satisfies uxx(x, 0)+(1−u(x, 0))−p ≥ 0 and ux(x, 0) ≤ 0. Further they showed
that ut blows up at quenching time. Furthermore, they obtained a quenching rate
and a lower bound for the quenching time.

Problems (1.1) and (1.2) have two type of singularity terms (1−u)−q and u−p on
the boundaries. We discuss these two situations in this article, limt→T− u(0, t)→ 0
or limt→T− u(a, t) → 1. This article is organized as follows. In Section 2, we
consider the problem (1.2). Firstly, if u0 is an upper solution (a lower solution)
then we show that quenching occurs in a finite time, the only quenching point is
x = 0 (x = a) and ut blows up at quenching time. Further, we obtain a local
existence result by using positive steady state. In Section 3, we consider problem
(1.1). Firstly, we obtain local existence of (1.1) by using monotone iterations.
Further, for f(v) = −v−r ((1− v)−r), if v0 is an upper solution (a lower solution)
then we show that quenching occurs in a finite time, the only quenching point is
x = 0 (x = a) and vt blows up at quenching time.

2. Problem (1.2)

2.1. Quenching on the boundary. The proofs of the following lemma and the-
orem are analogous to those by Chan and Yuen [3, Section 2].
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Definition 2.1. µ is called a lower solution of (1.2) if µ ∈ C([0, a] × [0, T )) ∩
C2,1((0, a)× (0, T )) satisfies the following conditions:

µt ≤ µxx, 0 < x < a, 0 < t < T,

µx(0, t) ≥ µ−p(0, t), µx(a, t) ≤ (1− µ(a, t))−q, < t < T,

µ(x, 0) ≤ u0(x), 0 ≤ x ≤ a.

It is an upper solution when the inequalities are reversed.

Theorem 2.2. Let u(x, t, u0) and h(x, t, h0) be solutions of problem (1.2) with data
given by u0(x) and h0(x), respectively. If u0 ≤ h0 < 1, then u(x, t, u0) ≤ h(x, t, h0)
on [0, a]× [0, T ).

Proof. For any τ < T , let w be a solution of the problem

wxx − w + wt = 0 in (0, a)× (0, τ),

w(x, τ) = g(x) on [0, a],

wx(0, t) = r(t)w(0, t), wx(a, t) = s(t)w(a, t), 0 < t < τ,

where g ∈ C2(D) has compact support in D, 0 ≤ g ≤ 1, and r and s are smooth
functions to be determined. By Lieberman [6], w exists. By Andersen [1], there
exists a constant k (depending on the length of the interval D) such that 0 ≤ w ≤ k.
Now,∫ a

0

[(u(x, τ)− h(x, τ))w(x, τ)− (u0(x)− h0(x))w(x, 0)]dx

=
∫ τ

0

∫ a

0

∂

∂σ
[(u(x, σ)− h(x, σ))w(x, σ)] dx dσ

=
∫ τ

0

∫ a

0

[w(x, σ)
∂

∂σ
(u(x, σ)− h(x, σ)) + (u(x, σ)− h(x, σ))

∂

∂σ
w(x, σ)] dx dσ

=
∫ τ

0

∫ a

0

[
w(x, σ)

∂2

∂x2
(u(x, σ)− h(x, σ)) + (u(x, σ)− h(x, σ))

∂

∂σ
w(x, σ)

]
dx dσ

=
∫ τ

0

{w(a, σ)[(1− u(a, σ))−q − (1− h(a, σ))−q]− w(0, σ)[u−p(0, σ)− h−p(0, σ)]

− s(σ)[u(a, σ)− h(a, σ)]w(a, σ) + r(σ)[u(0, σ)− h(0, σ)]w(0, σ)}dσ

+
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))(wσ(x, σ) + wxx(x, σ)) dx dσ.

Thus,∫ a

0

[(u(x, τ)− h(x, τ))g(x)− (u0(x)− h0(x))w(x, 0)]dx

=
∫ τ

0

{w(a, σ)
[
(1− u(a, σ))−q − (1− h(a, σ))−q − s(σ) [u(a, σ)− h(a, σ)]

]
− w(0, σ)

[
u−p(0, σ)− h−p(0, σ)− r(σ) [u(0, σ)− h(0, σ)]

]
}dσ

+
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))w(x, σ) dx dσ.

Let r(σ) and s(σ) be given by

r(σ)(u(0, σ)− h(0, σ)) = u−p(0, σ)− h−p(0, σ),
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s(σ)(u(a, σ)− h(a, σ)) = (1− u(a, σ))−q − (1− h(a, σ))−q.

Since u0 ≤ h0 and w(x, 0) ≥ 0, we have∫ a

0

(u(x, τ)− h(x, τ))g(x)dx ≤
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))w(x, σ) dx dσ.

Let
(u(x, σ)− h(x, σ))+ = max{0, u(x, σ)− h(x, σ)}.

From, 0 ≤ w ≤ k, we obtain∫ a

0

(u(x, τ)− h(x, τ))g(x)dx ≤ k
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))+ dx dσ.

Since g ∈ C2(D) has compact support in D and 0 ≤ g ≤ 1, we have∫ a

0

(u(x, σ)− h(x, σ))+dx ≤ k
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))+ dx dσ.

By the Gronwall inequality,∫ a

0

(u(x, σ)− h(x, σ))+dx ≤ 0,

which gives u(x, τ) ≤ h(x, τ) for any τ > 0. Thus, the theorem is proved. �

Lemma 2.3. (i) If uxx(x, 0) ≥ 0 in (0, a), then we obtain ut > 0 in (0, a) ×
(0, T ).

(ii) If uxx(x, 0) ≤ 0 in (0, a), then we obtain ut < 0 in(0, a)× (0, T ).

Proof. (i) Since uxx(x, 0) ≥ 0 in (0, a), u′0(0) = u−p0 (0), u′0(a) = (1 − u0(a))−q, it
follows that u0(x) is a lower solution of the problem (1.1) from Definition 2.1. The
strong maximum principle implies that

u(x, t) ≥ u0(x) in (0, a)× (0, T ).

Let h be a positive number less than T , and

z(x, t) = u(x, t+ h)− u(x, t).

Then

zt = zxx in (0, a)× (0, T − h),

z(x, 0) ≥ 0 on [0, a],

zx(0, t) = −pξ−p−1(t)z(0, t), zx(a, t) = q(1− η(t))−q−1z(a, t), 0 < t < T − h,

where ξ(t) between u(0, t + h) and u(0, t), and η(t) lies between u(a, t + h) and
u(a, t). A proof similar to that of Theorem 2.2 shows that z(x, t) ≥ 0. As h → 0,
we have ut ≥ 0 on [0, a]× (0, T ).

Let H = ut in [0, a]× (0, T ). Since

Ht −Hxx = 0 in (0, a)× (0, T ),

it follows from the strong maximum principle that H = ut > 0 in (0, a)× (0, T ).
(ii) If uxx(x, 0) ≤ 0 in (0, a), then from the above proof we have ut ≤ 0 on

[0, a]× (0, T ) and ut < 0 in (0, a)× (0, T ). The proof is complete. �

Now we show that, if uxx(x, 0) ≤ 0 in (0, a), namely, if u0 is an upper solution,
then we have quenching point at x = 0.
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Theorem 2.4. If u0 is an upper solution, then there exist a finite time T , such
that the solution u of the problem (1.2) quenches at time T .

Proof. Assume that u0 is an upper solution. Then

ω = −(1− u(a, 0))−q + u−p(0, 0) > 0.

Introduce a mass function; m(t) =
∫ a
0
u(x, t)dx, 0 < t < T . Then

m′(t) = (1− u(a, t))−q − u−p(0, t) ≤ −ω,
by Lemma 2.3 (ii). Thus, m(t) ≤ m(0) − ωt; and so m(T0) = 0 for some T0,
(0 < T ≤ T0) which means u quenches in a finite time. �

Theorem 2.5. If u0 is an upper solution, then x = 0 is the only quenching point.

Proof. Since ux(a, t) = (1− u(a, t))−q > 1 and uxx = ut < 0 in (0, a)× (0, T ), then
ux is a decreasing function and so, ux(x, t) > 1 in (0, a) × (0, T ). Let η ∈ (0, a).
Integrating this with respect to x from 0 to η, we have

u(η, t) > u(0, t) + η > 0.

So u does not quench in (0, a]. The proof is complete. �

Theorem 2.6. If u0 is an upper solution, then ut blows up at quenching time.

Proof. Suppose that ut is bounded on [0, a] × [0, T ). Then, there exists a positive
constant M such that ut > −M . We have uxx > −M . Integrating this twice with
respect to x from 0 to x, and then from 0 to a, we have

−a
up(0, t)

> −Ma2

2
− u(a, t) + u(0, t).

As t → T−, the left-hand side tends to negative infinity, while the right-hand side
is finite. This contradiction shows that ut blows up somewhere. �

Now, we show that, if uxx(x, 0) ≥ 0 in (0, a), namely u0 is a lower solution then
we have quenching point at x = a.

Theorem 2.7. If u0 is a lower solution, then there exist a finite time T , such that
the solution u of the problem (1.2) quenches at time T .

Proof. Assume that u0 is a lower solution. Then, we obtain

ω = (1− u(a, 0))−q − u−p(0, 0) > 0.

Introduce a mass function m(t) =
∫ a
0

(1− u(x, t))dx, 0 < t < T . Then

m′(t) = −(1− u(a, t))−q + u−p(0, t) ≤ −ω,
by Lemma 2.3 (i). Thus, m(t) ≤ m(0) − ωt; and so m(T0) = 0 for some T0,
(0 < T ≤ T0) which means u quenches in a finite time. �

Theorem 2.8. If u0 is a lower solution, then x = a is the only quenching point.

Proof. Since ux(0, t) = u−p(0, t) > 1 and uxx = ut > 0 in (0, a) × (0, T ). Then,
ux is an increasing function and so, ux(x, t) > 1 in (0, a) × (0, T ). Let ε ∈ (0, a).
Integrating this with respect to x from a− ε to a, we have

u(a− ε, t) < u(a, t)− ε < 1− ε.
So u does not quench in [0, a). �
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Theorem 2.9. If u0 is a lower solution, then ut blows up at quenching time.

Proof. Suppose that ut is bounded on [0, 1] × [0, T ). Then, there exists a positive
constant M such that ut < M . We have uxx < M . Integrating this twice with
respect to x from x to a, and then from 0 to a, we have

a

(1− u(a, t))q
<
Ma2

2
+ u(a, t)− u(0, t).

As t → T−, the left-hand side tends to infinity, while the right-hand side is finite.
This contradiction shows that ut blows up somewhere. �

Corollary 2.10. We have the following results via Theorems 2.4–2.9:
(i) If u0 is an upper solution for the problem (1.2), then the solution u of the

problem (1.2) quenches in a finite time, x = 0 is the only quenching point, and ut
blows up at quenching time.

(ii) If u0 is a lower solution for the problem (1.2), then the solution u of the
problem (1.2) quenches in a finite time, x = a is the only quenching point, and ut
blows up at quenching time.

2.2. Steady state. The proof of the following lemma and theorem is analogous to
that by Chan and Yuen [3, Section 3]. Let us consider the positive steady states of
Problem (1.2),

Uxx = 0, Ux(0) = U−p(0), Ux(a) = (1− U(a))−q. (2.1)

We have U = I + nx, where

n = I−p, n = (1− I − na)−q.

From these, we have
U = I + I−px, (2.2)

where
I−p = (1− I − I−pa)−q,

which gives
a(I) = Ip(1− (I + Ip/q)).

If we let p = q, then we obtain

a(I) = Ip(1− 2I) = Ip − 2Ip+1. (2.3)

Now, a′(I) = 0 implies
I =

p

2(p+ 1)
. (2.4)

We note that a(I) > 0 for 0 < l < 1/2. Since a(0) = 0 and a(1/2) = 0 and a(I) > 0,
it follows from (2.4) that max0<l<1/2 a(I). We denote this value by A. From (2.3),

A =
pp

2p(p+ 1)p+1
.

Lemma 2.11. If p = q, then there is a solution u if and only if 0 < a ≤ A.
Furthermore, if 0 < a < A, then there exist two positive solutions; if a = A, then
there exists exactly one positive solution.

Proof. Since a(0) = 0 = a(1/2) and a(I) > 0 for 0 < l < 1/2, the graph of a(I) is
concave downwards with maximum attained at A. Thus for p = q, the problem (3)
has a solution if and only if 0 < a ≤ A. To each a ∈ (0, A), there are exactly two
values of I. If a = A, then I is given by (2.4). �
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Theorem 2.12. If p = q and a ∈ (0, A), then u exists globally, provided u0 ≤ U(0).

Proof. By Theorem 2.2, u ≤ U . Hence u exists globally. �

3. Problem (1.1)

3.1. Local solution. It is well known that one of the most effective methods for
obtaining existence and uniqueness of the solution of parabolic equations with initial
conditions is monotone iterative techniques (for details see [4, 9]). For applications
of monotone iterative techniques in quenching problem for a parabolic equation
(see [2]).

Let Cm(Q), Cα(Q) be the respective spaces of m-times differentiable and Hölder
continuous functions in Q with exponent α ∈ (0, 1), where Q is any domain. Denote
by C2,1([0, a]× [0, T )) the set of functions that are twice continuously differentiable
in x and continuously differentiable in t for (x, t) ∈ [0, a]× [0, T ). It assumed that
initial function u0(x) is in C2+α.

Definition 3.1. A function ũ is called an upper solution of (1.1), if ũ ∈ C([0, a]×
[0, T )) ∩ C2,1((0, a)× (0, T )) and ũ satisfies the following conditions:

ũt − ũxx ≥ f(ũ), 0 < x < a, 0 < t < T,

ũx(0, t) ≤ ũ−p(0, t), ũx(a, t) ≥ (1− ũ(a, t))−q, 0 < t < T,

ũ(x, 0) ≥ u0(x), 0 ≤ x ≤ a .

A function û is a lower solution of (1.1), if û ∈ C([0, a] × [0, T )) ∩ C2,1((0, a) ×
(0, T )), satisfies the reversing inequalities.

Lemma 3.2. Let ũ and û be a positive upper solution and a nonnegative lower
solution of (1.1) in [0, a]×[0, T ), respectively. Then, we obtain the following results:

(a) ũ ≥ û in [0, a]× [0, T ),
(b) if u∗ is a solution, then ũ ≥ u∗ ≥ û in [0, a]× [0, T ).

Proof. Let us prove it by utilizing [5, Lemma 3.1]. We select f(v) = (1− v)−r and
we define s(x, t) = ũ(x, t)− û(x, t) in [0, a]× [0, T ). Then s(x, t) satisfies

st ≥ sxx + r(1− η)−r−1s, 0 < x < a, 0 < t < T,

sx(0, t) ≤ −pϕ−p−1s(0, t), sx(a, t) ≥ q(1− ξ(a, t))−q−1s(a, t), 0 < t < T,

s(x, 0) ≥ 0, 0 ≤ x ≤ a,

where ϕ(0, t) lies between ũ(0, t) and û(0, t), η(x, t) lies between ũ(x, t) and û(x, t),
and ξ(a, t) lies between ũ(a, t) and û(a, t).

For any fixed τ ∈ (0, T ), let

L = max
0≤x≤a, 0≤t≤τ

(
q

2a
(1− ξ(x, t))−q−1),

R = max
0≤x≤a, 0≤t≤τ

(
p

2a
ϕ−p−1(x, t)),

M = 2L+ 2R+ max
0≤x≤a

(2Lx− 2R(a− x))2 + max
0≤x≤a, 0≤t≤τ

(r(1− η(x, t))−r−1).

Set w(x, t) = e−Mt−Lx2−R(a−x)2s(x, t). Then w satisfies

wt ≥ wxx + (4Lx− 4R(a− x))wx + cw, 0 < x < a, 0 < t ≤ τ,
wx(0, t) ≤ kw(0, t), wx(a, t) ≥ dw(a, t), 0 < t ≤ τ,
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w(x, 0) ≥ 0, 0 ≤ x ≤ a,

where c = c(x, t) ≤ 0, k = k(t) ≥ 0 and d = d(t) ≤ 0. By the maximum principle
and Hopf’s lemma for parabolic equations, we obtain that w ≥ 0 in [0, a] × [0, τ ].
Thus, ũ ≥ û in [0, a]× [0, T ). For f(v) = −v−r, a similar process follows.

(b) It is clear from Definition 3.1 that every solution of the problem (1.1) is an
upper solution as well as a lower solution of the corresponding problem. If u∗ is a
solution, then we obtain

ũ ≥ u∗, u∗ ≥ û, ũ ≥ u∗ ≥ û

in [0, a]× [0, T ) from Lemma 3.2 (a). �

For a given pair of ordered upper and lower solutions ũ and û we set

S = {u ∈ C([0, a]× [0, T )) : û ≤ u ≤ ũ}.
Let

f(x, t, u(x, t)) = (1− u(x, t))−r or f(x, t, u(x, t)) = −u−r(x, t),
g(x, t, u(x, t)) = u−p(x, t), h(x, t, u(x, t)) = (1− u(x, t))−q

Throughout this section we assume the following hypothesis on the functions in
Problem (1.1):

(H1) (i) The functions f(x, t, ·) is in Cα,α/2([0, a]× [0, T )), g(x, t, .) is in
C1+α,(1+α)/2({0}×(0, T )) and h(x, t, .) is in C1+α,(1+α)/2({a}×(0, T )),
respectively.

(ii) Let f(., u), g(., u) and h(., u) are C1-functions of u ∈ S. Also,

fu(x, t, u) ≥ 0 for u ∈ S, (x, t) ∈ [0, a]× [0, T ),

gu(x, t, u) ≤ 0 for u ∈ S, (x, t) ∈ {0} × (0, T ),

hu(x, t, u) ≥ 0 for u ∈ S, (x, t) ∈ {a} × (0, T ).
(3.1)

Condition (3.1) implies that f(., u) and h(., u) are non-decreasing in u, g(., u) is
non-increasing in u, respectively, which is crucial for the construction of monotone
sequences.

Next, we construct monotone sequences of functions which give the estimation
of the solution u of problem (1.1). Specifically, by starting from any initial iteration
u0, we can construct a sequence {u(k)} from the linear iteration process

u
(k)
t − u(k)

xx = f(x, t, u(k−1)), 0 < x < a, 0 < t < T,

u(k)
x (0, t) = g(0, t, u(k−1)), u(k)

x (a, t) = h(a, t, u(k−1)), 0 < t < T,

u(k)(x, 0) = u0(x), 0 ≤ x ≤ a.

(3.2)

It is clear that the sequence governed by (3.2) is well defined and can be obtained
by solving a linear initial boundary value problem. Starting from initial iteration
u0 = ũ and u0 = û, we define two sequences of the functions {u(k)} and {u(k)}
for k = 1, 2, . . . respectively, and refer to them as maximal and minimal sequences,
respectively, where those elements satisfy the above linear problem.

Lemma 3.3. The sequences {u(k)}, {u(k)} possess the monotone property

û ≤ u(k) ≤ u(k+1) ≤ u(k+1) ≤ u(k) ≤ ũ
for (x, t) ∈ [0, a]× [0, T ) and every k = 1, 2, . . . .
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Proof. Let µ = ũ− u(1). From (3.2) and from Definition 3.1, we obtain

µt − µxx = ũt − ũxx − f(x, t, ũ) ≥ 0, 0 < x < a, 0 < t < T,

µx(0, t) = ũx(0, t)− g(0, t, ũ) ≤ 0, 0 < t < T,

µx(a, t) = ũx(a, t)− h(a, t, ũ) ≥ 0, 0 < t < T,

µ(x, 0) = ũ(x, 0)− u0(x) ≥ 0, 0 ≤ x ≤ a.

From the Maximum principle and Hopf’s Lemma for parabolic equations, we obtain
µ ≥ 0 for (x, t) ∈ [0, a] × [0, T ), i.e. u(1) ≤ ũ. Similarly, using the property of a
lower solution, we obtain u(1) ≥ û.

Let µ(1) = u(1) − u(1). From (3.1) and (3.2), we obtain

µ
(1)
t − µ(1)

xx = f(x, t, ũ)− f(x, t, û) ≥ 0, 0 < x < a, 0 < t < T,

µ(1)
x (0, t) = g(0, t, ũ)− g(0, t, û) ≤ 0, 0 < t < T,

µ(1)
x (a, t) = h(a, t, ũ)− h(a, t, û) ≥ 0, 0 < t < T,

µ(1)(x, 0) = u0(x)− u0(x) = 0, 0 ≤ x ≤ a.

From the Maximum principle and Hopf’s Lemma for parabolic equations, we obtain
µ(1) ≥ 0 for (x, t) ∈ [0, a]× [0, T ), i.e. u(1) ≤ u(1). Therefore,

û ≤ u(1) ≤ u(1) ≤ ũ

for (x, t) ∈ [0, a]× [0, T ).
Assume that

u(k−1) ≤ u(k) ≤ u(k) ≤ u(k−1)

for (x, t) ∈ [0, a]× [0, T ) and for some integer k > 1. Let µ(k) = u(k)−u(k+1). From
(3.1) and (3.2), we obtain

µ
(k)
t − µ(k)

xx = f(x, t, u(k−1))− f(x, t, u(k)) ≥ 0, 0 < x < a, 0 < t < T,

µ(k)
x (0, t) = g(0, t, u(k−1))− g(0, t, u(k)) ≤ 0, 0 < t < T,

µ(k)
x (a, t) = h(a, t, u(k−1))− h(a, t, u(k)) ≥ 0, 0 < t < T,

µ(k)(x, 0) = 0, 0 ≤ x ≤ a.

From the Maximum principle and Hopf’s Lemma for parabolic equations, we ob-
tain µ(k) ≥ 0 for (x, t) ∈ [0, a] × [0, T ), i.e. u(k+1) ≤ u(k). A similar argument
gives u(k+1) ≥ u(k) and u(k+1) ≥ u(k+1). Therefore, the result follows from the
mathematical induction. �

Lemma 3.4. For each positive integer k, u(k) is an upper solution, u(k) is a lower
solution, u(k) ≤ u(k) for (x, t) ∈ [0, 1]× [0, T ).

Proof. From (3.1), (3.2) and Lemma 3.2, u(k) satisfies

u
(k)
t − u(k)

xx = f(x, t, u(k−1))

= f(x, t, u(k−1))− f(x, t, u(k)) + f(x, t, u(k)) ≥ f(x, t, u(k)),

u(k)
x (0, t) = g(0, t, u(k−1))

= g(0, t, u(k−1))− g(0, t, u(k)) + g(0, t, u(k)) ≤ g(0, t, u(k)),
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u(k)
x (a, t) = h(a, t, u(k−1))

= h(a, t, u(k−1))− h(a, t, u(k)) + h(a, t, u(k)) ≥ h(a, t, u(k)),

u(k)(x, 0) = u0(x), 0 ≤ x ≤ a,

and u(k) satisfies

u
(k)
t − u(k)

xx = f(x, t, u(k−1))

= f(x, t, u(k−1))− f(x, t, u(k)) + f(x, t, u(k)) ≤ f(x, t, u(k)),

u(k)
x (0, t) = g(0, t, u(k−1))

= g(0, t, u(k−1))− g(0, t, u(k)) + g(0, t, u(k)) ≥ g(0, t, u(k)),

u(k)
x (a, t) = h(a, t, u(k−1))

= h(a, t, u(k−1))− h(a, t, u(k)) + h(a, t, u(k)) ≤ h(a, t, u(k)),

u(k)(x, 0) = u0(x), 0 ≤ x ≤ a.

From Lemma 3.3 and from the above inequalities, the functions u(k) and u(k) are
ordered upper and lower solutions of problem (3.2). �

We have the following existence theorem for problem (1.1) via Lemmas 3.3 and
3.4.

Theorem 3.5. Let ũ, û be a pair of ordered upper and lower solutions of the problem
(1.1), and let Hypothesis (H1) hold. Then the sequences {u(k)}, {u(k)} given by
Problem (3.2) with u0 = ũ and u0 = û converge monotonically to a maximal solution
u and minimal solution u of the problem (1.1), respectively. Further,

û ≤ u(k) ≤ u(k+1) ≤ u ≤ u ≤ u(k+1) ≤ u(k) ≤ ũ (3.3)

for (x, t) ∈ [0, a]× [0, T ) and each positive integer k. Furthermore if u = u (≡ u∗),
then u∗ is the unique solution of the problem (1.1) in S.

Proof. The pointwise limits

lim
k→∞

u(k)(x, t) = u(x, t), lim
k→∞

u(k)(x, t) = u(x, t)

exist and satisfy the relation (3.3). Indeed, the sequence {u(k)} is monotone non-
increasing which is bounded from below, while the sequence {u(k)} is monotone
nondecreasing and is bounded from above as in Lemma 3.3.

Let Θ = u(x, t) − u(x, t). From (3.3), we have u(x, t) ≤ u(x, t) for (x, t) ∈
[0, a]× [0, T ). Also, Θ(x, t) satisfies

Θt −Θxx = f(x, t, u)− f(x, t, u), 0 < x < a, 0 < t < T,

Θx(0, t) = g(0, t, u)− g(0, t, u), 0 < t < T,

Θx(1, t) = h(a, t, u)− h(a, t, u), 0 < t < T,

Θ(x, 0) = 0, 0 ≤ x ≤ a.
By using the process of Lemma 3.2 (a) and Lemma 3.6, we obtain Θ ≥ 0 for
(x, t) ∈ [0, a]× [0, T ), i.e. u(x, t) ≥ u(x, t), and so, we obtain u(x, t) = u(x, t).

If u∗ is any other solution in S, then from Lemma 3.4 we obtain

u ≥ u∗, u∗ ≥ u,
u ≥ u∗ ≥ u
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in [0, a]× [0, T ). This implies that

u = u∗ = u

and hence u∗ is the unique solution of the problem (1.1). �

3.2. Quenching on the boundary. In this subsection, we study quenching prop-
erties of the problem (1.1) via Section 2.1.

Lemma 3.6. (i) (f(v) = (1 − v)−r) If vxx(x, 0) + (1 − v(x, 0))−r ≥ 0 in (0, a)
(i.e., if v0 is a lower solution), then vt(x, t) ≥ 0 in [0, a] × [0, T ). Also, we obtain
vt(x, t) > 0 in(0, a)× [0, T ) by strong maximum principle.

(ii) (f(v) = −v−r) If vxx(x, 0) − v−r(x, 0) ≤ 0 in (0, a) (i.e., if v0 is an upper
solution), then vt(x, t) ≤ 0 in [0, a]× [0, T ). Also, we obtain vt(x, t) < 0 in(0, a)×
[0, T ) by the strong maximum principle.

Proof. (i) Let us prove it by using [5, Lemma 3.1]. We let f(v) = (1− v)−r and we
define s(x, t) = vt(x, t) in [0, a]× [0, T ). Then s(x, t) satisfies

st = sxx + r(1− v)−r−1s, 0 < x < a, 0 < t < T,

sx(0, t) = −pv−p−1s(0, t), sx(a, t) = q(1− v(a, t))−q−1s(a, t), 0 < t < T,

s(x, 0) = vxx(x, 0) + (1− v(x, 0))−r ≥ 0, 0 ≤ x ≤ a.
For a fixed τ ∈ (0, T ), let

L = max
0≤x≤a, 0≤t≤τ

(
q

2a
(1− v(x, t))−q−1),

R = max
0≤x≤a, 0≤t≤τ

(
p

2a
v−p−1(x, t)),

M = 2L+ 2R+ max
0≤x≤a

(2Lx− 2R(a− x))2 + max
0≤x≤a, 0≤t≤τ

(r(1− η(x, t))−r−1).

Set w(x, t) = e−Mt−Lx2−R(a−x)2s(x, t). Then w satisfies

wt = wxx + (4Lx− 4R(a− x))wx + cw, 0 < x < a, 0 < t ≤ τ,
wx(0, t) = kw(0, t), wx(a, t) = dw(a, t), 0 < t ≤ τ,

w(x, 0) = 0, 0 ≤ x ≤ a,
where c = c(x, t) ≤ 0, k = k(t) ≥ 0 and d = d(t) ≤ 0. By the maximum principle
and Hopf’s lemma for parabolic equations, we obtain that w ≥ 0 in [0, a] × [0, τ ].
Thus, vt ≥ 0 in [0, a]× [0, T ). Also, we obtain vt(x, t) > 0 in (0, a)× [0, T ) by the
strong maximum principle.

(ii) Now, if we let f(v) = −v−r, and vxx(x, 0) − v−r(x, 0) ≤ 0 in (0, a), then
using the same process above, we obtain vt(x, t) ≤ 0 in [0, a] × [0, T ). Also, we
obtain vt(x, t) < 0 in (0, a)× [0, T ) by the strong maximum principle. �

Lemma 3.7. If vx(x, 0) ≥ 0, then vx ≥ 0 in [0, a]× (0, T ).

Proof. Let H = vx(x, t). Then

Ht = Hxx + f ′(v)H, 0 < x < a, 0 < t < T,

H(0, t) = v−p(0, t) > 0, H(a, t) = (1− v(a, t))−q > 0, 0 < t < T,

H(x, 0) = vx(x, 0) ≥ 0, 0 ≤ x ≤ a.
From the maximum principle, it follows that H ≥ 0 and hence vx ≥ 0, in [0, a] ×
(0, T ). �
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Theorem 3.8. (i) (f(v) = −v−r) If u0(x) ≥ v0(x) and u0 is an upper solution for
problem (1.2), then the solution v of problem (1.1) quenches in a finite time and
x = 0 is the only quenching point.

(ii) (f(v) = (1−v)−r) If u0(x) ≤ v0(x) and u0 is a lower solution for the problem
(1.2), then the solution v of problem (1.1) quenches in a finite time and x = a is
the only quenching point.

Proof. (i) First, let f(v) = −v−r. If u0(x) ≥ v0(x), then the solution u of
the problem (1.2) is an upper solution of (1.1) from Definition 3.1. Further, if
u0(x) is an upper solution for the problem (1.2), then u quenches in a finite time,
limt→T− u(0, t)→ 0 from Corollary 3.10 (i). So, we obtain

u0 ≥ u ≥ v

from Lemma 3.2. Thus, v quenches in a finite time, limt→T− v(0, t)→ 0.
(ii) Now, let f(v) = (1 − v)−r. If u0(x) ≤ v0(x), then the solution u of (1.2) is

a lower solution of (1.1) from Definition 3.1. Further, if u0(x) is a lower solution
of (1.2), then u quenches in a finite time, limt→T− u(a, t)→ 1 from Corollary 3.10
(ii). So, we obtain

u0 ≤ u ≤ v
from Lemma 3.2. As a result, v quenches in a finite time, limt→T− v(a, t)→ 1. �

Theorem 3.9. (i) (f(v) = −v−r) vt blows up at the quenching time at the boundary
x = 0.

(ii) (f(v) = (1− v)−r)vt blows up at the quenching time at the boundary x = a.

Proof. (i) (f(v) = −v−r) Suppose that vt is bounded on [0, a]× [0, T ). Then, there
exists a positive constant M such that vt > −M . That is

vxx − v−r > −M.

Multiplying this inequality by vx, and integrating with respect to x from 0 to x,
we have

−1
2
v−2p(0, t)− ln

[ 1
v(0, t)

]
>

1
2
v2
x − ln

[ 1
v(x, t)

]
−M [v(a, t)− v(x, t)]

for r = 1, and

−1
2
v−2p(0, t) +

v−r+1(0, t)
−r + 1

> −1
2
v2
x +

v−r+1(x, t)
−r + 1

−M [v(x, t)− v(0, t)]

for r 6= 1. We have, as t→ T−, the left-hand side tends to negative infinity, while
the right-hand side is finite. This contradiction shows that vt blows up at the
quenching point x = 0.

(ii) (f(v) = (1− v)−r) Suppose that vt is bounded on [0, a]× [0, T ). Then, there
exists a positive constant M such that vt < M . That is,

vxx + (1− v)−r < M.

Multiplying this inequality by vx, and integrating with respect to x from x to a,
we have

1
2

(1− v(a, t))−2q + ln[
1

1− v(a, t)
] <

1
2
v2
x + ln[

1
1− v(x, t)

] +M [v(a, t)− v(x, t)]
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for r = 1, and

1
2

(1−v(a, t))−2q+
(1− v(a, t))−r+1

r − 1
<

1
2
v2
x+

(1− v(x, t))−r+1

r − 1
+M [v(a, t)−v(x, t)]

for r 6= 1. As t→ T−, the left-hand side tends to infinity, while the right-hand side
is finite. Hence, vt blows up at the quenching point x = a. �

Corollary 3.10. We have the following results via Theorems 3.8 and 3.9:
(i) (f(v) = −v−r) If u0(x) ≥ v0(x) and u0 is an upper solution for the problem

(1.2), then the solution v of the problem (1.1) quenches in a finite time, x = 0 is
the only quenching point, and vt blows up at the quenching time.

(ii) (f(v) = (1−v)−r) If u0(x) ≤ v0(x) and u0 is a lower solution for the problem
(1.2), then the solution v of the problem (1.1) quenches in a finite time, x = a is
the only quenching point, and vt blows up at the quenching time.
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