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NONEXISTENCE OF NON-TRIVIAL GLOBAL WEAK
SOLUTIONS FOR HIGHER-ORDER NONLINEAR
SCHRODINGER EQUATIONS

ABDERRAZAK NABTI

ABSTRACT. We study the initial-value problem for the higher-order nonlinear
Schrédinger equation

10ru — (—A)"u = MulP,
subject to the initial data

u(z,0) = f(x),

where u = u(z,t) € C is a complex-valued function, (z,t) € RN x [0, +c0),
p>1,m>1, A € C\{0}, and f(z) is a given complex-valued function. We
prove nonexistence of a nontrivial global weak solution. Furthermore, we prove
that the L2-norm of the local in time L2-solution blows up at a finite time.

1. INTRODUCTION

We consider the higher-order nonlinear Schrédinger equation

10w — (—A)"u = Nul?, zeRM, t>0, (1.1)
supplemented with the initial data
u(z,0) = f(x), =eRY, (1.2)

where u = u(x,t) is a complex-valued unknown function of (z,¢), A = Ay +iXs €
C\{0}, A € R (i = 1,2), and f = f(z) = f(2)+ifa(x) € C, fi(z) € L'(R) (i = 1,2)
are real-valued given functions.

Let us first recall some previous results on nonlinear Schrédinger equations
(NLS). Since there is a large amount of papers for NLS, we mention the ones related
to our result. Many authors have studied NLS with a gauge invariant power type
nonlinearity

10w+ Au = Xolu|P " u, z€RY teR, (1.3)
where \g € R, p > 1. Inthe case of 1 <p < 1+ %, Tsutsumi [I6] proved global
existence of L2-solution for an integral equation associated to with the initial
condition u(z,0) = ug(z) € L? without any size restriction (For other type of
solutions see e.g. [6] etc). It is also well known that when N > 2, p > 1+ + and
Ao < 0, there are solutions of that blow up in finite time for certain initial
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data (see, e.g. [II]). Tkeda and Wakasugi [7] studied the nonlinear Schrodinger
equation with nongauge invariant power nonlinearity

1
iatu+§Au:/\\u|p, zeRN, t>0, (1.4)

subject to the initial data u(z,0) = ef(z), where f € L2, e >0, 1 <p < 1+ %
and A € C\{0}. They proved the nonexistence of a non-trivial global weak solution
for the equation with some initial data but without any size and coefficient
restriction, which implies that ”small data global existence” does not hold for .
Furthermore, they also proved that the L2-norm of a time local L?-solution with a
suitable initial data blows up in a finite time.

We will prove, using Banach fixed point theorem and Strichartz estimates (see
[2, 16, 6 14, [15]), a local existenceresult for problem 7 for any initial
data f € L%(RY). Moreover, by the test function method (see [3, 4l 8, [ 10, [18]
and the references therein), we will show nonexistence of non-trivial global weak
solutions for problem 7. Next we prove that the L2-norm of the time local
L?-solution blows up at a finite time.

2. LOCAL EXISTENCE

In this section, we prove the local existence and uniqueness of the L2-solution
to the problem 7. It is well known that (—A)™ is a self-adjoint operator
in L2(RY) for every m > 1, and it generates a strongly continuous semigroup S(t)
on L}(RY) for t > 0. Using the semigroup theory (see, e.g. [I7]), we can write
problem (1.1)—(L.2) in the following equivalent integral equation

¢
u(t) =St)f — z/ S(t—s)|u(s)|Pds, t>0. (2.1)
0
For S(t) = exp(it(—A)™), we have the following results.

Lemma 2.1. Let p and r be positive numbers such that % + % =1and2 < p < oo.
For any t > 0, S(t) is a bounded operator from L" to LP. Moreover, it satisfies the
important estimate

IS@)llzoer) < Ct 3D o]l @y, ve LNRY), >0, (22)

and for any t > 0, the map t — S(t) is strongly continuous. For p = 2, S(t) is
unitary and strongly continuous for t > 0.

Definition 2.2. The triple (r,p,q) is called o-admissible triple if * = a(% — %),
where 1 <r < ¢g<ooand o > 0.
Now, we give the following Strichartz estimate.
Lemma 2.3. Let (r,p,2) be £--admissible. Then
1Sl Lro,ry;ze@yy) < CllvflLz®ny, (2.3)

where C = C(N, p).

For the proof of Lemma [2.1] see, e.g [6]. For Lemma see Strichartz [I5] and
Ginibre and Velo [5].
Let 1 < p, r < oo and a,b > 0. We set

E = {v(t) € LX((0,7); LA(RY)) N L7 (0, T); L*(RY));
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lo@®llza@n) < a, [0l o myme@n) < b
E is a closed subset in L"((0,7T), LP(RN)).
Theorem 2.4. Let 1 <p < 1+ 22 X e C\{0} and f € L*(RY). Then there exists
a positive time T = T(||f|lz2) > 0 and a unique solution u € C([0,T); L2(RN)) N

L7([0,T); LP(RN)) of the integral equation ([2.1)), where p and r are defined by
N

p=p+1 andQTm:%—F.

Proof. We define the Banach space
Br 1= {o(t) € L (s L®Y)) 1 L' (Ir; L' (RY));

o) Loe (rpi2 @™y < N fll2@yy,  WllLr (e @yy) < 25||f||L2(RN)}7

where It := (0,T) and § is the constant appearing in (2.3), with p = p + 1,

= % and T is a small positive constant to be determined later. Now, for

every u € Ep, we define

W) = S(t) f(z) - /\z'/o S(t — s)[ul? ds.

As usual, we prove the existence of local solutions using the Banach fixed point
theorem.

e U is defined from Er to Ep: Let u € Ep. Setting
© = {u(t), ift e Ir,
0, otherwise.
Now, we have
1 (W) L7 (17520 @YY

P 1

_ N (p_1
< Al lzaqamy + €| [ (=975 D o) o s

L™(Ir)

N (p

+oo |
< 6]l z2en) + C|| / [t = s G als) 17, v ]

Lr(®)’
By the generalized Young inequality [I3], we have

IO ()| L1z pe @)y < Sl fl2@yy + CllENT oy g, 1o ) 2.4
< O fllz@yy + CllullLon (110 @)

%,amdnotethatl<pl<rbrl<p<1+%. By

o 5 . . . 1 _ 1 1
Holder’s inequality we have, with o=t

where p; =

t 1/P2
[ell or (e @)y < (/ ds) [l e (1 Lo )
0
< CTY*2 ||| v (1, o))
where py = ]\M?L+Z:]Vp and C = C(N,p). Next, (2.4) and (2.5) give us
19 ()| e zize @)y < O1F 2@y + CrTP P2 ullf g @ny
< |1 fll 2y + 200 TP P2 (28) || F I 2 gy 1Ll 2y

(2.5)
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where C; = C'(N,p, \). Now, if we choose T small enough such that
2011772 (28| F |2y < 1,

we conclude that ||\I/(U)||Lr(1;Lp(RN)) < 6Hf||L2(]RN), and then \If(u) S ET.

e U is a contracting map. For u, v € Ep, repeating the same calculations as above,
we obtain

[@(u) — ¥ (o)L (I;LP(RN))

_ N (p_1
<O\ | =5l — 0P| Losv (@ ds|

L™(Ir)

_ N E_, _
<O [ (6= ) G (Jullogan, + Welfatam ) ) = wls)laoen ds

Lr(Ir)

< C (Il gy oy + ||v\|Lpl<IT,LP<RN))) = llon (1o @)

< CyTP/P2 (||u|

Lr(Ip,Le(RN)) + ol LT (IT LP(RN))) lu — UHLT(IT,LP(RN))

< CoTP/P22(26]| || 2y )P~

Le(RN))-

If we choose T so small such that

CoT?!P22(26||f | L2y )P~ <

[\.'J\H

then we have
1
19 () = ¥ Lrspr@y)) < 5llu=vllLrr,Lo@y))-

By the Banach fixed point theorem, there exists a solution v € L>(Ip; L2(R™V)) N
L' (I7; L (R™)) to problem (LT)-(12) on [0, ],
As usual, the solution can be extended to a maximal time of existence Ti,ax > 0.

e Uniqueness of solution: We show that the solution of (1.1))—(1.2)) is unique. Let
u and v be two solutions in Er for some T > 0, we set

t1 = sup{t € [0, Trax : u(t) = v(t)}.

If t1 = Tax, then u(t) = v(t) on [0, Tinax], which is the desired result. If ¢; < Tiax,
repeating the same calculations as before, and by the assumption on ¢;, we have

lu — vl Lr((0,t2);L0 (RNY)

= [Ju— UHLT ((t1,t2);LP (RN))

<CH/ (t2 = ) E Dl ol ey, ds|

Lr(Ir)

< Cata — t1)P/"" (H“”Lr ((t1,t2), Lo (RN)) T HU”L:((tl,tg),LP(]RN)))
X = vl Lr((ty,t2), L0 &Y
< Co(ta — tl)p/pz2(25||f||L2(1RN))p_1 lu =0l Lr (e 2), Lo (RN ))-
We can choose ty such that to > t; and

C(ts — t1)P/722(26]| fll p2gamy) " <

DN | =
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Then we have

lu = vl Lr ;Lo @yy) <0,
which implies u(t) = v(¢) on [t1, t2]. This contradicts the assumption of ¢;. There-
fore, u(t) = v(t) for t € [0, Tinax]- O

3. BLOW UP OF L2-SOLUTIONS

We impose the following assumptions on the data
(Hl) f1 S Ll(RN), Ao fRN fl(x) dz > 0, for fg S Ll(RN), A fRN fg(x) dz < 0.
Now, we want to derive a blow-up result for (L.1)—(1.2).

Definition 3.1. Let 7" > 0. We say that u is a weak solution of (|1.1)—(L.2]) on
0,7) if uw e C([0,T); L} (RY) and satisfies

/ / u(—=i0pp(z,t) — (—A)"¢(z,t)) de dt
0 JRN (3.1)

T
=1 f(@)o(x,0)dx + /\/ / |ulPo(z,t) dx dt
RN 0 RN
for any ¢ € Cé’oo((&T) x RN), ¢ > 0 and satisfying ¢(-,7) = 0. Moreover, if
T = +00, u is called a global weak solution for 7.

We note that an L2-solution as in Theorem [2.4]is always a weak solution in the
sense of Definition 3.11

Theorem 3.2. Let 1 <p <p* =1+ 22 X e C\{0} and let f satisfy (H1). Then
problem (L.1)—(1.2) has no global nontrivial weak solution.

We first prove the following lemma (see [12]).

Lemma 3.3. Let ¢ € L*(RY) and [,n ¢¥(z)dz < 0. Then there exists a test
function 0 < ¢ <1 such that

- Y(x)p(x)dx < 0. (3.2)

Proof. We have

Yo dx :/ wgodx—l—/ Y d.
RN lz|<R R<|=|
Take a function ¢ = pr(x), 0 < pr < 1, such that pr(z) =1 for |z| < R. Then

/ Yprdr = / Ydr + / Yprdx. (3.3)
RV lz|<R R<|a|
By the convergence of the integral [ [¢|dx, we have
| wadeJc|§/ |Y|de — 0 as R — +oo.
R<|z| R<|z|

After passing to the limit as R — +o0 in (3.3), we obtain

li dr = 1li dx = dx < 0.
Ril}rlw RN Q/MPR * Rir}rlw |w\§Rw v RNZZ} v

This implies the assertion of Lemma [3.3 (]
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Proof of Theorem[3.3 Suppose by contradiction that u is a weak global solution
to (1.1)—(1.2). Let ® be a radial, smooth and non-increasing function on [0, 4+00)
such that

1, ifo<r<i1,
P(r)=q\ if1<r<2,
0, ifr>2.
Set
|| t

¢1(I) = (P(BiR)? ¢2(t) = Q(RTm)’
where R, B > 0. We use the test function
oz, t) == o1 () da(t)?, £, o> 1.

The constant B > 0 in the definition of ¢; is fixed and will be chosen later; it plays

some role in the case p =1+ QW'”, while in the case p < 1+ 2%7 we take B = 1.
Let Q := [0, R?™) x RN. We consider only the case Ay > 0 and A1 [n f2 dz <0,

since the other cases can be treated almost in the same way (see Remark . Set

Ig = / |u|P ¢ da dt.
Q
Now, using the identity (3.1]), and by taking the real part, we obtain

MR—/RN Fol2)6(z, 0) da::/Q(Imu)8t¢dxdt—/Q(Reu)(—A)mfbdxdt. (3.4)

Furthermore, using the assumption (H1) on the initial condition f, and Lemma
we obtain

MRS/ \u|¢§\at¢g|dxdt+/ lul| A" | 63 dz dt = K + Ko, (3.5)
Q Q

By applying e-Young’s inequality, XY < ¢X? 4+ C(e)Y9?, for X > 0, Y > 0,
p+q=pg with 0 <e <1, C(e) = (1/¢q)(pe)~%?), in K; and K», we obtain

__o I
(=291 < C(e) [ 10,7100 1 dndr + CGe) [ 6,77 AT 05 dadt
Q Q

At this stage, we pass to the new variables s = t/R?*™ and y = z/R, to obtain the
estimate

(M — 26)Ir < CRNT2m0-9) (A 4 B), (3.6)

where

A::/ / D(y) (s)7~1d(s)'|9 dy ds < +oo,
0, Ja,

B | | / () FA(B() )1 () dyds < oo

O :={s>0:5<2}, QQ:Z{yERN:|y|§2}.

2m

< 0. So, we have to

Note that inequality p < p* is equivalent to 8 = N —
distinguish two cases:

Case (i): p < p* = [ < 0. Passing to the limit in (3.6) as R — +o0, we have

+oo
/ / [uPpdxdt=0 = u=0;
0 RN
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this is a contradiction.

Case (ii): p = p* = (8 = 0. We estimate the first term in the right hand side
of inequality using the Holder inequality and the second term by the Young
inequality as follows

I
(=)l < CG) [ 0,77 IAm 6165 duds
Q

1/p __o_ 1/q
+(/ / |u|p¢dxdt) (/ / ¢§¢2p*1\8t¢g|qudt) :
Cgr RN Cr RN

where Cp := {t € [0, +00) : R*™ <t <2R?"} is the support of 9;¢2. Note that

lim / / |u|P¢ dxdt = 0.
R—+o00 Cr JRN

Now, introducing the new variables s = t/R*™ and y = 2/BR, we obtain
1/p
(M — &) < BN/qg(/ / u|Pp da dt) + BB, (3.7)
Cr JRN

where

1/q
= / / )| (s)’ |qdyds) < +oo.
CR QQ
Passing to the limit first in as R — +o00, and then B — +o00, we get

“+ o0
/ / lufPpdedt=0 =— u=0;
0 RN

which is a contradiction. O

Remark 3.4. For the other cases, setting
fQ MlulPo(z,t)dedt if Ay <0, Ay [pn fo(z)dz <0,
Ip = fQ Ao|u|Pd(x, t) da dt if Ao >0, Ao fRQN fi(z)dx >0,
— JoRelulPo(z,t)dzdt if A2 <0, Az [y fi(z)dz >0,
we can prove the same conclusion in the same manner as above.

Next, we will mention that an L2-solution u € C([0,T]; L>(RY)) is a weak solu-
tion in the sense of Definition [3.11

Proposition 3.5. Let T > 0. If u is an L?-solution for problem on
[0,T), then u is also a weak solution on [0,T) in the sense of Deﬁmtzon;
Proof. Let T > 0, f € L*(RY) and let u € C([0,T); L2(R™)) N L"((0, T); L*(RY))
be a solution of . Given ¢ € C1*°((0,T) x RY) such that suppcb Q is com-
pact with ¢(-,7') = 0. Then after multiplying by ¢ = ¢(z,t) and integrating
over RY | we obtain

/Quqﬁdxdt_/QS(t)f(:z:)gbdz)\i/Q/OtS(ts)|u(s)|pds¢d:z:.

So after differentiating in time, we obtain

d d [d [ »
%/Qzuﬁdxdt:/Qa(S(t)f(x)(b)dx—)\z/Qﬁ/o S(t — s)|u(s)P dspdx. (3.8)
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Now, using the properties of the semigroup S(t) (see [1]), we have

d .
| 0@ de =i [ AsO @)+ [ SOf@o0da -

:i/ S(t)f(w)Agbder/ S(t)f(z)0rp de,
Q Q

/dt/ S(t— s)F(u)ds¢dx
—z// S(t—s) (u))dsqbdx—l—/ (bdx—l—// S(t— s)F(u)ds Or¢ dx
*z// (t—s)F dsAgbder/ ¢d$+// (t — s)F(u)ds 0o du,

(3.10)
where F'(u) := |u(t)[P. Thus, using (2.1), (3.9) and (3.10), we conclude that (3.8]

implies

d u¢dmdt /u@t¢dmdt—i/uz4¢dxdt—i/\ F(u)¢ dx dt.
dt Q Q Q

Finally, by mtegrating in time over [0,7] and using that ¢(-,7') = 0, we complete
the proof. O

Let
T, = sup {T € [0, +00) ; there exists a unique solution u to (2.1))

such that u € C([0,T); L2(RY)) N L7 ([0, T); LP(RN))}

be the maximal existence time of L?-solution, where 1 < p < 1+ Qﬁm, p=p+1and
2m _ N N

T 2 P

Theorem 3.6. Let 1 < p <14 22, X = X\ +iXy € C\{0} and f € L*(RY). If
the initial data f = f1 + ifs satisfies (H1), then the life span T, < +oo and the
L%-norm of the solution blows up at t = T,.

lim%nf lu(®)||L2 = +o0. (3.11)
Proof. We assume the life span T, = 400. Then u is also a global weak solution

of (1.1)—(1.2)) in the sense of Definition Then we can apply Theorem and
obtain © = 0. On the other hand, by the identity (3.1)), we obtain

/ fa(z)p1(z) dz = 0,
RN

which is a contradiction. Therefore, we have T;, < 4o0.
Next, we show a blowup of the L?-norm for a local solution v by using a contra-
diction argument again. First we assume

liminf ||u(t)|| Lz < 4005
t—Tm,
then there exists a sequence {t,,},>1 C [0, T},) and a positive constant M > 0 such
that
Hm ty = T, (3.12)

n—-+o0o
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sup ||u(t,)||rz < M. (3.13)
neN
Thus for any t,, € {t, },>1, by the estimate (3.13)) and the local existence theorem,
there exists a positive constant T'(M) independent on ¢,, such that we can construct
a solution

u€ X = C([tn, tn + T(M)); L*(RY)) N L7 ([tn, tn + T(M)); L (RY));

to the integral equation (2.1f). Moreover, since the limit of {¢,},>1 exists, we can
take t,, € [0,T,,) such that T,, — T(;W) < tp < Tp,. For this t,, € [0,T,,), we can also
construct a solution v € X. But the estimate ¢, + T (M) > T,, is a contradiction

to the definition of T},,. Therefore we obtain

liminf ||u(t)|| L2 = o0,
T,

—Tm

which completes the proof. ([l
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