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EXISTENCE OF SOLUTIONS TO SECOND-ORDER NONLINEAR
COUPLED SYSTEMS WITH NONLINEAR COUPLED

BOUNDARY CONDITIONS

IMRAN TALIB, NASEER AHMAD ASIF, CEMIL TUNC

Abstract. In this article, study the existence of solutions for the second-order

nonlinear coupled system of ordinary differential equations

u′′(t) = f(t, v(t)), t ∈ [0, 1],

v′′(t) = g(t, u(t)), t ∈ [0, 1],

with nonlinear coupled boundary conditions

φ(u(0), v(0), u(1), v(1), u′(0), v′(0)) = (0, 0),

ψ(u(0), v(0), u(1), v(1), u′(1), v′(1)) = (0, 0),

where f, g : [0, 1]× R → R and φ, ψ : R6 → R2 are continuous functions. Our

main tools are coupled lower and upper solutions, Arzela-Ascoli theorem, and
Schauder’s fixed point theorem. The results presented in this article extend

those in [1, 3, 15].

1. Introduction

The applications of nonlinear differential equations can be seen in natural sci-
ences including the treatment of problems in classical statistic, population dy-
namics, chemical kinetics, combustion theory, mechanics, optimal control, ecology,
biotechnology, harvesting [9, 14]. Many physical problems can be modeled using
nonlinear differential equations. For example, the dynamics of a pendulum under
influence of gravity is discussed using second order dimensionless nonlinear differ-
ential equation.

The lower and upper solution technique has been widely investigated in study-
ing boundary value problems (BVPs) of differential equations. The idea was firmly
established by the work of Perron [10] on the Dirichlet problem for harmonic func-
tions. In late 1960s, Jackson [6] established the theory for treating BVPs of second
order nonlinear ordinary differential equations. Remarkable contributions were also
made by Schmitt in [11]. In 1973, Gudkov [4] studied the applications of lower and
upper solutions to nonlinear boundary conditions for a second order problems;
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Zhang [13] discussed some notable applications to characterize the existence of pos-
itive solutions to the Dirichlet problem of a type of sublinear differential equations.

Recently an increasing interest has been observed in investigating the existence
of positive solutions for differential equations with nonlinear boundary conditions
using coupled lower and upper solutions approach. The reader can see [3] and
reference therein. In these articles, the monotonicity assumptions are imposed on
the functions that defined nonlinear boundary conditions to generalize the classical
results of linear boundary and initial conditions.

The study of system of BVPs has also attracted many authors. The reader can
study [1, 5, 7, 12] and references therein; Zhou and Xu [15] established the existence
and multiplicity of positive solutions of the following nonlinear coupled system of
BVPs

−u′′(t) = f(t, v(t)), t ∈ (0, 1),

−v′′(t) = g(t, u(t)), t ∈ (0, 1),

u(0) = v(0) = 0,

αu(η) = u(1), αv(η) = v(1), η ∈ (0, 1), 0 < αη < 1,

(1.1)

by applying the fixed point index theory in cones. Asif and Khan [1] investigated the
existence of a positive solution to the following four-point coupled boundary-value
problem

−x′′(t) = f(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t), y(t)), t ∈ (0, 1),

x(0) = 0, x(1) = αy(ξ),

y(0) = 0, y(1) = βx(η),

(1.2)

where ξ, η ∈ (0, 1), 0 < αβξη < 1, f, g : [0, 1] × [0,∞) × [0,∞) → [0,∞) are
continuous and allowed to be singular at t = 0 and t = 1.

Motivated by the works in [1, 3, 15], we consider the existence of the solution of
the following nonlinear coupled system

u′′(t) = f(t, v(t)), t ∈ [0, 1],

v′′(t) = g(t, u(t)), t ∈ [0, 1],
(1.3)

with nonlinear coupled boundary conditions (CBCs)

φ(u(0), v(0), u(1), v(1), u′(0), v′(0)) = (0, 0),

ψ(u(0), v(0), u(1), v(1), u′(1), v′(1)) = (0, 0),
(1.4)

where f, g : [0, 1]× R→ R and φ, ψ : R6 → R2 are continuous functions.
Our proposed work is new and a productive addition in the existing literature

of nonlinear CBCs. The results presented in [1, 3, 15] are extended in our work. In
[15], the coupling is defined in the differential system only but not in the boundary
conditions. But our problem (1.3)-(1.4) deals with the case where the coupling is
not only in the differential system (1.3) but also in the boundary conditions (1.4).
In [3], the idea of the coupled lower and upper solutions is discussed for a single
differential equation but in our case it is extended for the system of differential
equations (1.3). In [1], the coupling is discussed not only in the differential system
but also in the boundary conditions. However, Asif and Khan [1] did not generalize
the classical results. We mean to say that the existence results discussed in [1] dealt
with specific type of boundary conditions. On the other hand, we took boundary
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conditions (1.4) in a generalized way. That is (1.4) generalizes most of the usual
linear boundary conditions. For instance, if φ(j, k, l,m, n, o) = (S − j,W − k)
and ψ(j, k, l,m, n, o) = (X − l, Y − m) with S,W,X, Y ∈ R, then (1.4) implies
the Dirichlet boundary conditions. Similarly, if φ(j, k, l,m, n, o) = (n − S, o −W )
and ψ(j, k, l,m, n, o) = (X − n, Y − o), then (1.4) implies the Neumann boundary
conditions.

Definitely in order to obtain a solution satisfying some boundary conditions and
lying between a subsolution and a supersolution some more conditions are needed.
For example for the Dirichlet case, it suffices that

α1(0) ≤ S ≤ β1(0), α2(0) ≤W ≤ β2(0),

α1(1) ≤ X ≤ β1(1), α2(1) ≤ Y ≤ β2(1),
(1.5)

and for the Neumann case, it suffices that

β′1(0) ≤ S ≤ α′1(0), β′2(0) ≤W ≤ α′2(0),

α′1(1) ≤ X ≤ β′1(1), α′2(1) ≤ Y ≤ β′2(1).
(1.6)

Definition 1.1. We say that a couple of functions (α1, α2) ∈ C2[0, 1]× C2[0, 1] is
a subsolution of (1.3) if

α′′1(t) ≥ f(t, α2(t)), t ∈ [0, 1],

α′′2(t) ≥ g(t, α1(t)), t ∈ [0, 1].
(1.7)

In the same way, a supersolution is a couple of functions (β1, β2) ∈ C2[0, 1] ×
C2[0, 1] that satisfies the reversed inequalities in (1.7). In what follows we will write
(α1, α2) � (β1, β2), if α1(t) ≤ β1(t) and α2(t) ≤ β2(t), for all t ∈ [0, 1].

For u, v ∈ C2[0, 1], we define the set

[u, v] = {w ∈ C2[0, 1] : u(t) ≤ w(t) ≤ v(t), t ∈ [0, 1]}.

This article is organized as follows. In Section 2, we study the second order non-
linear coupled system of BVPs along with definitions of lower and upper solutions
that generalize the most of the usual linear boundary conditions. Moreover, we
prove new existence results assuming the functions φ and ψ in (1.4) are monotone.
In Section 3, examples are included to show the applicability of our results. In
Section 4, the conclusion of the article is presented. Here

C2
0 [0, 1] = {w ∈ C2[0, 1] : w(0) = 0}.

The following lemma is very much helpful in proving Theorem 2.2.

Lemma 1.2. Let L : C1[0, 1]× C1[0, 1]→ C2
0 [0, 1]× C2

0 [0, 1]× R2 × R2 be defined
by

[L(u, v)](t) =
(
u′(t)− u′(0)− λ

∫ t

0

u(s)ds, v′(t)− v′(0)− λ
∫ t

0

v(s) ds,

(au(0) + bu(1), cv(0) + dv(1)), (Eu(0) + Fu(1), Gv(0) +Hv(1))
)
,

(1.8)
where λ, a, b, c, d, E, F,G and H are real constants with λ > 0, such that

(ad− bc)(EH − FG)
(
e−
√
λ − e

√
λ
)
6= 0,
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Then L−1 exists and is continuous and is defined by

[L−1(y, z, γ, δ, µ, ζ)]

=
(
C1e

√
λt + C2e

−
√
λt +

1
2

∫ t

0

e
√
λ(t−s)y(s) ds+

1
2

∫ t

0

e
√
λ(s−t)y(s) ds,

C3e
√
λt + C4e

−
√
λt +

1
2

∫ t

0

e
√
λ(t−s)z(s) ds+

1
2

∫ t

0

e
√
λ(s−t)z(s) ds

)
,

(1.9)

with

C1 =
1

(ad− bc)(e
√
λ − e−

√
λ)

(
2δ(a+ be−

√
λ)− d(a+ be−

√
λ)

×
∫ 1

0

e
√
λ(1−s)y(s)ds+ d(a+ be−

√
λ)
∫ 1

0

e
√
λ(s−1)y(s)ds

− 2γ(c+ de−
√
λ) + b(c+ de−

√
λ)
∫ 1

0

e
√
λ(1−s)y(s)ds

− b(c+ de−
√
λ)
∫ 1

0

e
√
λ(s−1)y(s)ds

)
,

C2 =
1

(ad− bc)(e−
√
λ − e

√
λ)

(
2δ(a+ be

√
λ)− d(a+ be

√
λ)

×
∫ 1

0

e
√
λ(1−s)y(s)ds+ d(a+ be

√
λ)
∫ 1

0

e
√
λ(s−1)y(s)ds

− 2γ(c+ de
√
λ) + b(c+ de

√
λ)
∫ 1

0

e
√
λ(1−s)y(s)ds

− b(c+ de
√
λ)
∫ 1

0

e
√
λ(s−1)y(s)ds

)
,

C3 =
1

(EH − FG)(e
√
λ − e−

√
λ)

(
2ζ(E + Fe−

√
λ)−H(E + Fe−

√
λ)

×
∫ 1

0

e
√
λ(1−s)z(s)ds+ F (E + Fe−

√
λ)
∫ 1

0

e
√
λ(s−1)z(s)ds

− 2µ(G+He−
√
λ) + F (G+He−

√
λ)
∫ 1

0

e
√
λ(1−s)z(s)ds

− F (G+He−
√
λ)
∫ 1

0

e
√
λ(s−1)z(s)ds

)
,

and

C4 =
1

(EH − FG)(e−
√
λ − e

√
λ)

(
2ζ(E + Fe

√
λ)−H(E + Fe

√
λ)

×
∫ 1

0

e
√
λ(1−s)z(s)ds+ F (E + Fe

√
λ)
∫ 1

0

e
√
λ(s−1)z(s)ds

− 2µ(G+He
√
λ) + F (G+He

√
λ)
∫ 1

0

e
√
λ(1−s)z(s)ds

− F (G+He
√
λ)
∫ 1

0

e
√
λ(s−1)z(s)ds

)
.
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Proof. Choose

y(t) = u′(t)− u′(0)− λ
∫ t

0

u(s) ds, (1.10)

z(t) = v′(t)− v′(0)− λ
∫ t

0

v(s) ds, (1.11)

γ = au(0) + bu(1), (1.12)

δ = cv(0) + dv(1), (1.13)

µ = Eu(0) + Fu(1), (1.14)

ζ = Gv(0) +Hv(1). (1.15)

In light of (1.10)–(1.15), (1.8) can also be written as

[L(u, v)](t) = (y(t), z(t), (γ, δ), (µ, ζ)). (1.16)

Differentiating (1.10) with respect to t, we have

y′(t) = u′′(t)− λu(t), λ > 0. (1.17)

The general solution of (1.17) can be easily determined using variation of parame-
ters technique along with integration by parts and taking limits of integration from
0 to t, we have

u(t) = C1e
√
λt + C2e

−
√
λt +

1
2

∫ t

0

e
√
λ(t−s)y(s)ds+

1
2

∫ t

0

e
√
λ(s−t)y(s)ds. (1.18)

C1 and C2 can be easily determined with the help of (1.12) and (1.13) as

γ = (a+ be
√
λ)C1 + (a+ be−

√
λ)C2 +

b

2

(∫ 1

0

e
√
λ(1−s)y(s)ds+ e

√
λ(s−1)y(s)ds

)
,

δ = (c+ de
√
λ)C1 + (c+ de−

√
λ)C2 +

d

2

(∫ 1

0

e
√
λ(1−s)y(s)ds+ e

√
λ(s−1)y(s)ds

)
.

(1.19)
Solving the system of equations (1.19), we have

C1 =
1

(ad− bc)(e
√
λ − e−

√
λ)

(
2δ(a+ be−

√
λ)− d(a+ be−

√
λ)

×
∫ 1

0

e
√
λ(1−s)y(s)ds+ d(a+ be−

√
λ)
∫ 1

0

e
√
λ(s−1)y(s)ds

− 2γ(c+ de−
√
λ) + b(c+ de−

√
λ)
∫ 1

0

e
√
λ(1−s)y(s)ds

− b(c+ de−
√
λ)
∫ 1

0

e
√
λ(s−1)y(s)ds

)
,

(1.20)
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and

C2 =
1

(ad− bc)(e−
√
λ − e

√
λ)

(
2δ(a+ be

√
λ)− d(a+ be

√
λ)

×
∫ 1

0

e
√
λ(1−s)y(s)ds+ d(a+ be

√
λ)
∫ 1

0

e
√
λ(s−1)y(s)ds

− 2γ(c+ de
√
λ) + b(c+ de

√
λ)
∫ 1

0

e
√
λ(1−s)y(s)ds

− b(c+ de
√
λ)
∫ 1

0

e
√
λ(s−1)y(s)ds

)
.

(1.21)

Similarly on the same line, it can be easily shown that

v(t) = C3e
√
λt + C4e

−
√
λt +

1
2

∫ t

0

e
√
λ(t−s)z(s)ds+

1
2

∫ t

0

e
√
λ(s−t)z(s)ds, (1.22)

with

C3 =
1

(EH − FG)(e
√
λ − e−

√
λ)

(
2ζ(E + Fe−

√
λ)−H(E + Fe−

√
λ)

×
∫ 1

0

e
√
λ(1−s)z(s)ds+ F (E + Fe−

√
λ)
∫ 1

0

e
√
λ(s−1)z(s)ds

− 2µ(G+He−
√
λ) + F (G+He−

√
λ)
∫ 1

0

e
√
λ(1−s)z(s)ds

− F (G+He−
√
λ)
∫ 1

0

e
√
λ(s−1)z(s)ds

)
,

(1.23)

and

C4 =
1

(EH − FG)(e−
√
λ − e

√
λ)

(
2ζ(E + Fe

√
λ)−H(E + Fe

√
λ)

×
∫ 1

0

e
√
λ(1−s)z(s)ds+ F (E + Fe

√
λ)
∫ 1

0

e
√
λ(s−1)z(s)ds

− 2µ(G+He
√
λ) + F (G+He

√
λ)
∫ 1

0

e
√
λ(1−s)z(s)ds

− F (G+He
√
λ)
∫ 1

0

e
√
λ(s−1)z(s)ds

)
.

(1.24)

Equation (1.16) can also be written as

(u(t), v(t)) = [L−1(y(t), z(t), (γ, δ), (µ, ζ))]. (1.25)

Hence (1.18)-(1.25) prove the required result. �

2. Coupled lower and upper solutions

The following definition is very helpful for constructing the statement of the main
result Theorem 2.2; also it covers different possibilities for the nonlinear functions
φ and ψ.

Definition 2.1. We say that (α1, α2), (β1, β2) ∈ C2[0, 1]×C2[0, 1] are coupled lower
and upper solutions for the problem (1.3) and (1.4) if (α1, α2) is a subsolution and
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(β1, β2) is a supersolution for the system (1.3) such that

φ(β1(0), β2(0), β1(1), β2(1), β′1(0), β′2(0))

� (0, 0) � φ(α1(0), α2(0), α1(1), α2(1), α′1(0), α′2(0))

φ(β1(0), β2(0), α1(1), α2(1), β′1(0), β′2(0))

� (0, 0) � φ(α1(0), α2(0), β1(1), β2(1), α′1(0), α′2(0)),

ψ(β1(0), β2(0), β1(1), β2(1), β′1(1), β′2(1))

� (0, 0) � ψ(α1(0), α2(0), α1(1), α2(1), α′1(1), α′2(1))

ψ(α1(0), α2(0), β1(1), β2(1), β′1(1), β′2(1))

� (0, 0) � ψ(β1(0), β2(0), α1(1), α2(1), α′1(1), α′2(1)).

(2.1)

Theorem 2.2. Assume that (α1, α2), (β1, β2) are coupled lower and upper solutions
for the problem (1.3)-(1.4). Suppose that the functions φ and ψ are monotone
nondecreasing and nonincreasing in the fifth and sixth arguments respectively. In
addition, suppose that the functions

φα(x, y) := φ(α1(0), α2(0), x, y, α′1(0), α′2(0)),

φβ(x, y) := φ(β1(0), β2(0), x, y, β′1(0), β′2(0)),

are monotone on [α1(1), β1(1)]× [α2(1), β2(1)] and that the functions

ψα(x, y) := ψ(x, y, α1(1), α2(1), α′1(1), α′2(1)),

ψβ(x, y) := ψ(x, y, β1(1), β2(1), β′1(1), β′2(1)),

are monotone on [α1(0), β1(0)]× [α2(0), β2(0)].
Then there exists at least one solution (u, v) ∈ [α1, β1] × [α2, β2] of problem

(1.3)-(1.4).

Proof. Let λ > 0 and consider the modified system

u′′(t)− λu(t) = F ∗(t, u(t), v(t)), t ∈ [0, 1],

v′′(t)− λv(t) = G∗(t, u(t), v(t)), t ∈ [0, 1],

φ∗(u(0), v(0), u(1), v(1), u′(0), v′(0)) = (u(0), v(0)),

ψ∗(u(0), v(0), u(1), v(1), u′(1), v′(1)) = (u(1), v(1)),

(2.2)

with

F ∗(t, u(t), v(t)) =



f(t, β2(t))− λβ1(t) if v(t) > β2(t), u(t) > β1(t),
f(t, v(t))− λβ1(t) if α2(t) ≤ v(t) ≤ β2(t), u(t) > β1(t),
f(t, α2(t))− λβ1(t) if v(t) < α2(t), u(t) > β1(t),
f(t, β2(t))− λu(t) if v(t) > β2(t), α1(t) ≤ u(t) ≤ β1(t),
f(t, v(t))− λu(t) if α2(t) ≤ v(t) ≤ β2(t),

α1(t) ≤ u(t) ≤ β1(t),
f(t, α2(t))− λu(t) if v(t) < α2(t), α1(t) ≤ u(t) ≤ β1(t),
f(t, β2(t))− λα1(t) if v(t) > β2(t), u(t) < α1(t),
f(t, v(t))− λα1(t) if α2(t) ≤ v(t) ≤ β2(t), u(t) < α1(t),
f(t, α2(t))− λα1(t) if v(t) < α2(t), u(t) < α1(t),
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and

G∗(t, u(t), v(t)) =



g(t, β1(t))− λβ2(t) if v(t) > β2(t), u(t) > β1(t),
g(t, u(t))− λβ2(t) if α1(t) ≤ u(t) ≤ β1(t), v(t) > β2(t),
g(t, α1(t))− λβ2(t) if u(t) < α1(t), v(t) > β2(t),
g(t, β1(t))− λv(t) if u(t) > β1(t), α2(t) ≤ v(t) ≤ β2(t),
g(t, u(t))− λv(t) if α1(t) ≤ u(t) ≤ β1(t),

α2(t) ≤ v(t) ≤ β2(t),
g(t, α1(t))− λv(t) if u(t) < α1(t), α2(t) ≤ v(t) ≤ β2(t),
g(t, β1(t))− λα2(t) if u(t) > β1(t), v(t) < α2(t),
g(t, u(t))− λα2(t) if α1(t) ≤ u(t) ≤ β1(t), v(t) < α2(t),
g(t, α1(t))− λα2(t) if u(t) < α1(t), v(t) < α2(t),

φ∗(j, k, l,m, n, o) = p(0, (j, k) + φ(j, k, l,m, n, o)),

ψ∗(j, k, l,m, n, o) = p(1, (l,m) + ψ(j, k, l,m, n, o)),

and

p(t, (x, y)) =


(β1(t), β2(t)) if (x, y) � (β1(t), β2(t)),
(x, y) if (α1(t), α2(t)) � (x, y) � (β1(t), β2(t)),
(α1(t), α2(t)) if (x, y) � (α1(t), α2(t)) .

Note that if (u, v) ∈ [α1, β1]× [α2, β2] is a solution of (2.2), then (u, v) is a solution
of (1.3)-(1.4). For the sake of simplicity we divide the proof into three steps:
Step 1: We define the mappings

L,N : C1[0, 1]× C1[0, 1]→ C2
0 [0, 1]× C2

0 [0, 1]× R2 × R2,

by

[L(u, v)](t) =
(
u′(t)− u′(0)− λ

∫ t

0

u(s) ds, v′(t)− v′(0)− λ
∫ t

0

v(s) ds,

(u(0), v(0)), (u(1), v(1))
)
,

and

[N(u, v)](t) =
(∫ t

0

F ∗(s, u(s), v(s))ds,
∫ t

0

G∗(s, u(s), v(s))ds,

φ∗(u(0), v(0), u(1), v(1), u′(0), v′(0)),

ψ∗(u(0), v(0), u(1), v(1), u′(1), v′(1))
)
.

Since F ∗(s, u(s), v(s)) and G∗(s, u(s), v(s)) are bounded on [0, 1] × R2 and inte-
gral is a continuous function on [0, 1]. Further φ∗ and ψ∗ being constant func-
tions are continuous. Therefore [N(u, v)] is continuous on [0, 1]. Further, the class
{N(u, v) : u, v ∈ C1[0, 1]} is uniformly bounded and equicontinuous. Therefore
in view of Arzela-Ascoli theorem {N(u, v) : u, v ∈ C1[0, 1]} is relatively compact.
Consequently N is a compact map. Also from Lemma 1.2 with a = 1, b = 0,
c = 1, d = 0 and E = 0, F = 1, G = 0, H = 1, L−1, exists and is continuous.

On the other hand, solving (2.2) is equivalent to find a fixed point of

L−1N : C1[0, 1]× C1[0, 1]→ C1[0, 1]× C1[0, 1].
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Now, Schauder’s fixed point theorem guarantees the existence of at least a fixed
point since L−1N is continuous and compact.
Step 2: If (u, v) is a solution of (2.2), then (u, v) ∈ [α1, β1] × [α2, β2]. We claim
that (u, v) � (β1, β2). If (u, v) � (β1, β2), then either u � β1 and/or v � β2.
If u � β1, then u − β1 attains a positive maximum at some t0 ∈ [0, 1]. Clearly,
u(t0)− β1(t0) > 0. Thus (u− β1)′(t0) = 0 and (u− β1)′′(t0) < 0. But,

(u− β1)′′(t0) > F ∗(t0, u(t0), v(t0)) + λu(t0)− f(t0, β2(t0))

= f(t0, β2(t0))− λβ1(t0) + λu(t0)− f(t0, β2(t0))

= λ(u(t0)− β1(t0)) > 0,

a contradiction. Similarly, one can show that (α1, α2) � (u, v). Hence (u, v) ∈
[α1, β1]× [α2, β2].
Step 3: If (u, v) is a solution of (2.2), then (u, v) satisfies (1.4). We claim that

(α1(0), α2(0)) � (u(0), v(0)) + φ(u(0), v(0), u(1), v(1), u′(0), v′(0)) � (β1(0), β2(0)).
(2.3)

If (u(0), v(0)) + φ(u(0), v(0), u(1), v(1), u′(0), v′(0)) � (β1(0), β2(0)), then

(u(0), v(0)) = φ∗(u(0), v(0), u(1), v(1), u′(0), v′(0))

= p(0, (u(0), v(0)) + φ(u(0), v(0), u(1), v(1), u′(0), v′(0)))

= (β1(0), β2(0)).

From Step 2, we know that (u, v) � (β1, β2), and this together with (u − β1, v −
β2) ∈ C2[0, 1] × C2[0, 1] and (u(0), v(0)) = (β1(0), β2(0)) yields u′(0) ≤ β′1(0) and
v′(0) ≤ β′2(0). If φβ(x, y) is monotone nonincreasing, then

(u(0), v(0)) + φ
(
u(0), v(0), u(1), v(1), u′(0), v′(0)

)
= (β1(0), β2(0)) + φ

(
β1(0), β2(0), u(1), v(1), u′(0), v′(0)

)
� (β1(0), β2(0)) + φ

(
β1(0), β2(0), u(1), v(1), β′1(0), β′2(0)

)
= (β1(0), β2(0)) + φβ(u(1), v(1))

� (β1(0), β2(0)) + φβ(α1(1), α2(1))

= (β1(0), β2(0)) + φ
(
β1(0), β2(0), α1(1), α2(1), β′1(0), β′2(0)

)
� (β1(0), β2(0)),

(2.4)

a contradiction. Similarly, if φβ(x, y) is monotone nondecreasing, then we get same
contradiction. Consequently, (2.3) holds. Similar reasoning shows the other bound-
ary condition. Consequently, (u, v) satisfies (1.4). Hence the system of BVPs (1.3)-
(1.4) has a solution (u, v) ∈ [α1, β1]× [α2, β2]. �

3. Examples

Example 3.1. Consider the differential equations

u′′(t) = v(t) + sin(t), t ∈ [0, 1],

v′′(t) = u3(t) + cos(t), t ∈ [0, 1],
(3.1)

with the nonlinear coupled boundary conditions(
u

1
2n+1 (1)− v(0), v

1
2n+1 (1)− u(0)

)
= (0, 0), n ∈ N,

(u′(1)− v2n+1(1), v′(1)− u2n+1(1)) = (0, 0), n ∈ N.
(3.2)
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Let α1(t) = sin(t)− 5, α2(t) = sin(t)− 6 and β1(t) = sin(t) + 5, β2(t) = sin(t) + 6.
It is easy to show that (α1, α2), (β1, β2) are subsolution and supersolution of the
system (3.1), respectively. Further, (α1, α2), (β1, β2) satisfies the system (2.1).
Hence by Theorem 2.2, the system of BVPs (3.1)-(3.2) has at least one solution
(u, v) ∈ [α1, β1]× [α2, β2].

Example 3.2. Consider the differential equations

u′′(t) = v3(t)− 10
√

sin(t), t ∈ [0, 1],

v′′(t) = u3(t)− 8
√

cos(t− 1), t ∈ [0, 1],
(3.3)

with the nonlinear coupled boundary conditions(
u(0)u(1)− v(0)v(1), u(0)u′(0)− v(0)v′(0)

)
= (0, 0),(

u(0)u′(1)− v(0)v(1), u(1)u′(1)− v(1)v′(1)
)

= (0, 0).
(3.4)

Let α1(t) = − t
3

2 , α2(t) = − t
5

3 and β1(t) = t+2, β2(t) = t+3. It is easy to show that
(α1, α2), (β1, β2) are subsolution and supersolution of system (3.3), respectively.
Further, (α1, α2), (β1, β2) satisfies system (2.1). Hence by Theorem 2.2, system of
BVPs (3.3)-(3.4) has at least one solution (u, v) ∈ [α1, β1]× [α2, β2].

Conclusion. In this article, the existence of the solution of the second order non-
linear coupled system with nonlinear (CBCs) is investigated using coupled lower
and upper solutions approach. We extend the work presented in [1, 3, 15] and the
boundary conditions (1.4) generalize most of the linear and nonlinear boundary
conditions [2, 8]. Furthermore, the concept of coupled lower and upper solutions
is defined in Section 2 that verifies the classical results (1.5)-(1.6). Some examples
are taken to ensure the validity of the theoretical results.

Acknowledgments. The authors wan to thank the anonymous referees for their
valuable suggestions that improved the quality of the article. They are also thankful
to Ms. Saria Kazmi- an instructor in VUP- for her corrections for the grammatical
and language mistakes.

References

[1] N. A. Asif, R. A. Khan; Positive solutions to singular system with four-point coupled boundary

conditions, J. Math. Anal. Appl., 386 (2012), no. 2, 848–861.

[2] A. Cabada; An overview of the lower and upper solutions method with nonlinear boundary
value conditions, Boundary value problems, Volume 2011, Article ID 893753, 18 pages.

[3] D. Franco, D. O’Regan; A new upper and lower solutions approach for second order problems

with nonlinear boundary conditions, Arch. Inequal. Appl., 1 (2003), no. 3-4, 413-419.
[4] V. V. Gudkov, A. J. Lepin; A necessary and sufficient condition for the solvability of cer-

tain boundary value problems for a secondorder differential equation, Soviet. Math. Dokl.,

14(1973), 800–803.
[5] L. Hu, L. Wang; Multiple positive solutions of boundary value problems for systems of non-

linear second-order differential equations, J. Math. Anal. Appl., 335 (2007), no. 2, 1052-1060.

[6] L. K. Jackson; Subfunctions and second-order ordinary differential inequalities, Advances in
Math., 2 (1968), 307-363.

[7] G. C. Jau, Guo-Chin, Y. H. Chang; The upper-lower solution method for the coupled system
of first order nonlinear PDEs, J. Math. Anal. Appl., 401 (2013), no. 1, 367-378.

[8] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala; Monotone iterative techniques for nonlinear

differentil equations, Monographs, Advanced Texts and Surveys in Pure and Applied Mathe-
matics, 27. Pitman (Advanced Publishing Program), Boston, MA: distributed by John Wiley

and Sons, Inc., New York, 1985.



EJDE-2015/313 COUPLED SYSTEMS WITH NONLINEAR CBCS 11

[9] J. J. Nieto; Periodic boundary value problems for first-order impulsive ordinary differential

equations, Nonlinear Anal., 51 (2002), 1223-1232.

[10] O. Perron; Oskar Eine neue Behandlung der ersten Randwertaufgabe für ∆u = 0 (in Ger-
man), Math. Z., 18 (1923), no. 1, 42-54. .

[11] K. Schmitt; A nonlinear boundary value problem, J. Differential Equations, 7 (1970), 527-537.

[12] H. Wang; On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl.,
281 (2003), no. 1, 287-306.

[13] Y. Zhang; Positive solutions of singular sublinear Dirichlet boundary value problems, SIAM

J. Math. Anal., 26 (1995), no. 2, 329-339.
[14] W. Zhang; M. Fan; Periodicity in a generalized ecological competition system governed by

impulsive differential equations with delays, Math. Comput. Modelling., 39 (2004), 479-493.

[15] Y. Zhou, Y. Xu; Positive solutions of three-point boundary value problems for systems of
nonlinear second order ordinary differential equations, J. Math. Anal. Appl., 320 (2006), no.

2, 578-590.

Imran Talib
Department of Mathematics, School of Science, University of Management and Tech-

nology, CII Johar Town, Lahore, Pakistan

E-mail address: imrantaalib@gmail.com

Naseer Ahmad Asif

Department of Mathematics, School of Science, University of Management and Tech-
nology, CII Johar Town, Lahore, Pakistan

E-mail address: naseerasif@yahoo.com

Cemil Tunc

Department of Mathematics Faculty of Sciences, Yuzuncu Yil University, Van - Turkey

E-mail address: cemtunc@yahoo.com


	1. Introduction
	2. Coupled lower and upper solutions
	3. Examples
	Conclusion
	Acknowledgments

	References

