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MULTIPLE POSITIVE SOLUTIONS FOR SUPERLINEAR
KIRCHHOFF TYPE PROBLEMS ON RN

YU DUAN, CHUN-LEI TANG

Abstract. In this article, we study the multiplicity of positive solutions for
a class of Kirchhoff type problems depending on two real functions and a non-

negative parameter on an unbounded domain. Using the variational method

and iterative techniques, we show that if the nonlinearity is subcritical and
superlinear at zero and infinity, then the Kirchhoff type problems admits at

least two positive solutions when the parameter is sufficiently small.

1. Introduction

The purpose of this article is to sutdy the multiplicity of positive solutions to
the nonlinear Kirchhoff type problem(
a+λm

(∫
RN

(|∇u|2 + bu2)dx
))

(−∆u+ bu) = f(u)+h(x)|u|q−2u, in RN , (1.1)

where N ≥ 3, 1 < q < 2, a, b are positive constants, λ ≥ 0 is a parameter, and
m, f, h are positive continuous functions.

Problem (1.1) is related to the stationary analogue of the Kirchhoff equation

utt − (a+ b

∫
Ω

|∇u|2dx)∆u = f(x, u) (1.2)

which was proposed by Kirchhoff in 1883 [14] as a generalization of the well-known
d’Alembert’s equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= f(x, u)

for free vibrations of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. Here, L is the
length of the string, h is the area of the cross section, E is the Young modulus of
the material, ρ is the mass density and P0 is the initial tension. The readers can
find some early classical research of Kirchhoff’s equations in [4, 22]. However, (1.2)
received great attention only after Lions [18] proposed an abstract framework to
the problem. Some interesting results for problem (1.2) can be found in [1, 5, 10]
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and the references therein. More recently some mathematicians study the following
Kirchhoff type problems on bounded domain

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u), in Ω,

u = 0, on ∂Ω.
(1.3)

Some interesting studies for problem (1.3) by variational methods can be found in
[2, 9, 17, 20, 21, 24, 28, 29] and the references therein. Especially, the authors [28]
studied the existence of positive solution for Kirchhoff type problem on bounded
domain using iterative techniques and variational methods.

Recently, authors have studied widely Kirchhoff type problems under various
conditions on f and V on the whole space RN :(

a+ λ
(∫

RN
(|∇u|2 + V (x)u2)dx

))(
−∆u+ V (x)u

)
= f(x, u), in RN . (1.4)

When f(x, u) = |u|p−2u, p ∈ (2, 2∗), Huang and Liu [12] considered (1.4) and stud-
ied existence and nonexistence of positive solution by variational methods; they
also discussed the energy doubling property of nodal solutions by Nehari manifold.
The results in [12] complement the corresponding results in [15, 16]. Li and Ye [15]
showed that (1.4) has no nontrivial solution provided f(x, u) = |u|p−2u, p ∈ (2, 3)
when λ > 0 is sufficiently large. If V (x) = b and f(x, u) = f(u) is superlinear at
infinity, Li, Li and Shi [16] showed that (1.4) has at least one positive radial solution
for λ > 0 sufficiently small. Wu, Huang and Liu [26] gave a total description on
the positive solutions to (1.4), and they made an observation on the sign-changing
solutions. When f(x, u) is asymptotically linear with respect to u at infinity, Ye
and Yin [27] studied (1.4) and proved the existence of positive solution for λ suf-
ficiently small and the nonexistence result for λ sufficiently large. Very recently,
some authors extend the problem (1.4) to the p-Kirchhoff elliptic equations, see e.g.
[6, 7, 8, 19] and the references therein.

In the spirit of [16, 28], for any continuous function m, we establish a multiplicity
criterion of positive radial solutions to (1.1) using a variational method and an
iterative technique. The main result of this article reads as follows.

Theorem 1.1. Assume that N ≥ 3, and a, b are positive constants, λ ≥ 0 is a
parameter and the following conditions hold:

(H1) f ∈ C(R+,R+) and there are positive constants c and p ∈ (2, 2∗) such that
f(t) ≤ c(1 + tp−1) for t ≥ 0, where 2∗ = 2N

N−2 for N ≥ 3;

(H2) limt→0
f(t)
t = 0;

(H3) limt→∞
f(t)
t =∞;

(H4) 0 ≤ h(x) = h(|x|) ∈ Lq′(RN ), 〈∇h(x), x〉 ∈ Lq′(RN ), where q′ = 2∗

2∗−q , 〈·, ·〉
denotes the usual inner product in RN and 1 < q < 2.

Then for any positive continuous function m, there exist two constants λ̃ > 0 and
m0 > 0 such that for any λ ∈ [0, λ̃), problem (1.1) has at least two positive solutions
if ‖h‖q′ < m0.

Since the result in Theorem 1.1 holds for m(t) = t, our result generalizes [16,
Theorem 1.1]. In this paper, we give multiplicity results for the positive solutions
of (1.1), while the authors [16] only studied the existence of positive solutions.
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Furthermore, our method is different from that used in [16], we combine variational
methods and iterative technique.

Our result can be regarded as an extension of the bounded case considered in
[28] to the unbounded case. Also we give two positive solutions, while the authors
[28] only studied the existence of positive solutions.

This article is organized as follows: In Section 2, we give some preliminaries. In
Section 3 and 4 we present the proofs of the main results. Through out this paper,
C,Ci are used in various places to denote distinct constants.

2. Preliminaries

Let H1(RN ) be the usual Sobolev space equipped with the inner product and
norm

〈u, v〉 =
∫

RN
(∇u · ∇v + buv)dx, ‖u‖ = 〈u, u〉 12 .

We denote by ‖ · ‖p the usual Lp(RN ) norm. We only consider positive solutions to
(1.1), and we assume that f(t) = 0 for t < 0

To obtain our result, we have to overcome various difficulties. On one hand, it
is well known that Sobolev embedding H1(RN ) ↪→ Lp(RN ) is continuous but not
compact for p ∈ [2, 2∗], and then it is usually difficult to prove that a minimizing
sequence or a Palais-Smale sequence is strongly convergent if we seek solutions
of (1.1) by variational methods. To overcome this difficulty, we usually restrict
problem (1.1) in the radial function space. Let H = H1

r (RN ) be the subspace
of H1(RN ) containing only the radial functions. We recall [25], H ↪→ Lp(RN )
compactly (continuously) for p ∈ (2, 2∗)(p ∈ [2, 2∗]). That is, there exists a γp > 0
such that ‖u‖p ≤ γp‖u‖, p ∈ [2, 2∗]. On the other hand, the nonlinearity f may not
satisfy (AR) or 4-superlinearity, it is difficult to get the boundedness of any (PS)
sequence even if a (PS) sequence has been obtained. To overcome this difficulty,
we use a “freezing” technique whose formulation appears initially in [11]. This
technique will help us to change problem (1.1) into semilinear equation. That is,
for each fixed ω ∈ H, we consider the “freezing” problem given by(

a+ λm
(∫

RN
(|∇ω|2 + bω2)dx

))(
−∆u+ bu

)
= f(u) + h(x)|u|q−2u, in RN ,

and the associated function Jω : H → R is defined by

Jω(u) =
1
2
(
a+ λm(‖ω‖2)

)
‖u‖2 −

∫
RN

F (u)dx− 1
q

∫
RN

h(x)|u|qdx, u ∈ H,

where F (t) =
∫ t

0
f(s)ds. Clearly, by the assumptions imposed on f , h and m, we

know that Jω(u) is well defined on H, it is of class C1 for all λ ≥ 0, and

〈J ′ω(u), v〉 =
(
a+ λm(‖ω‖2)

) ∫
RN

(∇u · ∇v + buv)dx−
∫

RN
f(u)v dx

−
∫

RN
h(x)|u|q−2uv dx, u, v ∈ H.

Next we recall a monotonicity method by Jeanjean [13] and Struwe [23], which
will be used in our proof. The version here is from [13].
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Theorem 2.1. Let (X, ‖ · ‖) be a Banach space and I ⊂ R+ an interval. Consider
the family of C1 functionals on X

Jµ(u) = A(u)− µB(u), µ ∈ I,
with B nonnegative and either A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞ and such
that Jµ(0) = 0. For any µ ∈ I, we set

Γµ =
{
γ ∈ C([0, 1], X) : γ(0) = 0, Jµ(γ(1)) < 0

}
.

If for every µ ∈ I, the set Γµ is nonempty and

cµ = inf
γ∈Γµ

max
t∈[0,1]

Jµ(γ(t)) > 0,

then for almost every µ ∈ I, there exists a sequence {un} ⊂ X such that
(i) {un} is bounded;

(ii) Jµ(un)→ cµ as n→∞;
(iii) J ′µ(un)→ 0 as n→∞, in the dual space X−1 of X.

3. First positive solution of (1.1)

In this section, we use Theorem 2.1 to obtain the first positive solution for (1.1).
In the setting of Theorem 2.1, we have X = H, I = [1/2, 1], and for each fixed
ω ∈ H,

Aω(u) =
1
2
(
a+ λm(‖ω‖2)

)
‖u‖2 − 1

q

∫
RN

h(x)(u+)qdx, B(u) =
∫

RN
F (u)dx,

where u+ = max{u, 0}. So the perturbed functional that we study is

Iω,τ (u) =
1
2
(
a+ λm(‖ω‖2)

)
‖u‖2 − 1

q

∫
RN

h(x)(u+)qdx− τ
∫

RN
F (u)dx, τ ∈ I.

It follows from (H4) that

1
2
(
a+ λm(‖ω‖2)

)
‖u‖2 − 1

q

∫
RN

h(x)(u+)qdx ≥ a

2
‖u‖2 − 1

q
‖h‖q′‖u‖q2∗

≥ a

2
‖u‖2 − γq2∗

q
‖h‖q′‖u‖q,

which implies that Aω(u) → ∞ as ‖u‖ → ∞ and obviously, B(u) ≥ 0. Next, we
give some lemmas that are important for proving our main result.

Lemma 3.1. For each ω ∈ H and τ ∈ I, each bounded (PS) sequence of the
functional Iω,τ in H admits a convergent subsequence.

Proof. For each given ω ∈ H and τ ∈ I, let {un} be a bounded (PS) sequence of
the functional Iω,τ , namely {un} and {Iω,τ (un)} are bounded, and

I ′ω,τ (un)→ 0 in H−1,

where H−1 is the dual space of H. Since {un} is bounded, subject to a subsequence,
we can assume that there exists u ∈ H such that as n→∞,

un ⇀ u, in H;

un → u, in Ls(RN ) (2 < s <
2N
N − 2

);

un → u, a.e x ∈ RN .

(3.1)
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By (H1) and (H2), for any ε > 0, there exists Cε > 0 such that

|f(t)| ≤ bε|t|+ Cε|t|p−1, t ∈ R. (3.2)

It follows from (3.2), the Hölder inequality, the Sobolev inequality and the bound-
edness of {un} that∣∣ ∫

RN
f(un)(un − u)dx

∣∣ ≤ ∫
RN
|f(un)(un − u)| dx

≤ bε
∫

RN
|un||un − u|dx+ Cε

∫
RN
|un|p−1|un − u|dx

≤ bε‖un‖2‖un − u‖2 + Cε‖un‖p−1
p ‖un − u‖p

≤ εC‖un‖‖un − u‖+ CεC‖un‖p−1‖un − u‖p
≤ εC + CεC‖un − u‖p.

Then, by (3.1) we can obtain

lim sup
n→∞

∣∣ ∫
RN

f(un)(un − u)dx
∣∣ ≤ εC. (3.3)

Therefore, using the arbitrariness of ε in (3.3), we have∫
RN

f(un)(un − u)dx→ 0, as n→∞. (3.4)

Using (3.1), we have

(u+
n )q−1(un − u)→ 0, a.e. x ∈ RN .

Since∫
RN

(
u+
n )q−1(un − u)

)2∗/q
dx ≤

(∫
RN

(u+
n )2∗dx

) q−1
q
(∫

RN
(un − u)2∗dx

)1/q

≤ ‖un‖
(q−1)2∗

q

2∗ ‖un − u‖2
∗/q

2∗

≤ C‖un‖
(q−1)2∗

q ‖un − u‖2
∗/q < +∞.

So, (u+
n )q−1(un − u) is bounded in L2∗/q(RN ). Hence, going if necessary to a

subsequence, we can assume that (u+
n )q−1(un − u) ⇀ 0 in L2∗/q(RN ) and using

(H4), ∫
RN

h(x)(u+
n )q−1(un − u)dx→ 0, as n→∞. (3.5)

Thus, by using (3.4), (3.5) and I ′ω,τ (un)→ 0, we have(
a+ λm(‖ω‖2)

)
〈un, un − u〉 = 〈I ′ω,τ (un), un − u〉+ τ

∫
RN

f(un)(un − u)dx

+
∫

RN
h(x)(u+

n )q−1(un − u)dx→ 0;

that is, ‖un‖ → ‖u‖. This together with un ⇀ u shows that un → u in H. �

Lemma 3.2. For each R > 0 and ω ∈ H with ‖ω‖ ≤ R, there exists λ̃ = λ̃(R) > 0,
m0 > 0 and τk ⊂ [1/2, 1] satisfying that τk → 1 as k → ∞, such that Iω,τk has a
nontrivial critical point uω,τk if λ ∈ [0, λ̃), ‖h‖q′ < m0.
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Proof. We choose a function φ ∈ C∞0 (RN ) with φ ≥ 0, ‖φ‖ = 1 and supp(φ) ⊂
B(0, R0) for some R0 > 0. For given constant R > 0, there exists λ̃ = λ̃(R) > 0,
such that if λ ∈ [0, λ̃), we have λmaxξ∈[0,R2]m(ξ) ≤ 1. By (H3), for 2(a+1)R

B(0,R0) φ
2dx

>

0, there exists C1 > 0 such that

F (t) ≥ 2(a+ 1)∫
B(0,R0)

φ2dx
t2 − C1, t ≥ 0.

So, for t ≥ 0 we get

Iω,τ (tφ) =
t2

2
(
a+ λm(‖ω‖2)

)
‖φ‖2 − τ

∫
RN

F (tφ)dx− tq

q

∫
RN

h(x)φqdx

≤ t2

2
(
a+ λm(‖ω‖2)

)
− t2

2
2(a+ 1)∫

B(0,R0)
φ2dx

∫
B(0,R0)

φ2dx− tq

q

∫
RN

h(x)φqdx

+
C1|B(0, R0)|

2

≤ − t
2

2
(a+ 1) +

C1|B(0, R0)|
2

− tq

q

∫
RN

h(x)φqdx.

(3.6)
On one hand, by (H4), we can obtain

Iω,τ (tφ) ≤ − t
2

2
(a+ 1) +

C1|B(0, R0)|
2

− tq

q

∫
RN

h(x)φqdx→ −∞, t→ +∞;

on the other hand, by (3.6), we known that there exists a constant C = C(R0) > 0
(depending on ω and τ) such that

max
t≥0

Iω,τ (tφ) ≤ C1|B(0, R0)|
2

:= C. (3.7)

Hence, we can choose t > 0 large enough such that Iω,τ (tφ) < 0; that is, Γω,τ 6= ∅,
where, Γω,τ = {γ ∈ C([0, 1], H) : γ(0) = 0, Iω,τ (γ(1)) < 0}.

Using (H1) and (H2), for ε ∈ (0, a2 ), there exists C2(ε) > 0 such that

F (t) ≤ ε

2
bt2 + C2(ε)tp, t ≥ 0.

By Sobolev’s embedding theorem, there exists C3(ε) > 0 such that

Iω,τ (u) =
1
2
(
a+ λm(‖ω‖2)

)
‖u‖2 − τ

∫
RN

F (u)dx− 1
q

∫
RN

h(x)(u+)qdx

≥ a

2
‖u‖2 − ε

2
b

∫
RN

u2dx− C2(ε)
∫

RN
|u|pdx− 1

q
‖h‖q′‖u‖q2∗

≥ a

4
‖u‖2 − C3(ε)‖u‖p − γq2∗

q
‖h‖q′‖u‖q

≥ ‖u‖q
(a

4
‖u‖2−q − C3(ε)‖u‖p−q − γq2∗

q
‖h‖q′

)
.

Setting

g(t) =
a

4
t2−q − C3(ε)tp−q

for t ≥ 0. Since 1 < q < 2 < p < 2∗, we can choose a constant ρ > 0 sufficiently
small such that g(ρ) > 0. Taking m0 := q

2γq2∗
g(ρ), it then follows that there exists
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a constant c := 1
2g(ρ)ρq > 0 which is independent of τ , λ and ω such that

Iω,τ (u)
∣∣
‖u‖=ρ ≥ c > 0,

for any τ ∈ I, ω ∈ H and all h satisfying ‖h‖q′ < m0. Fix τ ∈ I and for any
γ ∈ Γω,τ , by the definition of Γω,τ , we have ‖γ(1)‖ > ρ. Since γ(0) = 0, then
from intermediate value theorem, we deduce that there exists tγ ∈ (0, 1) such that
‖γ(tγ)‖ = ρ. Therefore, for any fixed τ ∈ I,

cω,τ = inf
γ∈Γω,τ

max
t∈[0,1]

Iω,τ (γ(t)) ≥ inf
γ∈Γω,τ

Iω,τ (γ(tγ)) ≥ c > 0.

Following Theorem 2.1, there are {τk} ⊂ [1/2, 1), with τk → 1 as k → ∞, and
for every k, there exists a sequence {un,ω,τk} ⊂ H, such that {un,ω,τk} is bounded
and Iω,τk(un,ω,τk)→ cω,τk , I

′
ω,τk

(un,ω,τk)→ 0, where

cω,τk = inf
γ∈Γω,τk

sup
u∈γ([0,1])

Iω,τk(u),

Γω,τk =
{
γ ∈ C([0, 1], H)|γ(0) = 0, Iω,τk(γ(1)) < 0

}
.

Furthermore, by Lemma 3.1, we can suppose that there exists uω,τk ∈ H such that
un,ω,τk → uω,τk , and then

Iω,τk(uω,τk) = cω,τk , I ′ω,τk(uω,τk) = 0.

From the above discussion, we get that for given R > 0 and ω ∈ H with ‖ω‖ ≤ R,
there exists λ̃ = λ̃(R) > 0, m0 > 0 and τk ⊂ [ 1

2 , 1] satisfying that τk → 1 as k →∞,
such that Iω,τk has a nontrivial critical point uω,τk if λ ∈ [0, λ̃), ‖h‖q′ < m0 and

cω,τk = Iω,τk(uω,τk) ≤ max
t≥0

Iω,τk(tφ) ≤ C, (3.8)

where C is given in (3.7). �

Lemma 3.3. Let uω,τk be a critical point of Iω,τk at level cω,τk . Then {uω,τk} are
uniformly bounded.

Proof. It follows from Lemma 3.2 that uω,τk is a weak solution of the problem(
a+ λm(‖ω‖2)

)
(−∆u+ bu) = τkf(u) + h(x)(u+)q−1;

therefore,(
a+ λm(‖ω‖2)

)
(−∆uω,τk + buω,τk) = τkf(uω,τk) + h(x)(u+

ω,τk
)q−1. (3.9)

Hence, we have the following Pohozaev identity(N − 2
2

∫
RN
|∇uω,τk |2dx+

Nb

2

∫
RN

u2
ω,τk

dx
) (
a+ λm(‖ω‖2)

)
= Nτk

∫
RN

F (uω,τk)dx+
1
q

∫
RN

(
Nh+ 〈∇h(x), x〉

)
(u+
ω,τk

)qdx .
(3.10)

The proof is similar to that of [3, Proposition 1], we omit here.
By letting cω,τk = Iω,τk(uω,τk), we have

cω,τk =
1
2
(
a+ λm(‖ω‖2)

)
‖uω,τk‖2 − τk

∫
RN

F (uω,τk)dx

− 1
q

∫
RN

h(x)(u+
ω,τk

)qdx.
(3.11)
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By (H4) and the Hölder inequality, we deduce that

1
q

∣∣∣ ∫
RN
〈∇h(x), x〉(u+

ω,τk
)qdx

∣∣∣ ≤ 1
q

∫
RN

∣∣〈∇h(x), x〉(u+
ω,τk

)q
∣∣dx

≤ 1
q
‖〈∇h(x), x〉‖q′‖(u+

ω,τk
)‖q2∗

≤ C4

(∫
RN
|∇uω,τk |2dx

)q/2
.

(3.12)

Therefore, by (3.8) and (3.10)-(3.12), we obtain∫
RN
|∇uω,τk |2dx =

Ncω,τk − 1
q

∫
RN 〈∇h(x), x〉(u+

ω,τk
)qdx

a+ λm(‖ω‖2)

≤
Ncω,τk + C4

(∫
RN |∇uω,τk |

2dx
)q/2

a+ λm(‖ω‖2)

≤
NC + C4

(∫
RN |∇uω,τk |

2dx
)q/2

a
.

Because of 1 < q < 2,
∫

RN |∇uω,τk |
2dx is uniformly bounded. That is, there exists

a constant C5 > 0, independent of τ , λ and ω, such that∫
RN
|∇uω,τk |2dx ≤ C5. (3.13)

Furthermore, by (H1) and (H2), there exists a constant C6 > 0 such that

|f(t)| ≤ ab

2
|t|+ C6|t|2

∗−1, t ∈ R. (3.14)

Hence, by (3.9) and (3.14), we have(
a+ λm(‖ω‖2)

)
‖uω,τk‖2

= τk

∫
RN

f(uω,τk)uω,τkdx+
∫

RN
h(x)(u+

ω,τk
)qdx

≤ ab

2

∫
RN
|uω,τk |2dx+ C6

∫
RN
|uω,τk |2

∗
dx + ‖h‖q′

( ∫
RN
|uω,τk |2

∗
dx
)q/2∗

≤ a

2
‖uω,τk‖2 + C6

∫
RN
|uω,τk |2

∗
dx+ ‖h‖q′

( ∫
RN
|uω,τk |2

∗
dx
)q/2∗

.

Using (3.13), we conclude that

a

2
‖uω,τk‖2 ≤ C6

∫
RN
|uω,τk |2

∗
dx+ ‖h‖q′

(∫
RN
|uω,τk |2

∗
dx
)q/2∗

≤ C7

(∫
RN
|∇uω,τk |2dx

)2∗/2

+ C8

(∫
RN
|∇uω,τk |2dx

)q/2
≤ C7C

2∗/2
5 + C8C

q/2
5 .

Then ‖uω,τk‖2 ≤ C9, where C9 = 2
aC7C

2∗/2
5 + 2

aC8C
q/2
5 which is independent of τ ,

λ and ω. If we set R =
√
C9, then for any ω ∈ H with ‖ω‖ ≤ R, there exist λ̃ > 0

m0 > 0 which are independent of τ , λ and ω, such that Iω,τk has a nontrivial critical
point uω,τk with ‖uω,τk‖ ≤ R when λ ∈ [0, λ̃), ‖h‖2 < m0. And also, {uω,τk} is
uniformly bounded.
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Now we choose R =
√
C9 as above and construct a family of sequence by iterative

techniques. For every k, if we let ω = ω0 ≡ 0, by the previous arguments, we know
Iω0,τk has a nontrivial critical point and denote it by u1,k with ‖u1,k‖ ≤ R. Let
ω = u1,k, then Iu1,k,τk has a nontrivial critical point and denote it by u2,k with
‖u2,k‖ ≤ R. Hence, by induction, we can get a sequence {un,k} with ‖un,k‖ ≤ R,
n = 1, 2, . . . , such that I ′un,k,τk(un+1,k) · v = 0 for all v ∈ H. �

Existence of the first positive solution to (1.1). To complete the proof, we
proceed in two steps.
Step 1. For any fixed k, the iterative sequence {un,k} constructed in Lemma 3.3
is convergent to a function uk, which is a critical point of Iuk,τk .

Since for fixed k and for all n ∈ N, ‖un,k‖ ≤ R, if necessary going to a subse-
quence, we suppose that there exists uk ∈ H such that as n→∞,

un,k ⇀ uk, in H;

un,k → uk, in Lp(RN )(2 < p < 2∗);

un,k → uk, a.e. x ∈ RN .
(3.15)

Also we have ‖uk‖ ≤ R, for all k ∈ N. From the subcritical growth of f and (3.15),
we see that ∫

RN

(
f(un,k)− f(uk)

)
(un,k − uk)dx→ 0, as n→∞; (3.16)∫

RN

(
h(x)(u+

n,k)q−1 − h(x)(u+
k )q−1

)
(un,k − uk)dx→ 0, as n→∞. (3.17)

The proof is similar to that of (3.4) and (3.5), and we omit here. Then we have(
a+ λm(‖un−1,k‖2)

)
‖un,k − uk‖2

=
〈
I ′un−1,k,τk

(un,k)− I ′un−1,k,τk
(uk), un,k − uk

〉
+ τk

∫
RN

(
f(un,k)− f(uk)

)
(un,k − uk)dx

+
∫
RN

(
h(x)(u+

n,k)q−1 − h(x)(u+
k )q−1

)
(un,k − uk)dx→ 0 as n→∞;

that is, un,k → uk in H as n→∞. Thus, for any v ∈ H, as n→∞, we have

a+ λm(‖un−1,k‖2)→ a+ λm(‖uk‖2),∫
RN

(∇un,k · ∇v + bun,kv) dx→
∫

RN
(∇uk · ∇v + bukv) dx,

τk

∫
RN

f(un,k)v dx→ τk

∫
RN

f(uk)v dx,

τk

∫
RN

F (un,k)dx→ τk

∫
RN

F (uk)dx.

Also, we have ∫
RN

h(x)(u+
n,k)q−1v dx→

∫
RN

h(x)(u+
k )q−1v dx,∫

RN
h(x)(u+

n,k)qdx→
∫

RN
h(x)(u+

k )qdx, as n→∞,
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the proof is similar to that of (3.5), and we omit here. So, we obtain

I ′uk,τk(uk) · v = lim
n→∞

I ′un−1,k,τk
(un,k) · v = 0,

Iuk,τk(uk) = lim
n→∞

Iun−1,k,τk(un,k) = lim
n→∞

cun−1,k,τk ≥ c > 0;

that is, for any v ∈ H,

I ′uk,τk(uk) · v = 0, Iuk,τk(uk) ≥ c > 0.

Step 2. The sequence {uk} obtained in step 1 is convergent to a nontrivial positive
solution of (1.1).

Since ‖uk‖ ≤ R for all k ∈ N, without loss of generality, we can assume that
there exists a function u ∈ H such that

uk ⇀ u, in H;

uk → u, in Lp(RN )(2 < p < 2∗);

uk → u, a.e. x ∈ RN .
(3.18)

By the similar proof to that of (3.16) and (3.17), we have∫
RN

(
f(uk)− f(u)

)
(uk − u)dx = o(1),∫

RN

(
h(x)(u+

k )q−1 − h(x)(u+)q−1
)
(uk − u)dx = o(1).

Now, taking into account that(
a+ λm(‖uk‖2)

)
‖uk − u‖2

= 〈I ′uk,τk(uk)− I ′uk,τk(u), uk − u〉+ τk

∫
RN

(
f(uk)− f(u)

)
(uk − u)dx

+
∫
RN

(
h(x)(u+

k )q−1 − h(x)(u+)q−1
)

(uk − u)dx→ 0 as n→∞,

we deduce that uk → u as k →∞. So for any v ∈ H, as k →∞, we have

a+ λm(‖uk‖2)→ a+ λm(‖u‖2),∫
RN

(∇uk · ∇v + bukv)dx→
∫

RN
(∇u · ∇v + buv)dx,

τk

∫
RN

f(uk)v dx→
∫

RN
f(u)v dx,

τk

∫
RN

F (uk)dx→
∫

RN
F (u)dx,∫

RN
h(x)(u+

k )q−1v dx→
∫

RN
h(x)(u+)q−1v dx,∫

RN
h(x)(u+

k )qdx→
∫

RN
h(x)(u+)qdx.

So, for any v ∈ H, as k →∞, we can obtain(
a+ λm(‖u‖2)

) ∫
RN

(
∇u · ∇v + buv

)
dx−

∫
RN

f(u)v dx−
∫

RN
h(x)(u+)q−1v dx

= lim
k→∞

I ′uk,τk(uk) · v = 0,
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and
1
2
(
a+ λm(‖u‖2)

) ∫
RN

(
|∇u|2 + bu2

)
dx−

∫
RN

F (u)dx−
∫

RN
h(x)(u+)qdx

= lim
n→∞

Iuk,τk(uk) = cuk,τk ≥ c > 0.

Therefore, u is a nontrivial solution of (1.1). Setting u− = max{−u, 0}, Since

(a+ λm(‖u‖2))〈u, u−〉 −
∫

RN
f(u)u−dx−

∫
RN

h(x)(u+)q−1u−dx = 0,

by (H1) and (H4) we have ‖u−‖ = 0; this implies u ≥ 0 a.e. in RN . So, by the
strong maximum principle, we get that u is positive on H. Thus u is a positive
solution of (1.1) if λ ∈ [0, λ̃), ‖h‖q′ < m0.

4. Second positive solution of (1.1)

In this section, we prove the existence of local minimum solution for problem
(1.1) by Ekeland’s variational principle. Define the functional I : H → R by

Iλ(u) =
a

2
‖u‖2 +

λ

2
M(‖u‖2)−

∫
RN

F (u)dx− 1
q

∫
RN

h(x)(u+)qdx,

where M(t) =
∫ t

0
m(s)ds. Then, it follows from (H1)–(H4) and the continuity of m

that Iλ is well defined on H and is C1 for all λ ≥ 0, and

〈I ′λ(u), v〉 = (a+ λm(‖u‖2))
∫

RN
(∇u · ∇v + buv)dx

−
∫

RN
f(u)v dx−

∫
RN

h(x)(u+)q−1v dx, u, v ∈ H.

Lemma 4.1. Assume that (H1), (H2), (H4) are satisfied. Then there exist con-
stants ρ,m0, α > 0 such that Iλ(u)

∣∣
‖u‖=ρ ≥ α > 0 with ‖h‖2 < m0.

Proof. Using (H1) and (H2), for ε ∈ (0, a2 ), there exists C12(ε) > 0 such that

F (t) ≤ ε

2
bt2 + C12(ε)tp, t ≥ 0.

By Sobolev’s embedding theorem, there exists C13(ε) > 0 such that

Iλ(u) =
a

2
‖u‖2 +

λ

2
M(‖u‖2)−

∫
RN

F (u)dx− 1
q

∫
RN

h(x)(u+)qdx

≥ a

2
‖u‖2 − ε

12
b

∫
RN

u2dx− C12(ε)
∫

RN
|u|pdx− 1

q
‖h‖q′‖u‖q2∗

≥ a

4
‖u‖2 − C13(ε)‖u‖p − γ2∗

q
‖h‖q′‖u‖q

≥ ‖u‖q
(a

4
‖u‖2−q − C13(ε)‖u‖p−q − γ2∗

q
‖h‖q′

)
So, setting

g(t) =
a

4
t2−q − C13(ε)tp−q

for t ≥ 0. Since 1 < q < 2 < p < 2∗, we can choose a constant ρ > 0 sufficiently
small such that g(ρ) > 0. Taking m0 := q

2γ2∗
g(ρ), it then follows that there exists

a constant α := 1
2g(ρ)ρq > 0 which is independent of τ , λ and ω such that

Iλ(u)
∣∣
‖u‖=ρ ≥ α > 0,
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for any τ ∈ I, ω ∈ H and all h satisfying ‖h‖q′ < m0. �

Lemma 4.2. Assume that (H1)-(H4) are satisfied, then there exist a function e ∈ H
with ‖e‖ < ρ and a constant 0 < λ∗ < λ̃ such that Iλ(e) < 0 for any λ ∈ [0, λ∗),
where ρ and λ̃ are given by Lemma 4.1 and Lemma 3.2, respectively.

Proof. We choose a function 0 ≤ φ ∈ C∞0 (RN ) with
∫
B(0,R0)

h(x)φqdx ≥ 0 for some
R0 > 0. By (H1), for t ≥ 0 we obtain

I0(tφ) =
at2

2
‖φ‖2 −

∫
RN

F (tφ)dx− tq

q

∫
RN

h(x)φqdx

≤ at2

2
‖φ‖2 − tq

q

∫
B(0,R0)

h(x)φqdx.
(4.1)

Since 1 < q < 2, it follows from (4.1) that I0(tφ) < 0 for t > 0 sufficiently small,
which implies that there exist e ∈ H with ‖e‖ < ρ such that I0(e) < 0, where ρ
is given by Lemma 4.1. Since Iλ(e) → I0(e) as λ → 0+, we see that there exists
λ̃ > λ∗ > 0 such that Iλ(e) < 0 for all λ ∈ [0, λ∗), where λ̃ is given by Lemma
3.2. �

Second positive solution for (1.1)

Setting
c1 := inf{Iλ(u) : u ∈ Bρ},

where ρ is given by Lemma 4.1, Bρ = {u ∈ H : ‖u‖ < ρ}. Using Lemma 4.1 and
Lemma 4.2, we obtain

inf
Bρ

Iλ > −∞, inf
∂Bρ

Iλ > α > 0, c1 < 0.

By Ekeland’s variational principle, there exists a sequence {un} ⊂ Bρ such that

c1 ≤ Iλ(un) < c1 +
1
n
,

Iλ(v) ≥ Iλ(un)− 1
n
‖v − un‖

for all v ∈ Bρ. Then by a standard procedure, we can show that {un} is a bounded
Palais-Smale sequence of Iλ. Using the similar proof to that of Lemma 3.1, we
conclude that there exists a function u1 ∈ Bρ such that Iλ(u1) = c1 < 0 and
I ′λ(u1) = 0.

Setting u− = max{0,−u}. Since(
a+ λm(‖u1‖2)

)
〈u1, u

−
1 〉 −

∫
RN

f(u1)u−1 dx−
∫

RN
h(x)(u+

1 )q−1u−1 dx = 0,

by (H1) and (H4) we have ‖u−1 ‖ = 0, which implies u1 ≥ 0 a.e. in RN . So, by the
strong maximum principle, we obtain that u1 is positive on H.
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