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SOLVABILITY OF MULTIPOINT DIFFERENTIAL OPERATORS
OF FIRST ORDER

ZAMEDDIN I. ISMAILOV, PEMBE IPEK

In memory of acad. M. G. Gasymov (1939-2008)

Abstract. Based on methods of operator theory, we describe all boundedly

solvable extensions of the minimal operator generated by a linear multipoint

functional differential-operator expression of first order, in a direct sum of
Hilbert space of vector-functions. We also study the structure of spectrum of

these extensions.

1. Introduction

The general theory of extension of densely defined linear operator in Hilbert
spaces was started by von Neumann with his important work [10] in 1929. Later
in 1949 and 1952 Vishik in [15, 16] studied the boundedly (compact, regular and
normal) invertible extensions of any unbounded linear densely defined operator in
Hilbert spaces Generalization of these results to the nonlinear and complete addi-
tive Hausdorff topological spaces in abstract terms have been done by Kokebaev,
Otelbaev and Synybekov in [7, 12]. By Dezin [2] another approach to the descrip-
tion of regular extensions for some classes of linear differential operators in Hilbert
spaces of vector-functions at finite interval has been offered.

On other hand the role of the two point and multipoint theory of functional
differential equations in our lives is indisputable. The general theory of delay dif-
ferential equations is presented in many books (for example [4, 14]). Applications
of this theory can be found in economy, biology, control theory, electrodinamics,
chemistry, ecology, epidemiology, tumor growth, neural networks and etc. (see
[3, 11]).

In addition note that oscillation and boundness properties of solutions of different
classes of dynamic equations have been investigated in the book by Agarwal, Bohner
and Li [1].

Let us remember that an operator S : D(S) ⊂ H → H on Hilbert spaces is
called boundedly invertible, if S is one-to-one, SD(S) = H and S−1 ∈ L(H).

The main goal of this work is to describe all boundedly solvable extensions of
the minimal operator generated by linear multipoint functional differential-operator
expression for first order in the direct sum of Hilbert spaces of vector-functions at
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finite intervals and investigate the structure of spectrum of these extensions. In the
second section all boundedly solvable extensions of the above mentioned minimal
operator are described. Structure of spectrum of these extensions is studied in third
section Finally, the obtained results are illustrated by applications.

2. Description of Boundedly Solvable Extensions

Throughout this work Hn is a separable Hilbert space, Hn = L2(Hn,∆n), ∆n =
(an, bn) ⊂ R for each n ≥ 1 with property −∞ < infn≥1 an < supn≥1 bn < ∞,
infn≥1 |∆n| > 0 and H = ⊕∞n=1Hn.

We consider the linear multipoint functional differential-operator expression of
first order in H of the form

l(u) = (ln(un)), u = (un),

where:
(1) ln(un) = u′n(t) +An(t)u(αn(t)), n ≥ 1;
(2) operator-function An(·) : [an, bn] → L(Hn), n ≥ 1 is continuous on the

uniformly operator topology and supn≥1 supt∈∆n
‖An(t)‖ <∞;

(3) For any n ≥ 1, αn : [an, bn] → [an, bn] is invertible and αn, (α−1
n )′ ∈

C[an, bn], also supn≥1(‖(α−1
n (t))′‖∞)1/2 <∞

By standard way the minimal Ln0 and maximal Ln operators corresponding to
the differential expression ln(·) in Hn can be defined for any n ≥ 1. It is clear that
for every n ≥ 1 domains of minimal Ln0 and maximal Ln operators in Hn are in
the forms

D(Ln0) =
o

W
1

2 (Hn,∆n), and D(Ln) = W 1
2 (Hn,∆n),

respectively. For any scalar function ϕ : [an, bn] → [an, bn] and n ≥ 1 now define
an operator Pϕ in Hn in the form

Pϕun(t) = un(ϕ(t)), un ∈ Hn .

If a function ϕ ∈ C1[an, bn] and ϕ′(t) > 0 (< 0) for t ∈ [an, bn], then for any
un ∈ Hn,

‖Pϕun‖2Hn
=
∫ bn

an

‖un(ϕ(t))‖2Hn
dt

=
∫ ϕ(bn)

ϕ(an)

‖un(ϕ(x))‖2Hn
(ϕ−1)′(x)dx

≤
∣∣ ∫ ϕ(bn)

ϕ(an)

‖un(x)‖2Hn
|(ϕ−1)′(x)|dx

∣∣
≤ ‖(ϕ−1)′‖∞

∫ bn

an

‖un(x)‖2Hn
dx

= ‖(ϕ−1)′‖∞‖un‖2Hn

Consequently, for any strictly monotone function ϕ ∈ C1[an, bn], the operator Pϕ
belongs to L(Hn) and ‖Pϕ‖ ≤

√
‖(ϕ−1)′‖∞. In actually, the expression l(·) in H

can be written in the form

l(u) = u′(t) +Aα(t)u(t), (2.1)
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where u = (un),

A(t) =



A1(t)
A2(t) 0

. . .
0 An(t)

. . .

 , Pα =



Pα1

Pα2 0
. . .

0 Pαn

. . .


and Aα(t) = A(t)Pα, Aα ∈ L(H).

The operators L0(M0) and L(M) be a minimal and maximal operators corre-
sponding to (2.1) (with m(·) = d

dt ) in H, respectively. Let us define

L0 = M0 +Aα(t), L = M +Aα(t),

L0 : D(L0) ⊂ H → H, L : D(L) ⊂ H → H,

D(L0) = {(un) ∈ H : un ∈
o

W
1

2 (Hn,∆n), n ≥ 1,
∞∑
n=1

‖Ln0un‖2Hn
<∞},

D(L) = {(un) ∈ H : un ∈W 1
2 (Hn,∆n), n ≥ 1,

∞∑
n=1

‖Lnun‖2Hn
<∞},

The main goal in this section is to describe all boundedly solvable extensions of
the minimal operator L0 in H in terms in the boundary values. Before that, we
prove the validity the following assertion.

Lemma 2.1. The kernel and image sets of L0 in H satisfy kerL0 = {0} and
Im(L0) 6= H.

Proof. Firstly, we prove that for any n ≥ 1 kerLn0 = {0}. Consider the boundary
values problems

u′n(t) +An(t)Pαn
un(t) = 0,

un(an) = un(bn) = 0, n ≥ 1

The general solution of these differential equations are

un(t) = exp
(
−
∫ t

an

An(s)Pαn
ds
)
fn, n ≥ 1

Then from boundary value conditions we have fn = 0 for n ≥ 1. Hence kerLn0 =
{0} for n ≥ 1. Then kerL0 = {0}.

To show that Im(L0) 6= H it is sufficient to show that Im(Ln0) 6= Hn for some
n ≥ 1. So we consider the boundary value problem

L∗n0un = −u′n(t) + (An(t)Pαn
)∗un(t) = 0, un ∈ Hn

The solutions of this equation are

un(t) = exp
(∫ t

an

(An(s)Pαn
)∗ ds

)
gn, gn ∈ Hn

Consequently, Hn ⊂ kerL∗n0, n ≥ 1 This means that for any n ≥ 1 Im(Ln0) 6= Hn.
Then Im(L0) 6= H. �
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Theorem 2.2. If L̃ is any extension of L0 in H, then

L̃ = ⊕∞n=1L̃n,

where L̃n is a extension of Ln0, n ≥ 1, in Hn.

Proof. Indeed, in this case for any n ≥ 1 the linear manifold

M̃n := {un ∈ D(Ln) : (un) ∈ D(L̃)}

contains D(Ln0). That is,

D(Ln0) ⊂ M̃n ⊂ D(Ln), n ≥ 1

Then the operator
L̃nun = ln(un), un ∈ M̃n, n ≥ 1

is an extensions of Ln0. Consequently, for any n ≥ 1,

L̃n : D(L̃n) = M̃n ⊂ Hn → Hn
From this, we obtain

L̃ = ⊕∞n=1L̃n .

For the boundedly solvable extensions of L0 and Ln0, n ≥ 1, the following statement
holds. �

Theorem 2.3. For the boundedly solvability of any extension L̃ = ⊕∞n=1L̃n of
the minimal operator L0, the necessary and sufficient conditions are the boundedly
solvability of the coordinate operators L̃n of the minimal operator Ln0, n ≥ 1 and
supn≥1 ‖L̃−1

n ‖ <∞.

Proof. It is clear that the extension L̃ is one-to-one operator in H if and only if the
all coordinate extensions L̃n, n ≥ 1 of L̃ are one-to-one operators in Hn, n ≥ 1.
On the other hand for the boundedness of L̃−1 = ⊕∞n=1L̃

−1
n of H the necessary and

sufficient condition is supn≥1 ‖L̃−1
n ‖ <∞ (see [5, 9]).

Now let Un(t, s), t, s ∈ ∆n, n ≥ 1, be the family of evolution operators corre-
sponding to the homogeneous differential equation

∂Un
∂t

(t, s)f +An(t)Pαn
Un(t, s)f = 0, t, s ∈ ∆n

with the boundary condition

Un(s, s)f = f, f ∈ Hn .

The operator Un(t, s), t, s ∈ ∆n, n ≥ 1 is linear continuous boundedly invertible in
Hn with the property (see [8])

U−1
n (t, s) = Un(s, t), s, t ∈ ∆n .

Lets us introduce the operator Un : Hn → Hn as

Unzn(t) =: Un(t, 0)zn(t), t ∈ ∆n .

It is clear that if L̃n is any extension of the minimal operator Ln0, that is, Ln0 ⊂
L̃n ⊂ Ln, then

U−1
n Ln0Un = Mn0, Mn0 ⊂ U−1

n L̃nUn = M̃n ⊂Mn, U−1
n LnUn = Mn
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In addition, for any n ≥ 1,

‖Un‖ =
∥∥ exp

(
−
∫ t

an

An(s)Pαn
ds
)∥∥

≤ exp
(∫ bn

an

‖An(s)‖‖Pαn‖ ds
)

≤ exp
(
|∆n|‖Pαn

‖ sup
t∈∆n

‖An(t)‖
)
<∞

and

‖U−1
n ‖ = ‖ exp

(∫ t

an

An(s)Pαn
ds
)
‖

≤ exp
(
|∆n|‖Pαn

‖ sup
t∈∆n

‖An(t)‖
)
<∞ .

�

Theorem 2.4. Let n ≥ 1. Each boundedly solvable extension L̃n of the minimal
operator Ln0 in Hn is generated by the differential-operator expression ln(·) and the
boundary condition

(Kn + En)un(an) = KnUn(an, bn)un(bn), (2.2)

where Kn ∈ L(Hn) and En : Hn → Hn is identity operator. The operator Kn is
determined by the extension L̃n uniquely, i.e. L̃n = LKn

.
On the contrary, the restriction of the maximal operator Ln in Hn to the linear

manifold of vector-functions satisfy the condition (2.2) for some bounded operator
Kn ∈ L(Hn), is a boundedly solvable extension of the minimal operator Ln0.

On other hand, for n ≥ 1

‖L̃−1
n ‖ ≤ |∆n|1/2 exp

(
2|∆n|‖Pαn

‖ sup
t∈∆n

‖An(t)‖
)

Proof. For any n ≥ 1, the description the all boundedly solvable extensions of L̃n
of the minimal operator Ln0 in Hn, n ≥ 1 have been given in work [6]. From the
relation U−1

n LKn
Un = MKn

we obtain

L−1
Kn

= UnM
−1
Kn
U−1
n ,

where MKnun(t) = u′n(t) with the boundary condition

(Kn + En)un(an) = Knun(bn), n ≥ 1 .

Hence for fn ∈ L2(Hn,∆n),

‖M−1
Kn
fn‖2Hn

=
∫ bn

an

‖Kn

∫ bn

an

fn(s) ds+
∫ t

an

fn(s) ds‖2 dt

≤ 2
∫ bn

an

‖Kn

∫ bn

an

fn(s) ds‖2 dt+ 2
∫ bn

an

‖
∫ t

an

fn(s) ds‖2 dt

≤ 2‖Kn‖2
∫ bn

an

∫ bn

an

‖fn(s)‖2 ds|∆n| dt

+ 2
∫ bn

an

(∫ bn

an

‖fn(s)‖2 ds
)
dt|∆n|
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=
(
2‖Kn‖2|∆n|2 + 2|∆n|2

)
‖fn‖2Hn

= 2|∆n|2(1 + ‖Kn‖2)‖fn‖2Hn
.

Hence,
‖M−1

Kn
‖ ≤
√

2|∆n|
(
1 + ‖Kn‖2

)1/2
, n ≥ 1

From this and the properties of evolution operators, the validity of inequality is
clear. This completes proof of theorem. �

Theorem 2.5. Let LKn
be a boundedly solvable extension of Ln0 in Hn and

MKn = U−1
n LKnUn, for n ≥ 1 .

To have
sup
n≥1
‖L−1

Kn
‖ <∞,

the necessary and sufficient condition is

sup
n≥1
‖M−1

Kn
‖ <∞ .

Theorem 2.6. Assumed that

MKn : W 1
2 (Hn,∆n) ⊂ L2(Hn,∆n)→ L2(Hn,∆n),

MKn
un(t) = u′n(t),

(Kn + En)un(0) = Knun(1)

To have
sup
n≥1
‖M−1

Kn
‖ <∞,

the necessary and sufficient condition is supn≥1 ‖Kn‖ <∞.

Proof. Indeed, from the proof of Theorem 2.4,

‖M−1
Kn
‖ ≤
√

2|∆n|
(
1 + ‖Kn‖2

)1/2
, n ≥ 1

From this, if supn≥1 ‖Kn‖ < ∞, then supn≥1 ‖M−1
Kn
‖ < ∞. On the contrary,

assumed that supn≥1 ‖M−1
Kn
‖ <∞. Then in the relation

Kn

∫ bn

an

fn(t) dt = M−1
Kn
fn(t)−

∫ t

an

fn(t) dt, fn ∈ Hn, n ≥ 1

choosing the functions fn(t) = f∗n, t ∈ ∆n, f∗n ∈ Hn, n ≥ 1, we have

‖Knf
∗
n‖Hn

|∆n| ≤ ‖M−1
Kn
f∗n‖Hn

+ |∆n|‖f∗n‖Hn
, n ≥ 1 .

Then
‖Kn‖ ≤

1
|∆n|

‖M−1
Kn
‖+ 1 .

Consequently, from the above relation and the condition on ∆n, n ≥ 1, we obtain

sup
n≥1
‖Kn‖ ≤

(
inf
n≥1
|∆n|

)−1

sup
n≥1
‖M−1

Kn
‖+ 1 <∞ .

�

Now using Theorems 2.4–2.6, we formulate an assertion on the description of all
boundedly solvable extensions of to in H.
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Theorem 2.7. Each boundedly solvable extension L̃ of the minimal operator L0 in
H is generated by differential-operator expression (2.1) and boundary conditions

(Kn + En)un(an) = KnUn(an, bn)un(bn), n ≥ 1,

where Kn ∈ L(Hn), K = ⊕∞n=1Kn ∈ L
(
⊕∞n=1 Hn

)
and En : Hn → Hn is identity

operator. The operator K is determined by the extension L̃ uniquely, i.e. L̃ = LK
and vice versa.

Remark 2.8. If in the (2.1), αn(t) = t (αn(t) < t), t ∈ [an, bn] for any n ≥ 1, then
this problem corresponds to the problem of theory of multipoint ordinary (delay)
differential operators in Hilbert spaces of vector-functions.

3. Structure of spectrum of boundedly solvable extensions

In this section the structure of spectrum of boundedly solvable extensions of
minimal operator L0 in H is investigated. First we consider the spectrum for the
boundedly solvable extension LK , K = (Kn) of the minimal operator L0 in H; that
is,

LKu = λu+ f, λ ∈ C, u = (un), f = (fn) ∈ H
From it follows that

⊕∞n=1(LKn − λEn)(un) = (fn)
The last relation is equivalent to the equations

(LKn
− λEn)un = fn, n ≥ 1, λ ∈ C, fn ∈ Hn

That is, for any n ≥ 1, we have

Un(MKn
− λEn)U−1

n un = fn

Therefore,

σp(LKn) = σp(Mn), σc(LKn) = σc(Mn), σr(LKn) = σr(Mn) (3.1)

Consequently, we consider the the spectrum parts of MKn
; that is,

MKn
un = λun + fn, λ ∈ C, fn ∈ Hn, n ≥ 1

Then from this we obtain

u′n = λun + fn,

(Kn + En)un(an) = Knun(bn), n ≥ 1

Since the general solution of the above differential equation in Hn has the form

un(t, λ) = exp(λ(t− an))f0
n +

∫ t

an

exp(λ(t− s))fn(s) ds, t ∈ ∆n,

f0
n ∈ Hn, n ≥ 1, from the boundary condition it is obtained that(

En +Kn

(
1− exp(λ|∆n|)

))
f0
n = Kn

∫ bn

an

exp(λ(bn − s))fn(s) ds, n ≥ 1

It is easy to show that λn,m = 2mπi
|∆n| ∈ ρ(MKn), m ∈ Z, n ≥ 1. Then for λn,m 6=

2mπi/|∆n|, m ∈ Z, n ≥ 1, we have(
Kn −

1
exp(λ|∆n|)− 1

En

)
f0
n
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=
(
1− exp(λ|∆n|)

)−1
Kn

∫ bn

an

exp(λ(bn − s))fn(s) ds,

f0
n ∈ Hn, fn ∈ Hn, n ≥ 1. From this and relations (3.1) it follows the validity of

following statement.

Theorem 3.1. In order for λ to belong to σp(LKn
) (σc(LKn

), σr(LKn
)), it is nec-

essary and sufficient that

µ =
1

exp(λ|∆n|)− 1
∈ σp(Kn) (σc(Kn), σr(Kn)).

Then a structure of spectrum of boundedly solvable extension LKn
can be for-

mulated in the form

Theorem 3.2. The point spectrum of the boundedly solvable extension LKn
has

the form

σp(LKn
) =

{
λ ∈ C : λ =

1
|∆n|

{
ln |µ+ 1

µ
|+ i arg(

µ+ 1
µ

) + 2mπi
}
,

µ ∈ σp(Kn)\{0,−1}, m ∈ Z
}

Similarly propositions on the continuous σc(LKn) and residual σr(LKn) spectrums
are true.

Lastly, using the results on the spectrum parts of direct sum of operators in the
direct sum of Hilbert spaces [13] in we can proved the following theorem.

Theorem 3.3. For the parts of spectrum of the boundedly solvable extension LK =
⊕∞n=1LKn

, K = (Kn) in Hilbert spaces H = ⊕∞n=1Hn the following statements are
true

σp(LK) = ∪∞n=1σp(LKn),

σc(LK) =
{(
∪∞n=1 σp(LKn

)
)c
∩
(
∪∞n=1 σr(LKn

)
)c
∩
(
∪∞n=1 σc(LKn

)
)}

∪
{
λ ∈ ∩∞n=1ρ(LKn

) : sup
n≥1
‖Rλ(LKn

)‖ =∞
}
,

σr(LK) =
(
∪∞n=1 σp(LKn)

)c
∩
(
∪∞n=1 σr(LKn

)
)

4. Applications

In this section, we present an application of above results.

Example 4.1. For any n ≥ 1 let us Hn = (C, | · |), an = 0, bn = 1, An(t) = cn,
cn ∈ C, supn≥1 |cn| <∞, αn(t) = αnt, 0 < αn < 1 with property supn≥1( 1

αn
) <∞.

Consider the pantograph type delay differential expression

l(u) = u′n(t) + cnun(αnt)

in H = ⊕∞n=1Hn, where Hn = L2(0, 1).
In this case by Theorem 2.7, all boundedly solvable extensions Lk of the minimal

operator L0 generated by l(·) in H are described by the differential expression l(·)
and the boundary conditions

(kn + 1)un(0) = knUn(0, 1)un(1),

where kn ∈ C, n ≥ 1, supn≥1 |kn| <∞ and vice versa.
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On other hand in the case kn /∈ {0,−1}, for any n ≥ 1 the point, the continuous
and residual spectrums of Lkn in Hn = L2(0, 1) is of the form

σp(Lkn
) =

{
λ ∈ C : λ = ln|kn + 1

kn
|+ i arg(

kn + 1
kn

) + 2mπi, m ∈ Z
}
,

σc(Lkn
) = σr(Lkn

) = ∅ .
Hence by Theorem 3.3 spectrum parts of Lk = ⊕∞n=1Lkn

has the form

σp(Lk) = ∪∞n=1 ∪m∈Z

{
ln|kn + 1

kn
|+ i arg(

kn + 1
kn

) + 2mπi
}
,

σc(Lk) =
{
λ ∈ ∩∞n=1ρ(Lkn

) : sup
n≥1
‖Rλ(Lkn

)‖ =∞
}
,

σr(Lk) = ∅

Example 4.2. Let Hn = (C, | · |), (an), a sequence of real numbers, supn≥1 |an| <
∞, (bn), bn = an + 1, ∆n = (an, bn), Hn = L2(Hn,∆n),

ln(un) = u′n + un(αn(t)), αn(t) = (t− an)2 + an −
1
2
, t ∈ ∆n, n ≥ 1,

H = ⊕∞n=1Hn, l(·) = ⊕∞n=1ln(·). In this case for any n ≥ 1 the function αn(·) is

increase, invertible and α−1
n (t) = an +

√
t− an + 1

2 and (α−1
n (t))′ = 1

2
√
t−an+ 1

2

.

Hence supn≥1 ‖(α−1
n )′‖∞ ≤ 1

2 . In this case all boundedly solvable extensions of
minimal operator L0 in H are described by l(·) and boundary conditions

(kn + 1)un(an) = knUn(an, bn)un(bn), n ≥ 1,

where supn≥1 |kn| < ∞. On the other hand for kn /∈ {0,−1} spectrum of each
boundedly solvable extension Lkn

has the form

σp(Lkn) =
{
λ ∈ C : λ = ln |kn + 1

kn
|+ i arg(

kn + 1
kn

) + 2mπi, m ∈ Z
}
,

σc(Lkn
) = σr(Lkn

) = ∅, n ≥ 1

Hence by Theorem 3.3, the spectrum parts of Lk = ⊕∞n=1Lkn have the form

σp(Lk) = ∪∞n=1 ∪m∈Z
{
ln|kn + 1

kn
|+ i arg(

kn + 1
kn

) + 2mπi
}
,

σc(Lk) =
{
λ ∈ ∩∞n=1ρ(Lkn) : sup

n≥1
‖Rλ(Lkn)‖ =∞

}
,

σr(Lk) = ∅

Remark 4.3. Similar to the problems in Example 4.1 and 4.2, we can investigate
the case αn(t) = bn − t, an ≤ t ≤ bn, n ≥ 1.
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[6] Z. I. Ismailov, E. Otkun Çevik, B. O. Güler, P. Ipek; Structure of spectrum of solvable

pantograph differential operators for the first order, AIP Conf. Proc., 1611, 89-94, (2014).
[7] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov; On questions of extension and restriction

of operator, English translation: Soviet Math. Dokl., 28, 1, 259-262, (1983).

[8] S. G. Krein; Linear Differential Equations in Banach Space, emphTranslations of Mathemat-
ical Monographs, 29, American Mathematical Society, Providence, RI, (1971).

[9] M. A. Naimark, S. V. Fomin; Continuous direct sums of Hilbert spaces and some of their

applications, Uspehi Mat. Nauk, 10, 2(64), 111-142 (1955) (in Russian).
[10] J. von Neumann; Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math.

Ann., 102, p.49-131, (1929-1930).
[11] J. R. Ockendon, A. B. Tayler; The dynamics of a current collection system for an electric

locomotive, Proc. Roy. Soc. London Ser. A, 322, 447-468, (1971).

[12] M. Otelbaev, A. N. Shynybekov; Well-posed problems of Bitsadze-Samarskii type, English
translation: Soviet Math. Dokl., 26, 1, 157-161 (1983).
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