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EXISTENCE OF POSITIVE SOLUTIONS FOR SUPERLINEAR
p-LAPLACIAN EQUATIONS

TING-MEI GAO, CHUN-LEI TANG

Abstract. We obtain a positive solution for a superlinear p-Laplacian equa-

tions with the Dirichlet boundary-value conditions. Our main tool is a varia-
tion of the mountain pass theorem.

1. Introduction and statement of the main result

We consider the nonlinear elliptic equation of p-Laplacian type

−∆pu = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator with p > 1, Ω is a
bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. The function f ∈
C(Ω×R,R) satisfies the following conditions:

(F1) f is subcritical in t, that is, there is a q ∈ (p,Np/(N −p)) when N > p; q ∈
(p,+∞) when N ≤ p such that

lim
t→+∞

f(x, t)
tq−1

= 0 uniformly in a.e. x ∈ Ω.

(F2)

b0 ≤ lim inf
t→0+

f(x, t)
tp−1

≤ lim sup
t→0+

f(x, t)
tp−1

≤ a(x)

uniformly in a.e. x ∈ Ω, where b0 is a constant, a ∈ L∞(Ω) satisfies
a(x) ≤ λ1 for all x ∈ Ω and a(x) < λ1 on some Ω1 ⊂ Ω with |Ω1| > 0, λ1

is the first eigenvalue of −4p and |Ω1| is the measure of Ω1.
(F3) limt→+∞ f(x, t)/tp−1 = +∞ uniformly in a.e. x ∈ Ω.
In this article, we study the existence of a positive solution to (1.1) under the

above assumptions. Since (F3) hods, problem (1.1) is called superlinear in t at +∞.
In many studies involving this superlinear problem, to get a nontrivial solution of
(1.1), a very famous theorem - Mountain pass theorem is a common tool, but in
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applying this theorem, usually, we have to suppose another condition, that is, for
some µ > p,M > 0

0 < µF (x, t) ≤ f(x, t)t for a.e. x ∈ Ω and for all |t| ≥M. (1.2)

The condition (1.2) is convenient, but it is very restrictive, in particular, it implies
(F3). To overcome this difficulty, many efforts have been made. Wang and Tang
[8] proved the following existence theorem without condition (1.2).

Theorem 1.1. Suppose f is subcritical in t and assume that (F3) and the following
conditions hold:

(F2’) lim supt→0+
f(x,t)
tp−1 = c(x) uniformly in a.e. x ∈ Ω, where c ∈ L∞(Ω)

satisfies c(x) ≤ λ1 for all x ∈ Ω and c(x) < λ1 on some Ω′ ⊂ Ω with
|Ω′| > 0.

(F4’) There exists θ ≥ 1 such that θH(x, t) ≥ H(x, ξt) for all x ∈ Ω, t ∈ R and
ξ ∈ [0, 1], where H(x, t) = f(x, t)t− pF (x, t) and F (x, t) =

∫ t
0
f(x, s)ds.

(H1) f(x, t) ≥ 0 for all t ≥ 0, x ∈ Ω.
Then (1.1) has at least one positive solution.

Assumptions (F4’) was first introduced by Jeanjean in [3] for p = 2, Liu and
Li in [5] extended it for general p > 1, it is helpful for proving that the functional
corresponding to problem (1.1) satisfies Cerami condition (C).

Recently by a monotony condition instead of (1.2), Iturriage and Lorca [2] ob-
tained the following result.

Theorem 1.2. Suppose f(x, t) is subcritical in t and satisfies the following:
(G1) f : Ω× [0,+∞)→ [0,+∞) is a Carathéodory function.
(G2) lim supt→0+

f(x,t)
tp−1 = 0 uniformly in a.e. x ∈ Ω.

(G3) for any M > 0, there exists c0 such that

f(x, t) ≥M |t|p−1 − c0, for all t ≥ 0 and x ∈ Ω.

(G4) there exists R > 0 such that the map t 7→ f(x, t)t1−p is non-decreasing if
t > R for a.e. x ∈ Ω.

Then (1.1) has a positive solution.

Assumptions (G1)–(G3) and the subcritical condition ensure that the energy
functional associated with (1.1) has mountain pass geometry. Assumption (G4)
allow us to show the boundedness of the (PS)-sequence at the mountain pass level.
Motivated by Theorem 1.1 and 1.2, we assume a new condition and obtain the
following result.

Theorem 1.3. Suppose (F1)–(F3) hold and assume
(F4) There exist two constants θ ≥ 1, θ0 > 0 such that θH(x, s) ≥ H(x, t) − θ0

for all x ∈ Ω, 0 ≤ t ≤ s, where H(x, t) = f(x, t)t − pF (x, t) and F (x, t) =∫ t
0
f(x, s)ds.

Then (1.1) has at least one positive solution.

Remark 1.4. Theorem 1.3 unifies and generalizes Theorems 1.1 and 1.2 mainly in
four aspects:

Firstly, it is obvious that the conditions (F2’) in Theorem 1.1, and (G2) in
Theorem 1.2 are stronger than our condition (F2).
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Secondly, the assumption (G3) can imply our condition (F3).
Thirdly, it is easily proved that (F4’) implies (F4) and we also can show (G4)

implies (F4) (see Remark 1.5), that is to say, (F4) is weaker than (F4’) and (G4).
In addition, as many studies, to prove that a nontrivial solution of problem (1.1)

is positive, Theorems 1.1 and 1.2 require f(x, t) ≥ 0 for all t ≥ 0, x ∈ Ω, in this
article, we do not need it any more, in fact, the condition b0 ≤ lim inft→0+

f(x,t)
tp−1 in

(F2) together with (F3) are sufficient for showing that a nontrivial solution of (1.1)
is positive.

Moreover, we can find some functions that satisfy the conditions of Theorem 1.3,
but not the conditions of Theorems 1.1 and 1.2. For instance,

f(x, t) =

{
a(x)tq−1 − b(x)tp−1, t ≥ 0,
0, t < 0,

with a, b ∈ C(Ω), a > 0, b > 0 and q ∈ (p,Np/(N −p). It is obvious that f satisfies
(F1)–(F3). Let θ = 1, θ0 = 0, then we also can check that f satisfies (F4), and so f
satisfies all the conditions of Theorem 1.3, but it does not satisfy the assumptions
of Theorems 1.1 and 1.2 (in fact, if t > 0 is small enough, f(x, t) < 0).

Remark 1.5. Condition (G4) implies condition (F4).

Proof. (1) Claim: H(x, t) is nondecreasing on (R,+∞) for a.e. x ∈ Ω. In fact, if
we assume 0 < R < t < s, then

H(x, s)−H(x, t)

= p
[1
p

(f(x, s)s− f(x, t)t)− (F (x, s)− F (x, t))
]

= p
[ ∫ s

R

f(x, s)
sp−1

τp−1dτ −
∫ t

R

f(x, t)
tp−1

τp−1dτ −
∫ s

t

f(x, τ)
τp−1

τp−1dτ

+
f(x, s)
psp−1

Rp − f(x, t)
ptp−1

Rp
]

= p
[ ∫ s

t

(f(x, s)
sp−1

− f(x, τ)
τp−1

)
τp−1dτ +

∫ t

R

(f(x, s)
sp−1

− f(x, t)
tp−1

)
τp−1dτ

+
Rp

p

(f(x, s)
sp−1

− f(x, t)
tp−1

)]
≥ 0,

which indicates that
H(x, s) ≥ H(x, t)

for s > t > R. So H(x, t) is nondecreasing on (R,+∞) for a.e. x ∈ Ω.
(2) Now, we prove (F4) holds. Suppose θ = 1, θ0 = 2maxΩ×[0,R]|H(x, s)|. Since

H(x, t) is nondecreasing on (R,+∞) for a.e. x ∈ Ω, then
(i) for all R ≤ t ≤ s,H(x, t)− θH(x, s) = H(x, t)−H(x, s) ≤ 0 < θ0.
(ii) for all 0 ≤ t ≤ s ≤ R,

H(x, t)− θH(x, s) = H(x, t)−H(x, s) ≤ 2 max
Ω×[0,R]

|H(x, s)| = θ0.

(iii) for all 0 ≤ t ≤ R ≤ s,
H(x, t)− θH(x, s) = (H(x, t)−H(x,R)) + (H(x,R)−H(x, s)) ≤ θ0 + 0.

So for all x ∈ Ω and 0 ≤ t ≤ s, θH(x, s) ≥ H(x, t)− θ0. �
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2. Preliminaries

In this section, we give some preliminary knowledge and some important lemma
which will be used to prove our theorem.

Let φ be a C1-functional defined on a Banach space X, we say that φ satisfies
the Cerami condition (C), if a sequence {un} ⊂ X is such that {φ(un)} is bounded
and (1 + ‖un‖)‖I ′(un)‖ → 0 has a convergent subsequence; such a sequence is then
called a Cerami sequence.

To obtain a positive solution of problem (1.1), we introduced the C1-functional
I, defined by

I(u) =
1
p

∫
Ω

|∇u|pdx−
∫

Ω

F (x, u+)dx, ∀u ∈W 1,p
0 (Ω),

where F (x, t) =
∫ t

0
f(x, s)ds, and t+ denotes the positive part of t. In the proof of

our theorem, we shall use the following lemma.

Lemma 2.1. If hypothesis (F1)–(F4) hold, then the functional I satisfies the Ce-
rami condition.

Proof. Let {un} ⊂W 1,p
0 (Ω) be a sequence such that

I(un) =
1
p

∫
Ω

|∇un|pdx−
∫

Ω

F (x, u+
n )dx→ c as n→∞,

(1 + ‖un‖)‖I ′(un)‖ → 0 as n→∞,
(2.1)

then ∫
Ω

(1
p
f(x, u+

n )u+
n − F (x, u+

n )
)
dx = c+ o(1). (2.2)

Next, we show that the sequence {un} is bounded. Otherwise, there is a sub-
sequence of {un} (still denoted by {un}) satisfying ‖un‖ → ∞ as n → ∞. Set
wn = un/‖un‖, then ‖wn‖ = 1. Up to a subsequence, we assume that

wn ⇀ w in W 1,p
0 (Ω); wn → w in Lr(Ω) (1 ≤ r < p∗);

wn(x)→ w(x) a.e.x ∈ Ω
(2.3)

for some w ∈ W 1,p
0 (Ω) as n → ∞. It is easily that w+ and w− have the same

convergence which is similar to (2.3), where u± = max{±u, 0} for u ∈ W 1,p
0 (Ω).

We claim that w+ ≡ 0. Let Ω0 = {x ∈ Ω : w+(x) = 0}, Ω+ = {x ∈ Ω : w+(x) >
0}. Since ‖un‖ → +∞, then u+

n → +∞ as n → +∞ for a.e. x ∈ Ω+. Since
limt→+∞

f(x,t)
tp−1 = +∞ by (F3), one has

lim
n→∞

f(x, u+
n )

(u+
n )p−1

= +∞ a.e. x ∈ Ω+.

From (2.1), we obtain
|〈I ′(un), u〉| ≤ εn, (2.4)

where εn = (1 + ‖un‖)‖I ′(un)‖ → 0 as n→∞. It follows from (2.4) that

|‖u+
n ‖p −

∫
Ω

f(x, u+
n )u+

n dx| ≤ εn,

which implies ∫
Ω+

f(x, u+
n )

(u+
n )p−1

(w+
n )pdx ≤ 1 +

εn

‖u+
n ‖p

. (2.5)
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If |Ω+| > 0, since ‖w+
n ‖ = 1, from (2.5), one obtains

+∞←
∫

Ω+

f(x, u+
n )

(u+
n )p−1

(w+
n )pdx ≤ 1 +

εn

‖u+
n ‖p

→ 1,

which is a contradiction, so |Ω+| = 0 and w+ ≡ 0.
By (F1) and (F2), we have

f(x, t) ≤ (a(x) + ε) |t|p−1 +A|t|q−1, ∀(x, t) ∈ Ω×R,
where A > 0 is a constant, thus

F (x, t+) ≤ 1
p

(a(x) + ε) |t|p +A|t|q, ∀(x, t) ∈ Ω×R. (2.6)

Now set a sequence {tn} of real numbers such that I(tnu+
n ) = maxt∈[0,1] I(tu+

n ).
For any integer m > 0, since w+ ≡ 0, then by (F2), (2.6), and the convergence of
w+
n , one has

lim sup
n→∞

∫
Ω

F
(
x, (2pm)

1
pw+

n

)
dx

≤ lim sup
n→∞

(∫
Ω

2m(λ1 + ε)(w+
n )pdx+

∫
Ω

A(2pm)
q
p (w+

n )qdx
)

= lim
n→∞

(C1‖w+
n ‖pp + C2‖w+

n ‖qq)

= C1‖w+‖pp + C2‖w+‖qq = 0,

where C1, C2 > 0 are constants. Since ‖un‖ → +∞ as n → ∞, one has 0 ≤
(2pm)1/p/‖un‖ ≤ 1 when n is big enough. By the definition of tn, we obtain

I(tnu+
n ) ≥ I

(
(2pm)

1
pw+

n

)
≥ 2m−

∫
Ω

F
(
x, (2pm)

1
pw+

n

)
≥ m,

which implies
I(tnu+

n )→ +∞ as n→∞. (2.7)
Noting that I(0) = 0 and I(un)→ c, so 0 < tn < 1 when n is big enough. It follows
that ∫

Ω

|∇(tnu+
n )|pdx−

∫
Ω

f(x, tnu+
n )tnu+

n dx

= 〈I ′(tnu+
n ), tnu+

n 〉 = tn
dI(tu+

n )
dt

|t=tn = 0.
(2.8)

But for 0 ≤ tn ≤ 1, |tnun| ≤ |un|, then (F4), (2.7) and (2.8) imply∫
Ω

(
1
p
f(x, u+

n )u+
n − F (x, u+

n )
)
dx

=
1
p

∫
Ω

H(x, u+
n )dx ≥ 1

pθ

∫
Ω

(
H(x, tnu+

n )− θ0

)
dx

=
1
θ

∫
Ω

(1
p
f(x, tnu+

n )tnun − F (x, tnu+
n )
)
dx− θ0

pθ
|Ω|

=
1
θ

∫
Ω

(1
p
|∇tnu+

n |p − F (x, tnu+
n )
)
dx− θ0

pθ
|Ω|

=
1
θ
I(tnu+

n )− θ0

pθ
|Ω| → +∞ (n→∞),

which contradicts to (2.2), so {un} is bounded.
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By the compactness of Sobolev embedding and the standard procedures, we
know that {un} has a convergence subsequence. That is to say, the functional I
satisfies the (C) condition. �

3. Proof of the main result

Proof of Theorem 1.3. By critical point theory, for finding a positive solution of
problem (1.1), we only need to find a nonzero critical point of the following C1-
functional

I(u) =
1
p

∫
Ω

|∇u|pdx−
∫

Ω

F (x, u+)dx, ∀u ∈W 1,p
0 (Ω).

Since (F2) holds, there exists a positive constant α < 1 such that
∫

Ω
a(x)|u|pdx <

α
∫

Ω
|∇u|pdx for all u ∈ W 1,p

0 (Ω) (see [8, Lemma 2.2]). Let ε > 0 be small enough
such that α+ε/λ1 < 1. By (2.6), together with the Poincare inequality and Sobolev
inequality, one obtains

I(u) ≥ 1
p
‖u‖p − 1

p

∫
Ω

(a(x) + ε) |u|pdx−A
∫

Ω

|u|qdx

≥ 1
p
‖u‖p − 1

p

∫
Ω

(
α+

ε

λ1

)
|∇u|pdx− C‖u‖q

=
1
p

(
1− α− ε

λ1

)
‖u‖p − C‖u‖q,

where C > 0 is a constant. Since 1 − α − ε
λ1
> 0 and p < q, when ρ > 0 be small

enough such that

β =
1
p

(
1− α− ε

λ1

)
ρp − Cρq > 0,

we have
I|∂Bρ ≥ β > 0. (3.1)

Since (F3) holds, then given ε > 0, we can find c(ε) > 0 such that

f(x, t) ≥ tp−1

ε
− c(ε), ∀(x, t) ∈ Ω×R+,

which implies

F (x, t+) ≥ 1
pε

(t+)p − c(ε)t+, ∀(x, t) ∈ Ω×R.

So, if v1 > 0 is the eigenfunction of (−4p,W 1,p
0 (Ω)) corresponding to the first

eigenvalue λ1 with ‖v1‖ = 1, then∫
Ω

F (x, (tv1)+)
tp

dx ≥
∫

Ω

( 1
pε

(v+
1 )p − c(ε)v1

+

tp−1

)
dx. (3.2)

Letting t→ +∞ in (3.2), it follows that

lim inf
t→+∞

∫
Ω

F (x, (tv1)+)
tp

dx ≥
∫

Ω

1
pε

(v+
1 )pdx,

for all ε > 0. For ε > 0 is arbitrary, letting ε→ 0, we infer that

lim
t→+∞

∫
Ω

F (x, (tv1)+)
tp

dx = +∞.



EJDE-2015/40 EXISTENCE OF POSITIVE SOLUTIONS 7

Consequently, one obtains

I(tv1)
tp

=
1
p
‖v1‖p −

∫
Ω

F (x, (tv1)+)
tp

dx =
1
p
−
∫

Ω

F (x, (tv1)+)
tp

dx→ −∞

as t→ +∞. Hence, when t0 is big enough, there exists e = t0v1 ∈W 1,p
0 (Ω) \Bρ(0)

such that
I(e) ≤ 0. (3.3)

Thus, Lemma 2.1 and (3.1), (3.3) permit the application of a variant of mountain
pass theorem (see [1, p. 648]), so we get a critical point u of the functional I with
I(u) ≥ β. But from (F2), f(x, 0) = 0, then I(0) = 0, that is u 6= 0. Since

0 = 〈I ′(u), u−〉 = ‖u−‖p −
∫

Ω

f(x, u+)u−dx = ‖u−‖p ≥ 0,

which implies that ‖u−‖ = 0, so u ≥ 0. By the regularity results (see [4]), u ∈
L∞(Ω), and hence u ∈ C1(Ω)( see [6]). Since u ∈ L∞(Ω), it is easy to see that
∆pu = −f(x, u) ∈ L2

loc(Ω). From b0 ≤ lim inft→0+
f(x,t)
tp−1 by (F2), there exist a

constant δ > 0 such that

f(x, t) ≥ (b0 − 1)tp−1, ∀0 ≤ t ≤ δ.
By (F3), we can find a positive constant M such that

f(x, t) ≥ 0, ∀t ≥M.

Because f ∈ C(Ω×R,R), then

|f(x, t)| ≤ B = Bδ−(p−1)δp−1 ≤ Bδ−(p−1)tp−1, ∀δ ≤ t ≤M,

where B > 0 is a constant, hence

f(x, t) ≥
(
−|b0 − 1| −Bδ−(p−1)

)
tp−1, ∀t ≥ 0.

Since u ≥ 0, it follows that f(x, u) ≥
(
−|b0 − 1| −Bδ−(p−1)

)
up−1 = −Dup−1,

where D = |b0 − 1| + Bδ−(p−1) > 0. Therefore, ∆pu = −f(x, u) ≤ Dup−1. Hence
by the Strong maximum principle for p-Laplacian in [7] with β(u) = D|u|p−1, one
has u > 0 a.e. on Ω. That is, u is a positive solution of problem (1.1). The proof
is complete. �
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