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A CRITICAL POINT THEOREM AND EXISTENCE OF
MULTIPLE SOLUTIONS FOR A NONLINEAR ELLIPTIC

PROBLEM

ABDEL RACHID EL AMROUSS, FOUAD KISSI

Abstract. In this article, we show the existence of multiple nontrivial solu-
tions to a Dirichlet problem for the p-Laplacian. Our approach is based on a

abstract critical point theorem.

1. Introduction

Let us consider the nonlinear elliptic problem
−∆pu = f(x, u) in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, ∆p is the p-
Laplacian operator defined by ∆pu = div(|∇u|p−2∇u), 1 < p <∞.

The growing attention in the study of the p-Laplace operator is motivated by
the fact that it arises in various applications, e.g. non-Newtonian fluids, reaction-
diffusion problems, flow through porus media, nonlinear elasticity, theory of super-
conductors, petroleum extraction, glacial sliding, astronomy, biology etc.

We assume that f : Ω × R → R is a Carathéodory function satisfying the
subcritical growth condition:

|f(x, t)| ≤ c(1 + |t|q−1), ∀t ∈ R, a.e. x ∈ Ω,

for some c > 0, and 1 ≤ q < p∗ where p∗ = Np
N−p if 1 < p < N and p∗ = +∞ if

N ≤ p. The above condition implies that the functional Φ : W 1,p
0 (Ω)→ R,

Φ(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx,

is well defined and of class C1, where F (x, t) =
∫ t

0
f(x, s) ds. It is well known

that the critical points of Φ are weak solutions of (1.1). In the previous decades,
many existence and multiplicity results were obtained by applying the critical point
theory to Φ.

If f(x, 0) = 0, then the zero function u = 0 is a trivial solution of the problem
(1.1). In this article we investigate the existence of nontrivial solutions for (1.1).
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For this purpose, some conditions on the nonlinearity near zero and near infinity
are in order.

Let λ1 and λ2 be the first and the second eigenvalues of −∆p on W 1,p
0 (Ω). It

is well known that λ1 > 0 is a simple eigenvalue, and that σ(−∆p) ∩ (λ1, λ2) = ∅,
where σ(−∆p) is the spectrum of −∆p (cf. [3]).

In the semilinear case when p = 2, the existence of multiple solutions of the
above problem has been studied by many authors, see for example [1, 6, 10, 15, 17].
The nonlinear case (p 6= 2), has been established by many authors under various
conditions imposed on f(x, t) or F (x, t). In the case the nonlinearity pF (x,t)

|t|p stays
asymptotically between the two first eigenvalues of −∆p and via direct variational
methods or the minimax methods, existence of one solution were proved (cf. [8, 11]).

The existence of multiple solutions depends mainly on the local behavior of
f(x, t) or F (x, t) near 0 and near infinity. In [13], a contribution was made when
lim|t|→∞

pF (x,t)
|t|p < λ1. Another contribution was made in [16], where the authors

treated the resonance near zero at the first eigenvalue from the right and the non-
resonance condition at infinity below λ1. In [4], the authors obtained the existence
of multiple nontrivial solutions for the case

lim sup
|t|→0

pF (x, t)
|t|p

≤ α < λ1 < β ≤ lim inf
|t|→+∞

f(x, t)
|t|p−2t

.

As is well known, the Morse theory developed by Chang [7] or Mawhin and
Willem [17] is very useful in studying the existence of multiple solutions for dif-
ferential equations having the variational structure. Thus computation of critical
groups may yield the existence and multiplicity of nontrivial solutions to our prob-
lem.

Before stating our main result, we state the following assumptions:
(F0) sup|t|≤R |f(x, t)| ∈ L∞(Ω) for R > 0.

(F1) λ1 ≤ lim inf |t|→+∞
f(x,t)
|t|p−2t ≤ lim sup|t|→+∞

f(x,t)
|t|p−2t ≤ β < λ2, uniformly for

a.e. x ∈ Ω.
(F2) L(x) = lim inf |t|→+∞[pF (x, t)− tf(x, t)] ∈ L1(Ω) and

∫
Ω
L(x) dx > 0.

(F3) There exists δ > 0 such that 0 < pF (x, t) ≤ tf(x, t), for almost every x ∈ Ω,
and for every 0 < |t| ≤ δ.

(F4) There exist µ ∈ (0, p) and γ a constant non positive, such that

lim inf
|t|→0

µF (x, t)− tf(x, t)
|t|p

≥ γ > λ1(
µ

p
− 1) uniformly a.e. x ∈ Ω.

The main result reads as follows.

Theorem 1.1. Assume (F0)–(F4) hold, and that there exists t0 ∈]0, δ[ such that
f(x, t0) = 0 a.e. x ∈ Ω. Then (1.1) has at least three solutions.

Example 1.2. Let us define the continuous function f : Ω× R→ R such that

f(x, t) =

{
λ1
2 |t|

p−2t if |t| ≤ δ/2,
λ1|t|p−2t+ sign(t)

1+t2 if |t| ≥ 2δ.

The primitive F is such that

F (x, t) =

{
λ1
2p |t|

p if |t| ≤ δ/2,
λ1
p |t|

p + arctan(|t|) if |t| ≥ 2δ.
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A simple computation shows that

lim inf
|t|→+∞

f(x, t)
|t|p−2t

= λ1, lim inf
|t|→+∞

[pF (x, t)− tf(x, t)] =
pπ

2
.

Hence the hypotheses of Theorem 1.1 are satisfied.

Note that our multiplicity result is not covered by the results mentioned in
[4, 11, 13, 16, 19]. For the proof of our main result, we need to prove an abstract
theorem which extends [18, Theorem 3.4].

Our work is organized as follows: as preliminaries, in section 2 we give the proof
of the abstract theorem; in section 3 we prove our theorem.

2. An abstract critical point theorem

2.1. Preliminaries. Let X be a real Banach space endowed with the norm ‖ · ‖.
Given a functional Φ of class C1 on X, β, c ∈ R, δ > 0 and u ∈ X, we adopt the
notation:

Φβ = {x ∈ X : Φ(x) ≤ β}, K = {x ∈ X : Φ′(x) = 0},
Kc = {x ∈ K : Φ(x) = c}, (Kc)δ = {x ∈ X : dist(x,Kc) ≤ δ},

X̃ = {x ∈ X : Φ′(x) 6= 0}, Bδ(u) = {x ∈ X : ‖x− u‖ ≤ δ}.
The duality between X and its dual X ′ will be denoted by 〈·, ·〉. Now, recall a
generalization of the classical Palais-smale condition which has been introduced by
the first author (see [9]).

Definition 2.1. Given c ∈ R, we say that Φ ∈ C1(X,R) satisfies the condition
(C)α(·)

c if
(i) every bounded sequence (un) ⊂ X such that Φ(un) → c and Φ′(un) → 0

possesses a convergent subsequence;
(ii) there exists R > 0, σ > 0, ∀x ∈ Φ−1([c− σ, c+ σ]), ‖x‖ ≥ R:

‖Φ′(x)‖ ≥ α(‖x‖),
where α :]0,∞[→]0,∞[ is C1 and satisfies∫ ∞

1

α(1 + s) ds = +∞.

If Φ satisfies the condition (C)α(·)
c , for every c ∈ R, we simply say that Φ satisfies

(C)α(·).

Remark 2.2. Note that when α(s) is constant, (
∫∞

1
α(1+s) ds =∞), the condition

(C)α(·) is the classical Palais-Smale condition denoted (PS). And when α(s) = a
s

where a > 0, (
∫∞

1
α(1+s) ds =∞), we get the condition (C) introduced by Cerami

in [6].

Definition 2.3. We say that Φ satisfies the deformation condition (Dc) at c ∈ R,
if for any ε̄ > 0 and any neighborhood N of Kc there exists ε > 0 and a continuous
deformation η : [0, 1]×X → X such that

(1) η(0, .) = IdX ,
(2) η(t, x) = x if x ∈ (X\Φ−1([c− ε̄, c+ ε̄])), t ∈ [0, 1],
(3) Φ(η(s, x)) ≤ Φ(η(t, x)) if s ≥ t,
(4) η(1,Φc+ε\N) ⊂ Φc−ε.
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Remark 2.4. The deformation condition (Dc) is a consequence of the above weak
version of the Palais-Smale condition, see [9].

Next, we recall the notion of critical groups at an isolated critical point. For
more details see [7, 17].

Definition 2.5. Suppose u ∈ Kc is an isolated critical point of a functional Φ ∈
C1(X,R). We define the qth critical group of Φ at u with real coefficients R by

Cq(Φ, u) = Hq(Φc ∩ U, (Φc \ {u}) ∩ U),

where U is a neighborhood of u such that U ∩Kc = ∅, and Hq denote the singular
homology groups with coefficients in R.

Furthermore, we have the following Morse relation between the critical groups
and homological characterization of sub level sets. For details of the proof, we refer
readers to [5, 7] for example.

Lemma 2.6. If Φ satisfies the deformation condition (Dc) at c ∈ R then there
exists ε0 > 0 such that for all ε ∈]0, ε0] we have:

H∗(Φc+ε,Φc−ε) ∼= H∗(Φc ∪Kc,Φc);

H∗(Φc+ε,Φc−ε) ∼= 0 if Kc = ∅;

H∗(Φc+ε,Φc−ε) ∼= ⊕ki=1C∗(Φ, xi)ifKc = {x1, . . . , xk}.

Notice that this result implies that if Hq(Φc+ε,Φc) is nontrivial for some q, then
there exists a critical point u ∈ Kc with Cq(Φ, u) 6= 0. However, when Cq(Φ, 0) ∼= 0
for all q, we get that u 6= 0. We shall use the following lemma, which is proved in
[9].

Lemma 2.7. If Φ ∈ C1(X,R), there exists a locally Lipschitz continuous function
V : X̃ → X satisfying the conditions: ‖V (x)‖ ≤ 2 and 〈V (x),Φ′(x)〉 ≥ ‖Φ′(x)‖,
∀x ∈ X̃.

2.2. A critical point result. Our abstract critical point theorem can be stated
as follows

Theorem 2.8. Let X be a real Banach space and let Φ ∈ C1(X,R). Assume Φ is
not bounded below and the origin is an isolated critical point of Φ in X satisfying
C1(Φ, 0) = 0. If Φ possesses a local minimum u0 6= 0 and Φ satisfies (C)α(·)

c for
every c ≥ Φ(u0). Then, Φ possesses at least three critical points in X.

Note that, in [18, Theorem 3.4] the authors establish the same result on real
Hilbert spaces with the compactness Cerami condition (C)c, satisfied for every
c ∈ R. The next lemma is essential in the proof of Theorem 2.8.

Lemma 2.9 (Deformation lemma). If Φ ∈ C1(X,R) and satisfies (C)α(·)
c condition

at c ∈ R. Assume that Kc has isolated points. Then, given δ > 0 and ε̄ > 0, there
exist ε ∈ (0, ε̄) and a continuous map η : [0, 1]×X → X such that

(1) η(0, x) = x, for every x ∈ X,
(2) η(1, x) = x, for every x ∈ X\Bδ(u), where u ∈ Kc,
(3) η(t, x) = x, for every x ∈ (X\Φ−1([c− ε̄, c+ ε̄])), t ∈ [0, 1],
(4) η(1,Φc+ε ∩Bδ(u)) ⊂ Φc−ε.
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Proof. It is easy to see that by the condition (C)α(·)
c , that (Kc) is compact and

hence let R′ > max(R, δ) such that
⋃
v∈Kc Bδ(v) ⊂ BR′(0). By the condition

(C)α(·)
c , we verify easily that there exist ε̂ > 0, with ε̂ < ε̄ and β > 0, such that

‖Φ′(x)‖ ≥ β for everyx ∈ [Φc+ε̂\(Φc−ε̂ ∪ (Kc)δ/2)] ∩BR′(0). (2.1)

Taking 0 < ε1 < ε̂ < ε̄ and δ/2 < µ < δ, we consider

A = X\Φ−1([c− ε̂, c+ ε̂], B = Φ−1([c− ε1, c+ ε1].

Define

f(x) =
dist(x,A)

dist(x,B) + dist(x,A)
,

g(x) =
dist(x,X\Bδ(u))

dist(x,Bµ(u)) + dist(x,X\Bδ(u))
,

h(s) =

{
1/α(s) if s > R′

1/α(R′) if s ≤ R′.

From lemma 2.7, there exists a pseudo-gradient vector field V on X̃ associated with
Φ. Put

W (x) =

{
−α(R′)f(x)g(x)h(‖x‖)V (x), if x ∈ X̃,
0, otherwise.

By construction, W is locally Lipshitz continuous on X. Since g = 0 on X\Bδ(u),
one deduces that

0 ≤ ‖W (x)‖ ≤ 1, for every x ∈ X.
Now, we consider the Cauchy problem

dη

dt
(t, x) = W (η(t, x)),

η(0, x) = x.
(2.2)

Clearly, (2.2) has a unique solution η̂(t, x) for all t ≥ 0. Furthermore, η̂ ∈ C([0,∞)×
X,X).

Since f = 0 on A, g = 0 on X\Bδ(u) and ε̂ < ε̄, then η satisfies (1), (2) and (3).
Now, we verify (4). First, observe that the map t → Φ(η(t, x)) is decreasing.

Indeed,
dΦ
dt

(η(t, x)) = 〈Φ′(η(t, x)),
dη

dt
(t, x)〉

= −α(R′)f(η(t, x))g(η(t, x))h(‖η(t, x)‖)〈Φ′(η(t, x)), V (η(t, x))〉 ≤ 0.

Take 0 < ε < min(ε̂, β2 ) and let x ∈ Φc+ε ∩Bδ(u), we will prove that

Φ(η(1, x)) ≤ c− ε. (2.3)

By contradiction, we suppose that (2.3) does not holds. Then

c− ε < Φ(η(1, x)) ≤ Φ(η(t, x)) ≤ Φ(x) ≤ c+ ε, ∀t ∈ [0, 1].

So f(η(t, x)) = 1 for all t ∈ [0, 1].
On the other hand, since g = 0 on X\Bδ(u), g = 1 on Bµ(u), R′ > δ and by

(2.1), we have

Φ(η(1, x))− Φ(x) = −α(R′)
∫ 1

0

g(η(t, x))h(‖η(t, x)‖)〈Φ′(η(t, x)), V (η(t, x))〉 dt,
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= −α(R′)
∫ 1

0

g(η(t, x))h(‖η(t, x)‖)‖Φ′(η(t, x))‖χ{t,‖η(t,x)‖≤R′} dt

= −
∫ 1

0

g(η(t, x))‖Φ′(η(t, x))‖χ{t,η(t,x)∈Bδ(u)} dt

≤ −
∫ 1

0

‖Φ′(η(t, x))‖χ{t,η(t,x)∈Bµ(u)\(Kc)δ/2} dt ≤ −β.

Finally, we conclude that

Φ(η(1, x)) ≤ c+ ε− β < c− ε.

This is a contradiction. The proof is complete. �

Proof of Theorem 2.8. By contradiction, assume that the origin and u0 are the only
critical points of Φ. Let c0 = Φ(u0), and since u0 is a local minimum of Φ, thus
there exists ρ1 > 0 such that

Φ(u) ≥ Φ(u0), ∀u ∈ Bρ1(u0). (2.4)

Claim: There exist ρ, γ > 0 such that

Φ(u) ≥ Φ(u0) + γ, for all u ∈ ∂Bρ(u0). (2.5)

Indeed taking ρ ∈ (0, ρ1), we find γ > 0 satisfying (2.5). Otherwise, by Lemma 2.9,
we obtain ε > 0 and a homeomorphism η : X → X such that

(1) η(u) = u, ∀u ∈ X \Bρ1(u0),
(2) η(Φc0+ε ∩ ∂Bρ(u0)) ⊂ Φc0−ε.

Using these two conditions, we obtain u ∈ Bρ1(u0) so that Φ(u) < c0. But, that
contradicts (2.4). The claim is proved.

Since Φ is not bounded below, there exists e ∈ X such that

‖e‖ ≥ ρ and Φ(e) < Φ(u0) + γ. (2.6)

It is easy to see that (2.4) and (2.6) imply

max(Φ(u0),Φ(e)) < inf
∂Bρ

Φ = b. (2.7)

We define
c = inf

h∈Γ
max
t∈[0,1]

Φ(h(t)),

where
Γ = {h ∈ C([0, 1], X) : h(0) = u0, h(1) = e}.

Thus, from (2.7), c ≥ b is a critical value of Φ. Let ε > 0 be such that c − ε >
max(Φ(u0),Φ(e)) and suppose, without loss of generality, that c is the only critical
value of Φ in [c− ε, c+ ε]. Consider the exact sequence

· · · → H1(Φc+ε,Φc−ε) ∂→ H0(Φc−ε, ∅) i∗→ H0(Φc+ε, ∅)→ . . .

where ∂ is the boundary homomorphism and i∗ is induced by the inclusion mapping
i : (Φc−ε, ∅) → (Φc+ε, ∅). The definition of c implies that u0 and e are path
connected in Φc+ε but not in Φc−ε. Thus, ker i∗ 6= {0} (cf. [17]) and, by exactness,
H1(Φc+ε,Φc−ε) 6= {0}. Using lemmas 2.6, 2.9, we deduce that there exists u such
that dimC1(Φ, u) ≥ 1. In view of C1(Φ, 0) = 0 and c ≥ b, we have u 6= 0 and
u 6= u0. The proof is complete. �
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3. Proof of Theorem 1.1

In this section we shall use Theorem 2.8 for proving Theorem 1.1. The Sobolev
space W 1,p

0 (Ω) will be the Banach space X and the C1 functional Φ will be

Φ(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx.

To apply Theorem 2.8, we need the following three lemmas.

Lemma 3.1. Under assumptions (F0)–(F2), the functional Φ satisfies the condition
(C)α(·)

c for every c ≥ 0, with α(s) = 1
s .

Proof. We know that −∆p : X → X ′ is bounded mapping of type (S+) and
g′ : X → X ′, g(u) =

∫
Ω
F (x, u) dx, is completely continuous, i.e. un ⇀ u implies

g′(un)→ g(u). From this, by a standard argument, the first assertion of definition
2.1 is verified.

Let us now prove that the second assertion of definition 2.1 is satisfied for every
c ≥ 0. By contradiction, assume that (ii) is false. Then, there exists (un) ⊂W 1,p

0 (Ω)
such that

Φ(un)→ c, Φ′(un)un → 0, and ‖un‖ → ∞. (3.1)
From (F0) and (F1) it follows that there exists constants a and b such that

|f(x, t)| ≤ a|t|p−1 + b, ∀t ∈ R, a.e.x ∈ Ω.

Let us define vn = un
‖un‖ , fn = f(x,un)

‖un‖p−1 , passing to subsequence of vn (respectively
fn), still denoted by (vn) (respectively fn) we may assume that: vn ⇀ v weakly
in W 1,p

0 (Ω), vn → v strongly in Lp(Ω) and a.e. x ∈ Ω, fn ⇀ f̃ in Lp
′
(Ω), where

p′ = p
p−1 is the conjugate exponent. We need to state the following claim.

Claim
(1) f̃ = 0 a.e. in A = {x ∈ Ω|v(x) = 0a.e.};
(2) λ1 ≤ f̃

|v|p−2v ≤ β a.e. in Ω\A.

Indeed, define ϕ(x) = sign(f̃(x))χA(x), where

sign(x) =

{
1, if x ≥ 0,
−1, if x < 0.

Thus, the inequality implies that

|fn(x)ϕ(x)| ≤ (a|vn|p−1 +
1

‖un‖p−1
)χA(x), a. e. x ∈ Ω.

Since vn → v in Lp(Ω), it follows by passing to the limit that

fn(x)ϕ(x)→ 0 in Lp
′
(Ω). (3.2)

On the other hand, we have∫
Ω

fnϕdx→
∫

Ω

f̃ϕ dx =
∫

Ω

|f̃ |χA dx =
∫
A

|f̃ | dx.

It follows from (3.2) that
∫
A
|f̃ | dx = 0. Thus the first assertion of claim is proved.

Now, we show the second assertion of claim. Put

B =
{
x ∈ Ω\A : λ1|v(x)|p > v(x)f̃(x) a.e.

}
∪
{
x ∈ Ω\A : β|v(x)|p < v(x)f̃(x) a.e.

}
.
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It suffices to prove that meas(B) = 0. Indeed, by (F1), for all ε > 0, there exist aε,
bε ∈ Lp

′
(Ω) such that

aε(x) + (λ1 − ε)|t|p ≤ tf(x, t) ≤ bε(x) + (β + ε)|t|p, a.e. x ∈ Ω, ∀t ∈ R.
This implies

aε(x)
‖un‖p

+ (λ1 − ε)|vn|p ≤ vnfn(x) ≤ bε(x)
‖un‖p

+ (β + ε)|vn|p, a.e. x ∈ Ω. (3.3)

Multiplying (3.3) by χB and integrating over Ω, we obtain∫
Ω

aε(x)
‖un‖p

χB(x) dx+ (λ1 − ε)
∫

Ω

|vn|pχB(x) dx

≤
∫

Ω

vnfn(x)χB(x) dx

≤
∫

Ω

bε(x)
‖un‖p

χB(x) dx+ (β + ε)
∫

Ω

|vn|pχB(x) dx.

So letting n→∞ in this inequality, we obtain

(λ1 − ε)
∫

Ω

|v(x)|pχB(x) dx ≤
∫

Ω

v(x)f̃(x)χB(x) dx ≤ (β + ε)
∫

Ω

|v(x)|pχB(x) dx.

Since ε > 0 is arbitrary,

λ1

∫
Ω

|v(x)|pχB(x) dx ≤
∫

Ω

v(x)f̃(x)χB(x) dx ≤ β
∫

Ω

|v(x)|pχB(x) dx. (3.4)

It is clear that this inequality (3.4) is verified if and only if meas(B) = 0.
Letting, m(x) = f̃(x)

|v(x)|p−2v(x) if v(x) 6= 0 and m(x) = 1
2 (λ1 + β) if v(x) = 0. By

(3.1) we have

|〈Φ′(un), un〉|
‖un‖p

= |1−
∫

Ω

f(x, un)
‖un‖p−1

vn(x) dx| ≤ εn
‖un‖p−1

.

Hence, we conclude that ∫
Ω

f(x, un)
‖un‖p−1

vn(x) dx→ 1

and passing to the limit, we obtain
∫

Ω
f̃(x)v(x) dx = 1, so that v 6= 0.

On the other hand, for any w ∈W 1,p
0 (Ω) we have

|〈Φ′(un), w〉|
‖un‖p−1

= |
∫

Ω

|∇v|p−2∇v∇w dx−
∫

Ω

f(x, un)
‖un‖p−1

w dx| ≤ εn
‖w‖
‖un‖p−1

So, passing to the limit, we conclude that∫
Ω

|∇v|p−2∇v∇w dx−
∫

Ω

f̃(x)w(x) dx = 0;

that is, ∫
Ω

|∇v|p−2∇v∇w dx−
∫

Ω

m(x)|v|p−2vw dx = 0,∀w ∈W 1,p
0 (Ω).

In other words, v is a weak solution of the problem

−∆pu = m(x)|u|p−2u in Ω,
u = 0 on ∂Ω.
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The result above and the claim imply

1 ∈ σ(−∆p,m(·)) and λ1 ≤ m(·) ≤ β < λ2. (3.5)

If we assume that λ1 < m(·) on a subset of Ω of positive measure, then by the
second part of (3.5), the strict monotonicity of λ1 (cf. [12]) and the strict partial
monotonicity of λ2 (cf. [3]), we have

λ1(m(·)) < λ1(λ1(1)) = 1 and λ2(m(·)) > λ2(λ2(1)) = 1.

Therefore, it result that
λ1(m(·)) < 1 < λ2(m(·)). (3.6)

Since σ(−∆p,m(·))∩]λ1(m(·)), λ2(m(·))[= ∅ (cf. [3]), the first part of (3.5) and
(3.6) are in contradiction, hence m(·) = λ1 and v is a λ1 eigenfunction. So, it
follows that

|un(x)| → +∞ a.e. x ∈ Ω. (3.7)
On the other hand,

lim
n→+∞

∫
Ω

pF (x, un)− unf(x, un) dx = −pc. (3.8)

Combining (3.7) and (F2), Fatou’s lemma yields∫
Ω

L(x) dx ≤ lim inf
n→+∞

∫
Ω

pF (x, un)− unf(x, un) dx.

Via (3.8) we obtain ∫
Ω

L(x) dx ≤ −pc ≤ 0,

which contradicts (F2). Thus the lemma follows. �

Now, we show that the critical groups of Φ at zero are trivial.

Lemma 3.2. Assume (F0)–(F1), (F3), (F4). Then Cq(Φ, 0) ∼= 0 for all q ∈ Z.

Proof. Let Bρ = {u ∈ W 1,p
0 (Ω), ‖u‖ ≤ ρ}, ρ > 0 which is to be chosen later. The

idea of the proof is to construct a retraction of Bρ \ {0} to Bρ ∩ Φ0 \ {0} and to
prove that Bρ∩Φ0 is contractible in itself. For this purpose, we need to analyze the
local properties of Φ near zero. Thus some technical affirmations must be proved.
Claim 1. Under (F0), (F1) and (F3), zero is local maximum for the functional
Φ(su), s ∈ R, for u 6= 0. In fact, it follows from the condition (F3), there exists a
constant c0 > 0 such that

F (x, t) ≥ c0|t|p, for x ∈ Ω, |t| ≤ δ. (3.9)

Using (F0), (F1) and (3.9), we obtain

F (x, t) ≥ c0|t|p − c1|t|q, x ∈ Ω, t ∈ R (3.10)

for some q ∈ (p, p∗) and c1 > 0. Then, for u ∈W 1,p
0 (Ω), u 6= 0 and s > 0, we have

Φ(su) =
1
p
sp
∫

Ω

|∇u|p dx−
∫

Ω

F (x, su) dx

≤ sp

p
‖u‖p −

∫
Ω

(c0|su|p − c1|su|q) dx

≤ sp

p
‖u‖p − c0sp‖u‖pp + c1s

q‖u‖qq.

(3.11)
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Since p < q and by (3.11), there exists a s0 = s0(u) > 0 such that

Φ(su) < 0, for all 0 < s < s0. (3.12)

Claim 2. There exists ρ > 0 such that

d

ds
Φ(su)|s=1 > 0, (3.13)

for every u ∈W 1,p
0 (Ω) with Φ(u) = 0 and 0 < ‖u‖ ≤ ρ.

Indeed, let u ∈W 1,p
0 (Ω) be such that Φ(u) = 0. In turn, for (F4) and (F0)–(F1)

respectively, we have for ε > 0 sufficiently small that there exists
r = r(ε) > 0 such that

µF (x, u)− f(x, u)u ≥ (γ − ε)|u|p, a.e. x ∈ Ω and |u| ≤ r,

and
µF (x, u)− f(x, u)u ≥ −cε|u|q, a.e. x ∈ Ω and |u| > r,

for some q ∈ (p, p∗) and cε > 0.
Define Ωr(u) = {x ∈ Ω : |u| > r} and Ωr(u) = {x ∈ Ω : |u| ≤ r}. Then, since

Φ(u) = 0 and by the Poincaré inequality, we write

d

ds
Φ(su)|s=1 = 〈Φ′(su), u〉|s=1

=
∫

Ω

|∇u|p dx−
∫

Ω

f(x, u)u dx,

= (1− µ

p
)
∫

Ω

|∇u|p dx+
∫

Ωr(u)

(µF (x, u)− f(x, u)u) dx

+
∫

Ωr(u)

(µF (x, u)− f(x, u)u) dx,

≥ (1− µ

p
)‖u‖p + (γ − ε)

∫
Ωr(u)

|u|p dx− cε
∫

Ωr(u)

|u|q dx,

≥ θ‖u‖p − Cε‖u‖q,

for some Cε > 0, where θ = (1 − µ
p + γ

λ1
− ε

λ1
). Since p < q, the inequality (3.13)

follows for ε small enough such that θ > 0.
Claim 3. For all u ∈W 1,p

0 (Ω) with Φ(u) ≤ 0 and ‖u‖ ≤ ρ, we have

Φ(su) ≤ 0, for all s ∈ (0, 1). (3.14)

Indeed, given ‖u‖ ≤ ρ with Φ(u) ≤ 0, assume by contradiction that there exists
some s0 ∈ (0, 1] such that Φ(s0u) > 0. Thus, by the continuity of Φ, there exists
an s1 ∈ (s0, 1] such that Φ(s1u) = 0. Choose s2 ∈ (s0, 1] such that s2 = min{s ∈
[s0, 1]; Φ(su) = 0}. It is easy to see that Φ(su) ≥ 0 for each s ∈ [s0, s2]. Taking
u1 = s2u, it is clear that

Φ(su)− Φ(s2u) ≥ 0 implies
d

ds
Φ(su)|s=s2 =

d

ds
Φ(su1)|s=1 ≤ 0.

This is a contradiction with (3.13). The proof of the claim is complete.
Let us fix ρ > 0 such that zero is the unique critical point of Φ in Bρ. First, by

taking the mapping h : [0, 1]× (Bρ ∩Φ0)→ Bρ ∩Φ0 as h(s, u) = (1− s)u, we have
that Bρ ∩ Φ0 is contractible in itself.
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Now, we prove that (Bρ∩Φ0)\{0} is contractible in itself too. For this purpose,
define a mapping T : Bρ \ {0} → (0, 1] by

T (u) = 1, for u ∈ (Bρ ∩ Φ0) \ {0},
T (u) = s, for u ∈ Bρ \ Φ0 with Φ(su) = 0, s < 1.

(3.15)

From the relations (3.12)-(3.14), the mapping T is well defined and if Φ(u) > 0
then there exists an unique T (u) ∈ (0, 1) such that

Φ(su) < 0,∀s ∈ (0, T (u)),

Φ(T (u)u) = 0,

Φ(su) > 0,∀s ∈ (T (u), 1)).
(3.16)

Thus, using (3.13) and (3.15) and the Implicit Function Theorem, the mapping T
is continuous.

Next, we define a mapping η : Bρ \ {0} → (Bρ ∩ Φ0) \ {0} by

η(u) = T (u)u, u ∈ Bρ \ {0} with Φ(u) ≥ 0,

η(u) = u, u ∈ Bρ \ {0} with Φ(u) < 0.

Since T (u) = 1 as Φ(u) = 0, the continuity of η follows from the continuity of T .
Obviously, η(u) = u for u ∈ (Bρ∩Φ0)\{0}. Thus, η is a retraction of Bρ \{0} to

(Bρ∩Φ0)\{0}. SinceW 1,p
0 (Ω) is infinite dimensional, Bρ\{0} is contractible in itself.

By the fact that retracts of contractible space are also contractible, (Bρ ∩Φ0) \ {0}
is contractible in itself. From the homology exact sequence, one has

Hq(Bρ ∩ Φ0, (Bρ ∩ Φ0) \ {0}) = 0, ∀q ∈ Z.

Hence
Cq(Φ, 0) = Hq(Bρ ∩ Φ0, (Bρ ∩ Φ0) \ {0}) = 0,∀q ∈ Z.

�

Lemma 3.3. Under the conditions of Theorem 1.1, Φ possesses a local minimum
u0 non trivial such that Φ(u0) = 0.

Proof. Define the cut-off functional Φ̃ : W 1,p
0 (Ω)→ R as

Φ̃(u) =
1
p
‖u‖p −

∫
Ω

F̃ (x, u) dx,

where f̃(x, t) = f(x, t) if 0 ≤ t ≤ t0, f(x, t) = 0 otherwise, and F̃ (x, t) =∫ t
0
f̃(x, s) ds.
Note that Φ̃ ∈ C1(W 1,p

0 (Ω),R) and From (F0) and (F1), there exists M ∈ R
such that

Φ̃(u) ≥ 1
p
‖u‖p −M, ∀u ∈W 1,p

0 (Ω).

This implies that Φ̃ is coercive on W 1,p
0 (Ω) and satisfies (PS). Hence, Φ̃ is bounded

below. Let u0 ∈ W 1,p
0 (Ω) a local minimum of Φ̃. Thus, u0 is a solution of the

problem

−∆pu0 = f̃(x, u0), in Ω,
u0 = 0, on ∂Ω.
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By the theory regularity in [2], u0 ∈ C1(Ω̄). Considering the domain

Ω0 = {x ∈ Ω : u0(x) < 0 or u0(x) > t0},
we have

−∆pu0 ≤ 0, in Ω0,

0 ≤ u0 ≤ t0, on ∂Ω0.

From the maximum principle, we get 0 < u0 < t0 in Ω0, and hence Ω0 = ∅, i.e.
0 ≤ u0 ≤ t0 in Ω0.

Since u0 is a local minimizer of Φ̃ in C1
0 (Ω), it is also of Φ in C1

0 (Ω). Then, by
[14, Theorem 2.1], u0 is a local minimizer of Φ in W 1,p

0 (Ω) and

Cq(Φ, u0) = δq,0R.

From Lemma 3.2, u0 is nontrivial.
Now, we prove that Φ(u0) = 0. Indeed, since 0 < u0 < t0, we obtain

Φ(u0) = Φ̃(u0) = inf
u∈W 1,p

0 (Ω)
Φ̃(u) ≤ Φ̃(0) = 0.

Since Φ̃′(u0).u0 = 0, we have

Φ̃(u0) =
1
p

∫
Ω

|∇u0|p −
∫

Ω

F̃ (x, u0) =
1
p

∫
Ω

f̃(x, u0)u0 −
∫

Ω

F̃ (x, u0).

However, from (F3), we obtain Φ(u0) = Φ̃(u0) ≥ 0. �

Proof of Theorem 1.1. From (F0) and (F1), for some ε > 0 small, it follows that
there is a constant C > 0 such that

F (x, t) ≥ 1
p

(λ1 + ε)|t|p + C, ∀t ∈ R, a.e. x ∈ Ω.

Therefore, by the Poincaré inequality, for u ∈W 1,p
0 (Ω),

Φ(u) ≤ −ε
pλ1
‖u‖p − C|Ω|.

Hence Φ is not bounded below. By Lemmas 3.1, 3.2 and 3.3, we can apply Theorem
2.8 and we obtain that Φ possesses at least three critical points in W 1,p

0 (Ω). This
completes the proof. �
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