Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 45, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

THREE SOLUTIONS FOR A FOURTH-ORDER BOUNDARY-VALUE PROBLEM

GHASEM A. AFROUZI, SAEID SHOKOOH

Abstract

Using two three-critical points theorems, we prove the existence of at least three weak solutions for one-dimensional fourth-order equations. Some particular cases and two concrete examples are then presented.

1. Introduction

In this note, we consider the fourth-order boundary-value problem

$$
\begin{gather*}
u^{\prime \prime \prime \prime} h\left(x, u^{\prime}\right)-u^{\prime \prime}=[\lambda f(x, u)+g(u)] h\left(x, u^{\prime}\right), \quad \text { in }(0,1), \\
u(0)=u(1)=0=u^{\prime \prime}(0)=u^{\prime \prime}(1), \tag{1.1}
\end{gather*}
$$

where λ is a positive parameter, $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1}-Carathéodory function, $g: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz continuous function with the Lipschitz constant $L>0$, i.e.,

$$
\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|
$$

for every $t_{1}, t_{2} \in \mathbb{R}$, with $g(0)=0$, and $h:[0,1] \times \mathbb{R} \rightarrow[0,+\infty)$ is a bounded and continuous function with $m:=\inf _{(x, t) \in[0,1] \times \mathbb{R}} h(x, t)>0$.

Due to the importance of fourth-order two-point boundary value problems in describing a large class of elastic deflection, many researchers have studied the existence and multiplicity of solutions for such a problem, we refer the reader to [1, 2, 3, 6, 11] and references therein. For example, authors in [2], using Ricceri's Variational Principle [10, Theorem 1], established the existence three weak solutions for the problem

$$
\begin{gathered}
u^{\prime \prime \prime \prime}+\alpha u^{\prime \prime}+\beta u=\lambda f(x, u)+\mu g(x, u), \quad \text { in }(0,1) \\
u(0)=u(1)=0=u^{\prime \prime}(0)=u^{\prime \prime}(1)
\end{gathered}
$$

where α, β are real constants, $f, g:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions and $\lambda, \mu>0$.

In this article, employing two three-critical points theorems which we recall in the next section (Theorems 2.1 and 2.2 , we establish the existence three weak solutions for (1.1). A special case of Theorem 3.1 is the following theorem.

2000 Mathematics Subject Classification. 34B15, 34B18, 58E05.
Key words and phrases. Dirichlet boundary condition; variational method; critical point.
(C) 2015 Texas State University - San Marcos.

Submitted November 14, 2014. Published February 17, 2015.

Theorem 1.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative continuous function such that

$$
\begin{gathered}
2^{12} \int_{0}^{2} f(x) d x<\int_{0}^{3 \sqrt{3}} f(x) d x \\
\quad \limsup _{|\xi| \rightarrow+\infty} \frac{\int_{0}^{\xi} f(x) d x}{\xi^{2}} \leq 0
\end{gathered}
$$

Then, for each

$$
\lambda \in] \frac{2^{13}\left(\pi^{4}+\pi^{2}+1\right)}{\pi^{4} \int_{0}^{3 \sqrt{3}} f(x) d x}, \frac{2\left(\pi^{4}+\pi^{2}+1\right)}{\pi^{4} \int_{0}^{2} f(x) d x}[,
$$

the problem

$$
\begin{aligned}
& u^{\prime \prime \prime \prime}-u^{\prime \prime}+u=f(u), \quad \text { in }(0,1) \\
& u(0)=u(1)=0=u^{\prime \prime}(0)=u^{\prime \prime}(1)
\end{aligned}
$$

admits at least three weak solutions.
The following result is a consequence of Theorem 3.6.
Theorem 1.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative continuous function such that

$$
\begin{aligned}
& 2^{11} \int_{0}^{2} f(x) d x<\int_{0}^{3} f(x) d x \\
& \int_{0}^{2^{10}} f(x) d x<2^{7} \int_{0}^{3} f(x) d x
\end{aligned}
$$

Then, for each

$$
\lambda \in] \frac{2^{13}\left(\pi^{4}+\pi^{2}+1\right)}{\pi^{4} \int_{0}^{3} f(x) d x}, \frac{\left(\pi^{4}+\pi^{2}+1\right)}{\pi^{4}} \min \left\{\frac{2}{\int_{0}^{2} f(x) d x}, \frac{2^{20}}{\int_{0}^{1024} f(x) d x}\right\}[
$$

the problem

$$
\begin{aligned}
& u^{\prime \prime \prime \prime}-u^{\prime \prime}-u=f(u), \quad \text { in }(0,1) \\
& u(0)=u(1)=0=u^{\prime \prime}(0)=u^{\prime \prime}(1)
\end{aligned}
$$

admits at least three weak solutions.

2. Preliminaries

We now state two critical point theorems established by Bonanno and coauthors [4, 5] which are the main tools for the proofs of our results. The first result has been obtained in [5] and it is a more precise version of Theorem 3.2 of 4]. The second one has been established in [4]. In the first one the coercivity of the functional $\Phi-\lambda \Psi$ is required, in the second one a suitable sign hypothesis is assumed.
Theorem 2.1 ([5, Theorem 2.6]). Let X be a reflexive real Banach space; Φ : $X \rightarrow \mathbb{R}$ be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous inverse on $X^{*}, \Psi: X \rightarrow \mathbb{R}$ be a sequentially weakly upper semicontinuous, continuously Gâteaux differentiable functional whose Gâteaux derivative is compact, such that

$$
\Phi(0)=\Psi(0)=0
$$

Assume that there exist $r>0$ and $\bar{x} \in X$, with $r<\Phi(\bar{x})$ such that
(i) $\sup _{\Phi(x) \leq r} \Psi(x)<r \Psi(\bar{x}) / \Phi(\bar{x})$,
(ii) for each λ in

$$
\left.\Lambda_{r}:=\right] \frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup _{\Phi(x) \leq r} \Psi(x)}[
$$

the functional $\Phi-\lambda \Psi$ is coercive.
Then, for each $\lambda \in \Lambda_{r}$ the functional $\Phi-\lambda \Psi$ has at least three distinct critical points in X.

Theorem 2.2 ([4, Theorem 3.2]). Let X be a reflexive real Banach space; Φ : $X \rightarrow \mathbb{R}$ be a convex, coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous inverse on $X^{*}, \Psi: X \rightarrow \mathbb{R}$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact, such that

$$
\inf _{X} \Phi=\Phi(0)=\Psi(0)=0
$$

Assume that there exist two positive constants $r_{1}, r_{2}>0$ and $\bar{x} \in X$, with $2 r_{1}<$ $\Phi(\bar{x})<r_{2} / 2$, such that
(j) $\sup _{\Phi(x) \leq r_{1}} \Psi(x) / r_{1}<(2 / 3) \Psi(\bar{x}) / \Phi(\bar{x})$,
(jj) $\sup _{\Phi(x) \leq r_{2}} \Psi(x) / r_{2}<(1 / 3) \Psi(\bar{x}) / \Phi(\bar{x})$,
(jjj) for each λ in

$$
\left.\Lambda_{r_{1}, r_{2}}^{*}:=\right] \frac{3}{2} \frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \min \left\{\frac{r_{1}}{\sup _{\Phi(x) \leq r_{1}} \Psi(x)}, \frac{r_{2}}{2 \sup _{\Phi(x) \leq r_{2}} \Psi(x)}\right\}[
$$

and for every $x_{1}, x_{2} \in X$, which are local minima for the functional $\Phi-\lambda \Psi$, and such that $\Psi\left(x_{1}\right) \geq 0$ and $\Psi\left(x_{2}\right) \geq 0$, one has $\inf _{t \in[0,1]} \Psi\left(t x_{1}+(1-\right.$ $\left.t) x_{2}\right) \geq 0$.
Then, for each $\lambda \in \Lambda_{r_{1}, r_{2}}^{*}$ the functional $\Phi-\lambda \Psi$ has at least three distinct critical points which lie in $\Phi^{-1}(]-\infty, r_{2}[)$.

Let us introduce some notation which will be used later. Define

$$
\begin{gathered}
H_{0}^{1}([0,1]):=\left\{u \in L^{2}([0,1]): u^{\prime} \in L^{2}([0,1]), u(0)=u(1)=0\right\} \\
H^{2}([0,1]):=\left\{u \in L^{2}([0,1]): u^{\prime}, u^{\prime \prime} \in L^{2}([0,1])\right\} .
\end{gathered}
$$

Take $X=H^{2}([0,1]) \cap H_{0}^{1}([0,1])$ endowed with the usual norm

$$
\|u\|:=\left(\int_{0}^{1}\left|u^{\prime \prime}(x)\right|^{2} d x\right)^{1 / 2}
$$

We recall the following Poincaré type inequalities (see, for instance, 8, Lemma 2.3]):

$$
\begin{align*}
\left\|u^{\prime}\right\|_{L^{2}([0,1])}^{2} & \leq \frac{1}{\pi^{2}}\|u\|^{2}, \tag{2.1}\\
\|u\|_{L^{2}([0,1])}^{2} & \leq \frac{1}{\pi^{4}}\|u\|^{2} \tag{2.2}
\end{align*}
$$

for all $u \in X$. For the norm in $C^{1}([0,1])$,

$$
\|u\|_{\infty}:=\max \left\{\max _{x \in[0,1]}|u(x)|, \max _{x \in[0,1]}\left|u^{\prime}(x)\right|\right\}
$$

we have the following relation.

Proposition 2.3. Let $u \in X$. Then

$$
\begin{equation*}
\|u\|_{\infty} \leq \frac{1}{2 \pi}\|u\| \tag{2.3}
\end{equation*}
$$

Proof. Taking (2.1) into account, the conclusion follows from the well-known inequality $\|u\|_{\infty} \leq \frac{1}{2}\left\|u^{\prime}\right\|_{L^{2}([0,1])}$.

For an excellent overview of the most significant mathematical methods employed in this paper we refer to [7, 9].

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz continuous function with the Lipschitz constant $L>0$, i.e.,

$$
\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|
$$

for every $t_{1}, t_{2} \in \mathbb{R}$, and $g(0)=0, h:[0,1] \times \mathbb{R} \rightarrow[0,+\infty)$ is a bounded and continuous function with $m:=\inf _{(x, t) \in[0,1] \times \mathbb{R}} h(x, t)>0$, and $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be an L^{1}-Carathéodory function.

We recall that $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1}-Carathéodory function if
(a) the mapping $x \mapsto f(x, \xi)$ is measurable for every $\xi \in \mathbb{R}$;
(b) the mapping $\xi \mapsto f(x, \xi)$ is continuous for almost every $x \in[0,1]$;
(c) for every $\rho>0$ there exists a function $l_{\rho} \in L^{1}([0,1])$ such that

$$
\sup _{|\xi| \leq \rho}|f(x, \xi)| \leq l_{\rho}(x)
$$

for almost every $x \in[0,1]$.
Corresponding to f, g and h we introduce the functions $F:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}, G: \mathbb{R} \rightarrow$ \mathbb{R} and $H:[0,1] \times \mathbb{R} \rightarrow[0,+\infty)$, respectively, as follows

$$
\begin{gathered}
F(x, t):=\int_{0}^{t} f(x, \xi) d \xi, \quad G(t):=-\int_{0}^{t} g(\xi) d \xi \\
H(x, t):=\int_{0}^{t}\left(\int_{0}^{\tau} \frac{1}{h(x, \delta)} d \delta\right) d \tau
\end{gathered}
$$

for all $x \in[0,1]$ and $t \in \mathbb{R}$.
In the following, we let $M:=\sup _{(x, t) \in[0,1] \times \mathbb{R}} h(x, t)$ and suppose that the Lipschitz constant L of the function g satisfies $0<L<\pi^{4}$.

We say that a function $u \in X$ is a weak solution of 1.1 if

$$
\begin{aligned}
& \int_{0}^{1} u^{\prime \prime}(x) v^{\prime \prime}(x) d x+\int_{0}^{1}\left(\int_{0}^{u^{\prime}(x)} \frac{1}{h(x, \tau)} d \tau\right) v^{\prime}(x) d x \\
& -\lambda \int_{0}^{1} f(x, u(x)) v(x) d x-\int_{0}^{1} g(u(x)) v(x) d x=0
\end{aligned}
$$

holds for all $v \in X$.

3. Main Results

Put

$$
A:=\frac{\pi^{4}-L}{2 \pi^{4}}, \quad B:=\frac{\pi^{2}+m\left(\pi^{4}+L\right)}{2 m \pi^{4}}
$$

and suppose that $B \leq 4 A \pi^{2}$. We formulate our main results as follows.
Theorem 3.1. Assume that there exist two positive constants c, d, satisfying $c<$ $32 d /(3 \sqrt{3} \pi)$, such that
(A1) $F(x, t) \geq 0$ for all $(x, t) \in([0,3 / 8] \cup[5 / 8,1]) \times[0, d]$;

$$
\begin{gather*}
\frac{\int_{0}^{1} \max _{|t| \leq c} F(x, t) d x}{c^{2}}<\frac{27}{4096} \frac{\int_{3 / 8}^{5 / 8} F(x, d) d x}{d^{2}} \tag{A2}\\
\limsup _{|\xi| \rightarrow+\infty} \frac{\sup _{x \in[0,1]} F(x, \xi)}{\xi^{2}} \leq \frac{\pi^{4} A}{B} \frac{\int_{0}^{1} \max _{|t| \leq c} F(x, t) d x}{c^{2}} \tag{A3}
\end{gather*}
$$

Then, for every λ in

$$
\Lambda:=] \frac{4096 B d^{2}}{27 \int_{3 / 8}^{5 / 8} F(x, d) d x}, \frac{B c^{2}}{\int_{0}^{1} \max _{|t| \leq c} F(x, t) d x}[
$$

problem (1.1) has at least three distinct weak solutions.
Proof. Fix λ as in the conclusion. Our aim is to apply Theorem 2.1 to our problem. To this end, for every $u \in X$, we introduce the functionals $\Phi, \Psi: X \rightarrow \mathbb{R}$ by setting

$$
\begin{gathered}
\Phi(u):=\frac{1}{2}\|u\|^{2}+\int_{0}^{1} H\left(x, u^{\prime}(x)\right) d x+\int_{0}^{1} G(u(x)) d x \\
\Psi(u):=\int_{0}^{1} F(x, u(x)) d x
\end{gathered}
$$

and putting

$$
I_{\lambda}(u):=\Phi(u)-\lambda \Psi(u) \quad \forall u \in X
$$

Note that the weak solutions of 1.1 are exactly the critical points of I_{λ}. The functionals Φ, Ψ satisfy the regularity assumptions of Theorem 2.1. Indeed, by standard arguments, we have that Φ is Gâteaux differentiable and sequentially weakly lower semicontinuous and its Gâteaux derivative is the functional $\Phi^{\prime}(u) \in$ X^{*}, given by
$\Phi^{\prime}(u)(v)=\int_{0}^{1} u^{\prime \prime}(x) v^{\prime \prime}(x) d x+\int_{0}^{1}\left(\int_{0}^{u^{\prime}(x)} \frac{1}{h(x, \tau)} d \tau\right) v^{\prime}(x) d x-\int_{0}^{1} g(u(x)) v(x) d x$
for any $v \in X$. Furthermore, the differential $\Phi^{\prime}: X \rightarrow X^{*}$ is a Lipschitzian operator. Indeed, taking (2.1) and 2.2 into account, for any $u, v \in X$, there holds

$$
\begin{aligned}
\left\|\Phi^{\prime}(u)-\Phi^{\prime}(v)\right\|_{X^{*}}= & \sup _{\|w\| \leq 1}\left|\left(\Phi^{\prime}(u)-\Phi^{\prime}(v), w\right)\right| \\
\leq & \sup _{\|w\| \leq 1} \int_{0}^{1}\left|u^{\prime \prime}(x)-v^{\prime \prime}(x) \| w^{\prime \prime}(x)\right| d x \\
& +\sup _{\|w\| \leq 1} \int_{0}^{1}\left|\int_{u^{\prime}(x)}^{v^{\prime}(x)} \frac{1}{h(x, \tau)} d \tau\right|\left|w^{\prime}(x)\right| d x \\
& +\sup _{\|w\| \leq 1} \int_{0}^{1}|g(u(x))-g(v(x)) \| w(x)| d x \\
\leq & \|u-v\|+\frac{1}{m} \sup _{\|w\| \leq 1}\left\|u^{\prime}-v^{\prime}\right\|_{L^{2}(0,1)}\left\|w^{\prime}\right\|_{L^{2}(0,1)} \\
& +L \sup _{\|w\| \leq 1}\|u-v\|_{L^{2}(0,1)}\|w\|_{L^{2}(0,1)} \\
\leq & \left(1+\frac{1}{m \pi^{2}}+\frac{L}{\pi^{4}}\right)\|u-v\|=2 B\|u-v\|
\end{aligned}
$$

Recalling that g is Lipschitz continuous and h is bounded away from zero, the claim is true. In particular, we derive that Φ is continuously differentiable. Also, for any $u, v \in X$, we have

$$
\begin{aligned}
\left(\Phi^{\prime}(u)-\Phi^{\prime}(v), u-v\right)= & \|u-v\|^{2}+\int_{0}^{1}\left(\int_{u^{\prime}(x)}^{v^{\prime}(x)} \frac{1}{h(x, \tau)} d \tau\right)\left(u^{\prime}(x)-v^{\prime}(x)\right) d x \\
& -\int_{0}^{1}(g(u(x))-g(v(x)))(u(x)-v(x)) d x \\
\geq & \|u-v\|^{2}+\frac{1}{M}\left\|u^{\prime}-v^{\prime}\right\|_{L^{2}(0,1)}^{2}-L\|u-v\|_{L^{2}(0,1)}^{2} \\
\geq & \|u-v\|^{2}-\frac{L}{\pi^{4}}\|u-v\|^{2}=2 A\|u-v\|^{2}
\end{aligned}
$$

By the assumption $L<\pi^{4}$, it turns out that Φ^{\prime} is a strongly monotone operator. So, by applying Minty-Browder theorem [12, Theorem 26.A], $\Phi^{\prime}: X \rightarrow X^{*}$ admits a Lipschitz continuous inverse. On the other hand, the fact that X is compactly embedded into $C^{0}([0,1])$ implies that the functional Ψ is well defined, continuously Gâteaux differentiable and with compact derivative, whose Gâteaux derivative is given by

$$
\Psi^{\prime}(u)(v)=\int_{0}^{1} f(x, u(x)) v(x) d x
$$

for any $v \in X$.
Since g is Lipschitz continuous and satisfies $g(0)=0$, while h is bounded away from zero, the inequalities 2.1 and 2.2 yield for any $u \in X$ the estimate

$$
\begin{equation*}
A\|u\|^{2} \leq \Phi(u) \leq B\|u\|^{2} \tag{3.1}
\end{equation*}
$$

We will verify (i) and (ii) of Theorem 2.1. Put $r=B c^{2}$. Taking (2.3) into account, for every $u \in X$ such that $\Phi(u) \leq r$, one has $\max _{x \in[0,1]}|u(x)| \leq c$. Consequently,

$$
\sup _{\Phi(u) \leq r} \Psi(u) \leq \int_{0}^{1} \max _{|t| \leq c} F(x, t) d x
$$

that is,

$$
\frac{\sup _{\Phi(u) \leq r} \Psi(u)}{r} \leq \frac{\int_{0}^{1} \max _{|t| \leq c} F(x, t) d x}{B c^{2}}
$$

Hence,

$$
\begin{equation*}
\frac{\sup _{\Phi(u) \leq r} \Psi(u)}{r}<\frac{1}{\lambda} \tag{3.2}
\end{equation*}
$$

Put

$$
w(x)= \begin{cases}-\frac{64 d}{9}\left(x^{2}-\frac{3}{4} x\right), & x \in\left[0, \frac{3}{8}[\right. \\ d, & x \in\left[\frac{3}{8}, \frac{5}{8}\right], \\ -\frac{64 d}{9}\left(x^{2}-\frac{5}{4} x+\frac{1}{4}\right), & \left.x \in] \frac{5}{8}, 1\right]\end{cases}
$$

It is easy to verify that $w \in X$ and, in particular,

$$
\|w\|^{2}=\frac{4096}{27} d^{2}
$$

So, taking (3.1) into account, we deduce

$$
\frac{4096}{27} A d^{2} \leq \Phi(w) \leq \frac{4096}{27} B d^{2}
$$

Hence, from $c<\frac{32}{3 \sqrt{3} \pi} d$ and $B \leq 4 A \pi^{2}$, we obtain $r<\Phi(w)$.
Since $0 \leq w(x) \leq d$ for each $x \in[0,1]$, assumption (A1) ensures that

$$
\int_{0}^{3 / 8} F(x, w(x)) d x+\int_{5 / 8}^{1} F(x, w(x)) d x \geq 0
$$

and so

$$
\Psi(w) \geq \int_{3 / 8}^{5 / 8} F(x, d) d x
$$

Therefore, we obtain

$$
\begin{equation*}
\frac{\Psi(w)}{\Phi(w)} \geq \frac{27}{4096} \frac{\int_{3 / 8}^{5 / 8} F(x, d) d x}{B d^{2}}>\frac{1}{\lambda} \tag{3.3}
\end{equation*}
$$

Therefore, from 3.2 and 3.3 , condition (i) of Theorem 2.1 is fulfilled.
Now, to prove the coercivity of the functional I_{λ}. By (A3), we have

$$
\limsup _{|\xi| \rightarrow+\infty} \frac{\sup _{x \in[0,1]} F(x, \xi)}{\xi^{2}}<\frac{\pi^{4} A}{\lambda}
$$

So, we can fix $\varepsilon>0$ satisfying

$$
\limsup _{|\xi| \rightarrow+\infty} \frac{\sup _{x \in[0,1]} F(x, \xi)}{\xi^{2}}<\varepsilon<\frac{\pi^{4} A}{\lambda} .
$$

Then, there exists a positive constant θ such that

$$
F(x, t) \leq \varepsilon|t|^{2}+\theta \quad \forall x \in[0,1], \forall t \in \mathbb{R}
$$

Taking into account 2.2 and (3.1), we have

$$
I_{\lambda}(u)=\Phi(u)-\lambda \Psi(u) \geq A\|u\|^{2}-\lambda \varepsilon\|u\|_{L^{2}[0,1]}^{2}-\lambda \theta \geq\left(A-\frac{\lambda \varepsilon}{\pi^{4}}\right)\|u\|^{2}-\lambda \theta
$$

for all $u \in X$. So, the functional I_{λ} is coercive. Now, the conclusion of Theorem 2.1 can be used. It follows that for every

$$
\lambda \in \Lambda \subseteq] \frac{\Phi(w)}{\Psi(w)}, \frac{r}{\sup _{\Phi(u) \leq r} \Psi(u)}[
$$

the functional I_{λ} has at least three distinct critical points in X, which are the weak solutions of the problem 1.1). This completes the proof.

Now, we present a consequence of Theorem 3.1.
Corollary 3.2. Let $\alpha \in L^{1}([0,1])$ be a non-negative and non-zero function and let $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Put $\alpha_{0}:=\int_{3 / 8}^{5 / 8} \alpha(x) d x,\|\alpha\|_{1}:=\int_{0}^{1} \alpha(x) d x$ and $\Gamma(t)=\int_{0}^{t} \gamma(\xi) d \xi$ for all $t \in \mathbb{R}$, and assume that there exist two positive constants c, d, with $c<\frac{32}{3 \sqrt{3} \pi} d$, such that
(A1') $\Gamma(t) \geq 0$ for all $t \in[0, d]$;
(A2')

$$
\frac{\max _{|t| \leq c} \Gamma(t)}{c^{2}}<\frac{27}{4096} \frac{\alpha_{0}}{\|\alpha\|_{1}} \frac{\Gamma(d)}{d^{2}}
$$

$(A 3 ') \lim \sup _{|\xi| \rightarrow+\infty} \Gamma(\xi) / \xi^{2} \leq 0$.

Then, for every

$$
\lambda \in] \frac{4096}{27} \frac{B d^{2}}{\alpha_{0} \Gamma(d)}, \frac{B c^{2}}{\|\alpha\|_{1} \max _{|t| \leq c} \Gamma(t)}[,
$$

the problem

$$
\begin{align*}
u^{\prime \prime \prime \prime} h\left(x, u^{\prime}\right)-u^{\prime \prime} & =[\lambda \alpha(x) \gamma(u)+g(u)] h\left(x, u^{\prime}\right), \quad \text { in }(0,1), \\
u(0) & =u(1)=0=u^{\prime \prime}(0)=u^{\prime \prime}(1) \tag{3.4}
\end{align*}
$$

has at least three weak solutions.
The proof of the above corollary follows from Theorem 3.1 by choosing $f(x, t):=$ $\alpha(x) \gamma(t)$ for all $(x, t) \in[0,1] \times \mathbb{R}$.

Remark 3.3. Clearly, if γ is non-negative then assumption (A1') is satisfied and (A2') becomes

$$
\frac{\Gamma(c)}{c^{2}}<\frac{27}{4096} \frac{\alpha_{0}}{\|\alpha\|_{1}} \frac{\Gamma(d)}{d^{2}}
$$

Remark 3.4. Theorem 1.1 in the introduction is an immediate consequence of Corollary 3.2, on choosing $g(u)=-u, h \equiv 1, c=2$ and $d=3 \sqrt{3}$.

The following lemma will be crucial in our arguments.
Lemma 3.5. Assume that $f(x, t) \geq 0$ for all $(x, t) \in[0,1] \times \mathbb{R}$. If u is a weak solution of 1.1, then $u(x) \geq 0$ for all $x \in[0,1]$.
Proof. Arguing by contradiction, if we assume that u is negative at a point of $[0,1]$, the set

$$
\Omega:=\{x \in[0,1]: u(x)<0\}
$$

is non-empty and open. Let us consider $\bar{v}:=\min \{u, 0\}$, one has, $\bar{v} \in X$. So, taking into account that u is a weak solution and by choosing $v=\bar{v}$, from our assumptions, one has

$$
\begin{aligned}
0 & \geq \lambda \int_{\Omega} f(x, u(x)) u(x) d x \\
& =\int_{\Omega}\left|u^{\prime \prime}(x)\right|^{2} d x+\int_{\Omega}\left(\int_{0}^{u^{\prime}(x)} \frac{1}{h(x, \tau)} d \tau\right) u^{\prime}(x) d x-\int_{\Omega} g(u(x)) u(x) d x \\
& \geq \frac{\pi^{4}-L}{\pi^{4}}\|u\|_{H^{2}(\Omega) \cap H_{0}^{1}(\Omega)}^{2}
\end{aligned}
$$

Therefore, $\|u\|_{H^{2}(\Omega) \cap H_{0}^{1}(\Omega)}=0$ which is absurd. Hence, the conclusion is achieved.

Our other main result is as follows.
Theorem 3.6. Assume that there exist three positive constants c_{1}, c_{2}, d, satisfying $\frac{3 \sqrt{3} \pi}{16 \sqrt{2}} c_{1}<d<\frac{3 \sqrt{3}}{64 \sqrt{2}} c_{2}$, such that
(B1) $f(x, t) \geq 0$ for all $(x, t) \in[0,1] \times\left[0, c_{2}\right]$;
(B2)

$$
\frac{\int_{0}^{1} F\left(x, c_{1}\right) d x}{c_{1}^{2}}<\frac{9}{2048} \frac{\int_{3 / 8}^{5 / 8} F(x, d) d x}{d^{2}}
$$

$$
\begin{equation*}
\frac{\int_{0}^{1} F\left(x, c_{2}\right) d x}{c_{2}^{2}}<\frac{9}{4096} \frac{\int_{3 / 8}^{5 / 8} F(x, d) d x}{d^{2}} \tag{B3}
\end{equation*}
$$

Let

$$
\left.\Lambda^{\prime}:=\right] \frac{2048}{9} \frac{B d^{2}}{\int_{3 / 8}^{5 / 8} F(x, d) d x}, B \min \left\{\frac{c_{1}^{2}}{\int_{0}^{1} F\left(x, c_{1}\right) d x}, \frac{c_{2}^{2}}{2 \int_{0}^{1} F\left(x, c_{2}\right) d x}\right\}[.
$$

Then, for every $\lambda \in \Lambda^{\prime}$ the problem (1.1) has at least three weak solutions u_{i}, $i=1,2,3$, such that $0<\left\|u_{i}\right\|_{\infty} \leq c_{2}$.

Proof. Without loss of generality, we can assume $f(x, t) \geq 0$ for all $(x, t) \in[0,1] \times \mathbb{R}$. Fix λ as in the conclusion and take X, Φ and Ψ as in the proof of Theorem 3.1. Put w as in Theorem 3.1, $r_{1}=B c_{1}^{2}$ and $r_{2}=B c_{2}^{2}$. Therefore, one has $2 r_{1}<\Phi(w)<\frac{r_{2}}{2}$ and we have

$$
\begin{aligned}
\frac{1}{r_{1}} \sup _{\Phi(u)<r_{1}} \Psi(u) & \leq \frac{1}{B c_{1}^{2}} \int_{0}^{1} F\left(x, c_{1}\right) d x<\frac{1}{\lambda} \\
& <\frac{9}{2048} \frac{\int_{3 / 8}^{5 / 8} F(x, d) d x}{B d^{2}} \\
& \leq \frac{2 \Psi(w)}{3} \frac{\Phi(w)}{}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{2}{r_{2}} \sup _{\Phi(u)<r_{2}} \Psi(u) & \leq \frac{2}{B c_{2}^{2}} \int_{0}^{1} F\left(x, c_{2}\right) d x<\frac{1}{\lambda} \\
& <\frac{9}{2048} \frac{\int_{3 / 8}^{5 / 8} F(x, d) d x}{B d^{2}} \\
& \leq \frac{2}{3} \frac{\Psi(w)}{\Phi(w)}
\end{aligned}
$$

So, conditions (j) and (jj) of Theorem 2.2 are satisfied. Finally, let u_{1} and u_{2} be two local minima for $\Phi-\lambda \Psi$. Then, u_{1} and u_{2} are critical points for $\Phi-\lambda \Psi$, and so, they are weak solutions for the problem (1.1). Hence, owing to Lemma 3.5, we obtain $u_{1}(x) \geq 0$ and $u_{2}(x) \geq 0$ for all $x \in[0,1]$. So, one has $\Psi\left(s u_{1}+(1-s) u_{2}\right) \geq 0$ for all $s \in[0,1]$. From Theorem 2.2 the functional $\Phi-\lambda \Psi$ has at least three distinct critical points which are weak solutions of 1.1. This complete the proof.

Now, we present a consequence of Theorem 3.6.
Corollary 3.7. Let $\alpha \in L^{1}([0,1])$ be such that $\alpha(x) \geq 0$ a.e. $x \in[0,1], \alpha \not \equiv 0$, and let $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Put $\alpha_{0}:=\int_{3 / 8}^{5 / 8} \alpha(x) d x,\|\alpha\|_{1}:=\int_{0}^{1} \alpha(x) d x$ and $\Gamma(t)=\int_{0}^{t} \gamma(\xi) d \xi$ for all $t \in \mathbb{R}$, and assume that there exist three positive constants c_{1}, c_{2}, d, with $\frac{3 \sqrt{3} \pi}{16 \sqrt{2}} c_{1}<d<\frac{3 \sqrt{3}}{64 \sqrt{2}} c_{2}$, such that
(B1') $\gamma(t) \geq 0$ for all $t \in\left[0, c_{2}\right]$;
(B2')

$$
\frac{\Gamma\left(c_{1}\right)}{c_{1}^{2}}<\frac{9}{2048} \frac{\alpha_{0}}{\|\alpha\|_{1}} \frac{\Gamma(d)}{d^{2}}
$$

(B3')

$$
\frac{\Gamma\left(c_{2}\right)}{c_{2}^{2}}<\frac{9}{4096} \frac{\alpha_{0}}{\|\alpha\|_{1}} \frac{\Gamma(d)}{d^{2}}
$$

Then, for every

$$
\lambda \in] \frac{2048}{9} \frac{B d^{2}}{\alpha_{0} \Gamma(d)}, B \min \left\{\frac{c_{1}^{2}}{\|\alpha\|_{1} \Gamma\left(c_{1}\right)}, \frac{c_{2}^{2}}{2\|\alpha\|_{1} \Gamma\left(c_{2}\right)}\right\}[,
$$

the problem (3.4) has at least three weak solutions $u_{i}, i=1,2,3$, such that $0<$ $\left\|u_{i}\right\|_{\infty} \leq c_{2}$.

The proof of the above corollary follows from Theorem3.6 by choosing $f(x, t):=$ $\alpha(x) \gamma(t)$ for all $(x, t) \in[0,1] \times \mathbb{R}$.
Remark 3.8. Theorem 1.2 in the introduction is an immediate consequence of Corollary 3.7, on choosing $g(u)=u, h \equiv 1, c_{1}=2, c_{2}=2^{10}$, and $d=3$.

Finally, we present the following examples to illustrate our results.
Example 3.9. Consider the following problem

$$
\begin{gather*}
u^{\prime \prime \prime \prime}-u^{\prime \prime}\left(2+x+\cos u^{\prime}\right)+u=\lambda f(u), \quad \text { in }(0,1), \\
u(0)=u(1)=0=u^{\prime \prime}(0)=u^{\prime \prime}(1), \tag{3.5}
\end{gather*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(t)= \begin{cases}2^{-10} & \text { if }|t| \leq 1 \\ 2^{-10} t^{4} & \text { if } 1<|t| \leq 32 \\ 2^{20} t^{-2} & \text { if }|t|>32\end{cases}
$$

Here, $g(t)=-t$ and $h(x, t)=(2+x+\cos t)^{-1}$ for all $x \in[0,1]$ and $t \in \mathbb{R}$. It is easy to verify that (A2') and (A3') are satisfied with $c=1$ and $d=32$. From Corollary 3.2, for each parameter

$$
\lambda \in] \frac{48\left(\pi^{4}+4 \pi^{2}+1\right)}{\pi^{4}}, \frac{512\left(\pi^{4}+4 \pi^{2}+1\right)}{\pi^{4}}[
$$

problem (3.5) admits at least three weak solutions.
Example 3.10. Consider the problem

$$
\begin{gather*}
u^{\prime \prime \prime \prime}-u^{\prime \prime}\left(3+\sin u^{\prime}\right)-2 u=\lambda f(u), \quad \text { in }(0,1), \\
u(0)=u(1)=0=u^{\prime \prime}(0)=u^{\prime \prime}(1), \tag{3.6}
\end{gather*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(t)= \begin{cases}2^{-20} & \text { if }|t| \leq 2^{-5} \\ t^{4} & \text { if } 2^{-5}<|t| \leq 1 \\ t^{-2} & \text { if }|t|>1\end{cases}
$$

Here, $g(t)=2 t$ and $h(x, t)=(3+\sin t)^{-1}$ for all $x \in[0,1]$ and $t \in \mathbb{R}$. It is easy to verify that (B2') and (B3') are satisfied with $c_{1}=2^{-5}, d=1$ and $c_{2}=2^{10}$. From Corollary 3.7, for each parameter

$$
\lambda \in] \frac{2276\left(\pi^{4}+4 \pi^{2}+2\right)}{\pi^{4}}, \frac{2^{14}\left(\pi^{4}+4 \pi^{2}+2\right)}{\pi^{4}}[,
$$

problem (3.6) admits at least three weak solutions $u_{i}, i=1,2,3$, such that $0<$ $\left\|u_{i}\right\|_{\infty} \leq 1024$.

References

[1] G. Afrouzi, A. Hadjian, V. D. Rădulescu; Variational approach to fourth-order impulsive differential equations with two control parameters, Results in Mathematics, 65 (2014), 371384.
[2] G. A. Afrouzi, S. Heidarkhani, D. O'Regan; Existence of three solutions for a doubly eigenvalue fourth-order boundary value problem, Taiwanese J. Math., 15 (2011), 201-210.
[3] G. Afrouzi, M. Mirzapour, V. D. Rădulescu; Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions, Collectanea Mathematica, in press (DOI: 10.1007/s13348-014-0131-x).
[4] G. Bonanno, P. Candito; Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations, 244 (2008), 3031-3059.
[5] G. Bonanno, S. A. Marano; On the structure of the critical set of non-differentiable functionals with a weak compactness condition, Appl. Anal., 89 (2010), 1-10.
[6] G. Chai; Existence of positive solutions for fourth-order boundary value problem with variable parameters, Math. Comput. Modelling, 66 (2007), 870-880.
[7] P. G. Ciarlet; Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2013.
[8] L. A. Peletier, W. C. Troy, R. C. A. M. Van der Vorst; Stationary solutions of a fourth order nonlinear diffusion equation, (Russian) Translated from the English by V. V. Kurt. Differentsialnye Uravneniya 31 (1995), 327-337. English translation in Differential Equations 31 (1995), 301-314.
[9] V. D. Rădulescu; Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, Vol. 6, Hindawi Publ. Corp., 2008.
[10] B. Ricceri; A three critical points theorem revisited, Nonlinear Anal., 70 (2009), 3084-3089.
[11] V. Shanthi, N. Ramanujam; A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations, Appl. Math. Comput., 129 (2002). 269-294.
[12] E. Zeidler; Nonlinear Functional Analysis and its Applications, vol. II/B and III, Berlin-Heidelberg-New York, 1990.

Ghasem A. Afrouzi
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: afrouzi@umz.ac.ir
Saeid Shokooh
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: saeid.shokooh@stu.umz.ac.ir

