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THREE SOLUTIONS FOR A FOURTH-ORDER
BOUNDARY-VALUE PROBLEM

GHASEM A. AFROUZI, SAEID SHOKOOH

ABSTRACT. Using two three-critical points theorems, we prove the existence
of at least three weak solutions for one-dimensional fourth-order equations.
Some particular cases and two concrete examples are then presented.

1. INTRODUCTION

In this note, we consider the fourth-order boundary-value problem
u""h(z,u') —u" = [Mf(z,u) + g(u)]h(z,u'), in (0,1),

" 12 (1.1)
u(0) =u(l) =0=1u"(0) =u"(1),

where ) is a positive parameter, f : [0,1] x R — R is an L!-Carathéodory function,
g : R — R is a Lipschitz continuous function with the Lipschitz constant L > 0,
i.e.,

lg(t1) — g(t2)] < Lit1 — to]
for every t1,t; € R, with g(0) =0, and h : [0,1] x R — [0, +00) is a bounded and
continuous function with m := inf , ;)c(0,1)xr M(2, ) > 0.

Due to the importance of fourth-order two-point boundary value problems in
describing a large class of elastic deflection, many researchers have studied the
existence and multiplicity of solutions for such a problem, we refer the reader to
[1 2, Bl 6 [11] and references therein. For example, authors in [2], using Ricceri’s
Variational Principle [10, Theorem 1], established the existence three weak solutions
for the problem

"+ o + ﬁu _ )\f(:uu) + ug(x,u), in (07 1)7
u(0) = u(1) =0 =u"(0) = u"(1),

where «, 3 are real constants, f,g:[0,1] x R — R are Carathéodory functions and
A, pu > 0.

In this article, employing two three-critical points theorems which we recall in
the next section (Theorems and , we establish the existence three weak
solutions for . A special case of Theorem is the following theorem.
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Theorem 1.1. Let f : R — R be a non-negative continuous function such that

f
212/2f(x)da:</3 ‘rif(sc)d:lc7
0 0

€
d
lim sup IOLW <0
le|o4oo &

Then, for each

A 6:|213(7T4—|—7T2—|—1) 2(rt + 72 4+ 1) [
4 Osﬁf(ac) dx f02 f(x)dx
the problem
" —u" +u= f(u), in(0,1),
u(0) = u(1) =0 =u"(0) = u"(1)
admits at least three weak solutions.

The following result is a consequence of Theorem [3.6]

Theorem 1.2. Let f : R — R be a non-negative continuous function such that

leffhﬁdx<i£3f@ﬂda

210

3
f(z)dx < 27/0 f(z) dz,

0
Then, for each
28t + 72+ 1) (742 +1) 2 220
)\E} e ’ ! mm{ 2 » 1024 }{’
T fo f(x)dx fo f(x)dx fo f(x)dx
the problem

" =" —u= f(u), in(0,1),
w(0) =u(l) =0=u"(0) =u"(1)

admits at least three weak solutions.

2. PRELIMINARIES

We now state two critical point theorems established by Bonanno and coauthors
[4}[5] which are the main tools for the proofs of our results. The first result has been
obtained in [5] and it is a more precise version of Theorem 3.2 of [4]. The second
one has been established in [4]. In the first one the coercivity of the functional
® — AV is required, in the second one a suitable sign hypothesis is assumed.

Theorem 2.1 (|5, Theorem 2.6]). Let X be a reflexive real Banach space; @ :
X — R be a sequentially weakly lower semicontinuous, coercive and continuously
Gateauz differentiable functional whose Gateaux derivative admits a continuous in-
verse on X*, ¥ : X — R be a sequentially weakly upper semicontinuous, continu-
ously Gateaux differentiable functional whose Gateaur derivative is compact, such
that
®(0) =v(0)=0.
Assume that there exist r > 0 and T € X, with r < ®(Z) such that
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(i) supg ()<, ¥(z) <r¥(z)/®(2),
(ii) for each A in

o(z) r
\I/(i‘) ’ SUP® (z)<r \I/(Z‘)
the functional ® — AV is coercive.

Then, for each A € A, the functional ® — AV has at least three distinct critical
points in X.

A=

)

Theorem 2.2 (|4, Theorem 3.2]). Let X be a reflexive real Banach space; ® :
X — R be a convex, coercive and continuously Gateaux differentiable functional
whose Gateauxr derivative admits a continuous inverse on X*, ¥ : X — R be a
continuously Gateauz differentiable functional whose Gateaur derivative is compact,
such that
i&f@ =®(0)=T(0)=0.

Assume that there exist two positive constants r1,r9 > 0 and T € X, with 2r; <
®(z) < r2/2, such that

() SUD () <1y U(z)/r < (2/3)¥(z)/P(Z),
(1i) suPe(gy<r, ¥(2)/r2 < (1/3)¥(2)/2(2),
(3ij) for each X in

~

*

T T 9 (7))

3 (I)(!f) . 1 9 |:
= min ,
Sup'ib(m)grl \II(Z) 2 Sup(b(ac)gm \II(I)

and for every x1,x9 € X, which are local minima for the functional ® — A\,
and such that W(x1) > 0 and ¥(xz) > 0, one has infycjo 1) ¥tz + (1 —
t)aﬁg) Z 0.

Then, for each \ € A% the functional ® — AU has at least three distinct critical

1,72
points which lie in ®~1(] — oo, r3[).

Let us introduce some notation which will be used later. Define
H)([0,1]) == {u € L?([0,1]) : ' € L*([0,1]), u(0) = u(1) = 0},
H?([0,1]) == {uw € L*([0,1]) : v/, u” € L*([0,1])}.
Take X = H?([0,1]) N H(]0,1]) endowed with the usual norm

Jull = ( w@p ),

We recall the following Poincaré type inequalities (see, for instance, [8, Lemma
2.3]):

1
[0 172 0,17 < ﬁHUHQa (2.1)
1
el 220,17y < ﬁHUHQ (2.2)
for all u € X. For the norm in C([0,1]),
Julloc 1= max { Jae [u(e)], maxe ' (@)]},

we have the following relation.
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Proposition 2.3. Let u e X. Then
Jullse < 5l (23)
T

Proof. Taking into account, the conclusion follows from the well-known in-
equality ||u||oo S §HUIHL2([O,1])- O

For an excellent overview of the most significant mathematical methods employed
in this paper we refer to [7, [].

Let g : R — R is a Lipschitz continuous function with the Lipschitz constant
L>0,i.e.,

lg(t1) — g(t2)| < Llt1 — o]

for every t1,to € R, and ¢g(0) = 0, h : [0,1] x R — [0,400) is a bounded and
continuous function with m := inf(, ¢)c[0,1]xr M(2,t) >0, and f: [0,1] x R — R be
an L'-Carathéodory function.

We recall that f:[0,1] x R — R is an L!'-Carathéodory function if

(a) the mapping x — f(z,£) is measurable for every ¢ € R;
(b) the mapping £ — f(x,&) is continuous for almost every x € [0, 1];
(c) for every p > 0 there exists a function [, € L'([0,1]) such that

sup |f(x,&)| < lp(x)

1€l1<p
for almost every z € [0,1].

Corresponding to f, g and h we introduce the functions F : [0,1] xR - R, G: R —
R and H : [0,1] x R — [0, 400), respectively, as follows

Fla,t) = /O fa.6)de, G(t) = — /0 o(€) d.

H(z,t) = /Ot(/OT h(ié)dé)dT

for all z € [0,1] and ¢t € R.

In the following, we let M := sup, ;)c(o,1)xr 11(¥,t) and suppose that the Lips-
chitz constant L of the function ¢ satisfies 0 < L < 4.

We say that a function v € X is a weak solution of if

/01 u’(z)v" (z) do + /01 (/0“/(95) h(xl, = dr)v’(x) dx

- )\/0 fz,u(x))v(z) de — /0 g(u(z))v(z)dz =0
holds for all v € X.

3. MAIN RESULTS

Put
a4 — L w4 m(rt + L)

27t ' 2mm? ’
and suppose that B < 4A7n2. We formulate our main results as follows.

Theorem 3.1. Assume that there exist two positive constants c,d, satisfying ¢ <

32d/(3v/37), such that
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(A1) F(z,t) > 0 for all (z,t) € ([0,3/8] U [5/8,1]) [0, d];

(A2)
5/8
fol max <. F(z,t) dv - 27 Jy/s dx
c? 4096 d2 ’
(A3)
Kz, A [y F(z,t)d
hmsup Supze[oﬂi (m é‘) S ™ Aﬁ) maXMS; (x’ ) x.
[€]—+o0 § B c
Then, for every X in

} 4096 Bd> Bc? {
27f5/8 x d) dx fO max|s|<¢ F(x,t)dx ’
problem has at least three distinct weak solutions.

Proof. Fix A as in the conclusion. Our aim is to apply Theorem [2.1] to our problem.
To this end, for every u € X, we introduce the functionals ®, ¥ : X — R by setting

1 1
D(u) := %||u||2—|—/0 H(x,u’(x))dx—i—/o G(u(x)) dz
:/ F(x,u(x))dx
0

I(u) == ®(u) —A¥(u) YuelX.
Note that the weak solutions of are exactly the critical points of Ix. The
functionals @, ¥ satisfy the regularity assumptions of Theorem 2.1} Indeed, by
standard arguments, we have that ® is Gateaux differentiable and sequentially
weakly lower semicontinuous and its Gateaux derivative is the functional ®'(u) €
X*, given by

&' (u)(v) = /01 u” (x)v" (x) dx—f—/ol (/OUI(JC) ﬁcﬁ)v'(x) dx—/ol g(u(x))v(z) dz

for any v € X. Furthermore, the differential ® : X — X* is a Lipschitzian
operator. Indeed, taking (2.1) and (2.2 into account, for any u,v € X, there holds

19 (u) = ®'(v)|[x+ = sup [((u) - ¥'(v),w)]

flwll<

and putting

a 1
< suppu<r / " () — 0" (z) |0 (z)]| da

+ sup / ’/ dr‘ |w'(z)| dz
ol <1 @ M

+ sup / l9(u(2)) — g(o(@))|w()| dx

flwll<1

S llu=vlf+ 2 sup lu" =o'l 20,1y 10 l| 20,1
M <

+ L sup ||u— v||L2(071) lwl£2(0,1)

[lw] <1
<( !

L
+ ) lu = ol = 2Blju— ol
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Recalling that g is Lipschitz continuous and h is bounded away from zero, the claim
is true. In particular, we derive that ® is continuously differentiable. Also, for any
u,v € X, we have

(@ (u) — ' (v),u —v) = ||u—v||2+/01 (/u(;) h(;T)dT)(u/(x) — ' (2)) dx

1
- /O (9(u(z)) — g(v(x)))(u(z) — v(z)) dx
1
> Jlu— o] + MHU/ —0'[[22(0,1) = Lllu = ll7201)
L
e T g”u — o = 24]u — |,

By the assumption L < 7%, it turns out that ®’ is a strongly monotone operator.
So, by applying Minty-Browder theorem [12 Theorem 26.A], ' : X — X* admits
a Lipschitz continuous inverse. On the other hand, the fact that X is compactly
embedded into C°([0, 1]) implies that the functional ¥ is well defined, continuously
Gateaux differentiable and with compact derivative, whose Gateaux derivative is

given by
1
v) = / fz,u(x))v(z) dx
0
for any v € X.

Since g is Lipschitz continuous and satisfies g(0) = 0, while h is bounded away
from zero, the inequalities (2.1)) and (2.2) yield for any u € X the estimate

Allull® < ®(u) < Bl|ul]*. (3.1)
We will verify (i) and (ii) of Theorem Put r = Bc?. Taking (2.3)) into

account, for every u € X such that ®(u) < r, one has max,cp 1 |u(z)| < c

Consequently,
1

sup U(u) < [ max F(x,t)dx;
P(u)<r o ltI<e
that is,
1
SUP® (u)<r \II(U’) < fo maXMch(xvt) dx
r - Be?
Hence,
SUP¢ (u)<r \I/(’U,) 1
—. 3.2
r < A (3.2)
Put
—%(1‘2—%30), T € [O,%[
w(z) = ¢d, SAERE
e TR D e]g, 1].

It is easy to verify that w € X and, in particular,

4096
2 2
= —d-~.
ol = o
So, taking (3.1]) into account, we deduce
4 4
096Ad2 < d(w) < 409 gz,

27
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Hence, from ¢ < 3 32 —d and B < 4A7?, we obtain r < ®(w).
Since 0 < w(x ) § d for each z € [0, 1] assumption (Al) ensures that

3/8 1
/ F(z,w(z)) dz+/ F(z,w(zx))dx > 0,

0 5/8
and so
5/8
U(w) > F(z,d)dz.
3/8
Therefore, we obtain
5/8
\Ifw>27f/ Qv 1 33)
®(w) — 4096 Bd2 A ’

Therefore, from and (3.3)), condition (i) of Theorem [2.1]is fulfilled.
Now, to prove the coercivity of the functional I. By (A3), we have

i SUpgepo,1 F(z,€)  mtA
1m sup B < .
|l —+o0 ¢ A
So, we can fix € > 0 satisfying

su F(zx, 44
lim sup pwE[O,li @) <e< T2
[€]—+oo 3 A

Then, there exists a positive constant 6 such that
F(x,t) <e|t?+0 Yz e[0,1], Vt e R.
Taking into account (2.2)) and (3.1), we have
Ii(u) = @(u) = AV (u) > Allull* = Ae|lul|72p, — A0 > (A *)II I” -

for all u € X. So, the functional I is coercive. Now, the conclusion of Theorem
[2:1] can be used. It follows that for every

Achc ] igi;’ SUP@(u)Tgr U (u) [’

the functional Iy has at least three distinct critical points in X, which are the weak
solutions of the problem (1.1)). This completes the proof. |

Now, we present a consequence of Theorem

Corollary 3.2. Let a € L'([0,1]) be a non- negatz've and non-zero function and let

7 : R — R be a continuous function. Put ag := fs r)dz, ||al; = fo x)dx
and T'(t fo €)d¢ for allt € R, and assume that there ezist two positive con-
stants c, d with ¢ < 33% d, such that

(A1) T'(¢) > 0 for all t € ]0,d];

(A27)

max|y <. I'(t) - 27 a9 T'(d)
c? 4096 ||af]y d?
(A3) limsupe_ 4o )/ <o.
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Then, for every

\ ]4096 Bd? Bc?
27 aol'(d)” [lerfls maxy<. T(t) L
the problem

u"'h(z,u') —u” = [Aa(@)y(u) + g(w)lh(z,u'), in (0,1),

u(0) = u(l) =0=1u"(0) = u"(1) (3:4)

has at least three weak solutions.

The proof of the above corollary follows from Theorem [3.1 by choosing f(z,t) :=
a(x)y(t) for all (x,t) € [0,1] x R.
Remark 3.3. Clearly, if v is non-negative then assumption (A1’) is satisfied and
(A2’) becomes
I(c) 27 oy T(d)
2 1096 o, &

Remark 3.4. Theorem [I.I] in the introduction is an immediate consequence of
Corollaryn, on choosing g(u) = —u, h =1, c=2 and d = 3v/3.

The following lemma will be crucial in our arguments.

Lemma 3.5. Assume that f(x,t) > 0 for all (z,t) € [0,1] x R. If u is a weak
solution of (1.1)), then u(xz) > 0 for all x € [0, 1].

Proof. Arguing by contradiction, if we assume that u is negative at a point of [0, 1],
the set

Q:={x€[0,1] : u(z) < 0},

is non-empty and open. Let us consider ¥ := min{u, 0}, one has, ¥ € X. So, taking
into account that u is a weak solution and by choosing v = ¥, from our assumptions,
one has

0> A f(a:,u(m))u(a:) dx

/|u” |2dz+/ (/ v h(;T)dT)u'(z)da:/Qg(u(z))u(:z:)dx

— L
> - 1ullFr2 yn a2 ()

Therefore, Hu||H2(Q)mHé (2) = 0 which is absurd. Hence, the conclusion is achieved.
O

Our other main result is as follows.

Theorem 3.6. Assume that there exist three positive constants ¢, co,d, satisfying

‘ig(/fc <d< 6‘1&02, such that
(B1) f(x,t) >0 for all (z,t) € [0, 1] x [0, ca];
(B2)
fol F(x,c1)dz fs/s dx

2 2048 d2 ’
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(B3)
fol F(x,c3)dx f5/8 dx
> 4096 e
Let
A e } 2048 Bd? B min { c? 3 } [
9f5/8 xddx foclda:ZfoCQ)dx

Then, for every A € A’ the problem (1.1)) has at least three weak solutions wu;,
i=1,2,3, such that 0 < ||u;]le0 < co.

Proof. Without loss of generality, we can assume f(z,t) > 0 for all (z,t) € [0, 1] xR.
Fix A as in the conclusion and take X, ® and U as in the proof of Theorem [3.1] Put
w as in Theorem r1 = Bc? and ro = Bc3. Therefore, one has 2r; < ®(w) < =z
and we have
1 sup U(u) < L 1F(:v c1)dx < !
T1 ®(u)<rs ~ Bei Jo o A
5/8 1
9 Jijs dx
2048 Bd2
2 ¥(w)
3d(w)’

IN

and

2 2 !
— sup Y(u §—/Fx,02 dr <
T2 P(u)<ra ( ) BC% ( )

9 Jas Vs F(x,d)dz
2048 Bd2
2 U(w)
3P(w)
So, conditions (j) and (jj) of Theorem are satisfied. Finally, let u; and uy be
two local minima for ® — AW. Then, u; and us are critical points for ® — AW, and
so, they are weak solutions for the problem . Hence, owing to Lemma we
obtain uy (z) > 0 and uz(x) > 0 for all z € [0, 1]. So, one has ¥(su; + (1 —s)uz) > 0
for all s € [0,1]. From Theoremthe functional ® — AW has at least three distinct
critical points which are weak solutions of . This complete the proof. (I

<

<

Now, we present a consequence of Theorem

Corollary 3.7. Let a € L'([0,1]) be such that a(x) > 0 a.e. z € [0,1], « $é 0, and
let v:R — R be a continuous function. Put og 1= f35//88 (x)dz, |1 = fo x)dx

and T'(t fo v(&)dE for all t € R, and assume that there exist three positive

constants c1,co,d, with ?1’%(/7161 <d< 3v3 such that

64f62’
(B1’) v(t) >0 for allt € [0, ca];
(B2)
F(C1) 9 (7)) F(d)
c 2048 |||y d?
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(B3)
F(CQ) 9 (&%) F(d)
2 < 2
cs 4096 |ja|; d

Then, for every
2048 Bd? c? c3
VS ELL T SR
9 aol'(d) [elliT(er) " 2flal[1T(c2)
the problem (3.4) has at least three weak solutions w;, i = 1,2,3, such that 0 <

lluilloo < c2.

The proof of the above corollary follows from Theoremby choosing f(z,t) :=
a(x)y(t) for all (z,t) € [0,1] x R.

Remark 3.8. Theorem in the introduction is an immediate consequence of
Corollary on choosing g(u) =u, h=1, ¢c; =2, ¢ =2 and d = 3.

Finally, we present the following examples to illustrate our results.

Example 3.9. Consider the following problem
u" —u" (242 +cosu') +u=Af(u), in (0,1),
u(0) = u(1) =0 =u"(0) = u"(1),
where f : R — R is defined by
2710 if g < 1,
ft)=<2710¢ if 1 < |t| < 32,
22042 if |t > 32.
Here, g(t) = —t and h(z,t) = (2+x +cost)~! for all x € [0,1] and ¢t € R. It is easy

to verify that (A2’) and (A3’) are satisfied with ¢ = 1 and d = 32. From Corollary
for each parameter

48(m* + 4?2 +1) 512(r* + 472 + 1)
xe | - : . :
™ s

problem (3.5 admits at least three weak solutions.

Example 3.10. Consider the problem
o — " (3+sinu’) — 2u = Af(u), in (0,1),
u(0) = u(1) = 0 = u"(0) = u"(1),
where f: R — R is defined by

(3.6)

2720 if t] <277,
fit)y=<t* if 275 < |t| <1,
=2 if [t > 1.
Here, g(t) = 2t and h(x,t) = (3 +sint)~! for all z € [0,1] and ¢t € R. It is easy to
verify that (B2’) and (B3’) are satisfied with ¢; = 27, d = 1 and ¢y = 2!°. From
Corollary for each parameter

) e } 2276(m* + 4w2 4+ 2) 21¥4(7t +4n? + 2) [
4 )

4 ’ ™
problem (3.6) admits at least three weak solutions u;, i = 1,2,3, such that 0 <
[l lloo < 1024.
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