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ON A SHARP CONDITION FOR THE EXISTENCE OF WEAK
SOLUTIONS TO THE DIRICHLET PROBLEM FOR

DEGENERATE NONLINEAR ELLIPTIC EQUATIONS WITH
POWER WEIGHTS AND L1-DATA

ALEXANDER A. KOVALEVSKY, FRANCESCO NICOLOSI

Abstract. In this article, we establish a sharp condition for the existence

of weak solutions to the Dirichlet problem for degenerate nonlinear elliptic

second-order equations with L1-data in a bounded open set Ω of Rn with
n > 2. We assume that Ω contains the origin and assume that the growth

and coercivity conditions on coefficients of the equations involve the weighted

function µ(x) = |x|α, where α ∈ (0, 1], and a parameter p ∈ (1, n). We prove
that if p > 2 − (1 − α)/n, then the Dirichlet problem has weak solutions for

every L1-right-hand side. On the other hand, we find that if p 6 2−(1−α)/n,

then there exists an L1-datum such that the corresponding Dirichlet problem
does not have weak solutions.

1. Introduction

It is known that the Dirichlet problem for nonlinear elliptic second-order equa-
tions in divergence form, whose principal coefficients grow with respect to the gra-
dient of unknown function u as |∇u|p−1, has weak solutions for every L1-right-hand
side only if p > 2− 1/n where n is the dimension of the set for which the problem
is considered (see [3, 4, 5]). This fact concerns the equations whose coefficients are
nondegenerate with respect to the spatial variable.

In this article, we establish an analogous fact for a class of degenerate nonlinear
elliptic second-order equations with L1-data in a bounded open set Ω of Rn with
n > 2. We assume that Ω contains the origin and assume that the growth and
coercivity conditions on coefficients of the equations involve the weighted function
µ(x) = |x|α, x ∈ Ω, where α ∈ (0, 1], and a parameter p ∈ (1, n). The following
equation is a model representative of this class:

−
n∑
i=1

Di(µ|∇u|p−2Diu) = f in Ω

where f ∈ L1(Ω).
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Using a general result from [10], we prove that if p > 2 − (1 − α)/n, then the
Dirichlet problem for equations of the given class has weak solutions for every
L1-right-hand side (see Theorem 2.3). On the other hand, with the use of Banach-
Steinhaus theorem we find that if p 6 2− (1−α)/n, then there exists an L1-datum
such that the corresponding Dirichlet problem does not have weak solutions (see
Theorem 2.4).

Let us mention some works close to the topic of this article. Regarding the
solvability of nondegenerate elliptic equations with L1-data and measures as data,
additionally to [3, 4, 5], we also refer the readers to works [6, 7, 16]. Solvability of
the Dirichlet problem for degenerate nonlinear elliptic second-order equations with
L1-data and measures as data was studied for instance in [1, 2, 8, 9, 10, 15].

We remark that in [1, 8], the existence of entropy solutions to the given problem
was proved in the case of L1-data. In [2], the existence of a renormalized solution
of the problem was established for the same case. In [2, 9, 15], the existence of
distributional solutions of the problem was obtained in the case of right-hand side
measures.

Some general conditions for the existence of weak solutions to the Dirichlet
problem for degenerate anisotropic elliptic second-order equations with L1-right-
hand sides were given in [10]. However, no results on the sharpness of conditions of
the existence of weak solutions to the problem under consideration in the degenerate
case were not given in the mentioned works.

Conditions of the existence of weak solutions to the Dirichlet problem for degen-
erate nonlinear elliptic high-order equations with a strengthened weighted coercivity
and L1-data were established in [11, 12]. Finally, we note that a condition of the
nonexistence of weak solutions to the Dirichlet problem for nondegenerate nonlin-
ear elliptic high-order equations with L1-data was obtained in [13], and conditions
of the nonexistence of weak solutions to the Dirichlet problem for nondegenerate
nonlinear elliptic second- and high-order equations with data from Lebesgue classes
close to L1 were given in [14].

This article is organized as follows. In Section 2, we describe initial assumptions
and give the statements of above-mentioned Theorems 2.3 and 2.4. Section 3 con-
tains the proof of Theorem 2.3, and in Section 4, we expose the proof of Theorem
2.4. At last, in Section 5, we consider an example where conditions supposed for
coefficients of the investigated equations are satisfied.

2. Initial assumptions and statement of results

Let n ∈ N, n > 2, and let Ω be a bounded open set of Rn. We assume that the
origin is contained in Ω. Let α ∈ (0, 1], and let µ : Ω → R be the function such
that for every x ∈ Ω, µ(x) = |x|α.

Next, let p ∈ (1, n), c1, c2 > 0, and let g, h : Ω → R be functions such that
g, h > 0 in Ω, g, h ∈ L1(Ω) and µgp ∈ L1(Ω). Let for every i ∈ {1, . . . , n},
ai : Ω × Rn → R be a Carathéodory function. We suppose that for almost every
x ∈ Ω and for every ξ ∈ Rn the following inequalities hold:

n∑
i=1

|ai(x, ξ)| 6 c1µ(x)|ξ|p−1 + µ(x)gp−1(x), (2.1)

n∑
i=1

ai(x, ξ)ξi > c2µ(x)|ξ|p − h(x). (2.2)
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Moreover, we assume that for almost every x ∈ Ω and for every ξ, ξ′ ∈ Rn, ξ 6= ξ′,
n∑
i=1

[ai(x, ξ)− ai(x, ξ′)](ξi − ξ′i) > 0. (2.3)

Definition 2.1. If f ∈ L1(Ω), then D(f) is the set of all functions u ∈ W̊ 1,1(Ω)
such that

(i) for every i ∈ {1, . . . , n}, ai(x,∇u) ∈ L1(Ω);
(ii) for every function ϕ ∈ C∞0 (Ω),∫

Ω

{ n∑
i=1

ai(x,∇u)Diϕ
}
dx =

∫
Ω

fϕ dx.

Definition 2.2. Let f ∈ L1(Ω). We say that u is a weak solution to the Dirichlet
problem

−
n∑
i=1

Diai(x,∇u) = f in Ω, u = 0 on ∂Ω (2.4)

if u ∈ D(f).

The latter definition corresponds to the definition of weak solution to the Dirich-
let problem for nondegenerate elliptic second-order equations with L1-data or mea-
sures as data (see for instance [4, 5]). In the next two sections we prove the following
results.

Theorem 2.3. Let p > 2− (1− α)/n. Then for every function f ∈ L1(Ω) the set
D(f) is nonempty.

Theorem 2.4. Let p 6 2− (1−α)/n. Then there exists a function f ∈ L1(Ω) such
that the set D(f) is empty.

Thus, by the above theorems, the condition p > 2− (1−α)/n is a sharp require-
ment for guaranteeing the existence of weak solutions to problem (2.4) for every
f ∈ L1(Ω). The next result is a simple consequence of these theorems.

Corollary 2.5. Suppose that α = 1. Then the following assertions hold:
(a) if p > 2, then for every f ∈ L1(Ω), D(f) 6= ∅;
(b) if p 6 2, then there exists f ∈ L1(Ω) such that D(f) = ∅;
(c) if n = 2, then there exists f ∈ L1(Ω) such that D(f) = ∅;

Observe that the case p > 2 is possible only if n > 2.

3. Proof of Theorem 2.3

The proof is an application of a result in [10] on the existence of weak solutions
to the Dirichlet problem for degenerate anisotropic elliptic second-order equations
with L1-data. Let us formulate this result.

Let for every i ∈ {1, . . . , n}, qi be a number such that 1 < qi < n and νi be a
nonnegative function on Ω such that νi > 0 a. e. in Ω,

νi ∈ L1
loc(Ω),

( 1
νi

)1/(qi−1)

∈ L1(Ω). (3.1)

We define

q =
( 1
n

n∑
i=1

1
qi

)−1
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and for every m ∈ Rn such that mi > 0, i = 1, . . . , n, we set

pm = n
( n∑
i=1

1 +mi

miqi
− 1
)−1

.

Further, let c′, c′′ > 0, g1, g2 ∈ L1(Ω), g1, g2 > 0 in Ω, and let for every i ∈
{1, . . . , n}, bi : Ω × Rn → R be a Carathéodory function. We suppose that for
almost every x ∈ Ω and for every ξ ∈ Rn,

n∑
i=1

(1/νi)1/(qi−1)(x)|bi(x, ξ)|qi/(qi−1) 6 c′
n∑
i=1

νi(x)|ξi|qi + g1(x), (3.2)

n∑
i=1

bi(x, ξ)ξi > c′′
n∑
i=1

νi(x)|ξi|qi − g2(x). (3.3)

Moreover, we assume that for almost every x ∈ Ω and for every ξ, ξ′ ∈ Rn, ξ 6= ξ′,
n∑
i=1

[bi(x, ξ)− bi(x, ξ′)](ξi − ξ′i) > 0. (3.4)

According to [10, Corollary 3.9], the following proposition holds.

Proposition 3.1. Suppose that there exist m,σ ∈ Rn with positive coordinates
such that the following conditions are satisfied:

∀i ∈ {1, . . . , n}, q

pm(q − 1)
< qi − 1− 1

mi
,

1
νi
∈ Lmi(Ω), (3.5)

∀i ∈ {1, . . . , n}, 1
σi
< 1− (qi − 1)q

pm(q − 1)
, νi ∈ Lσi(Ω). (3.6)

Let f ∈ L1(Ω). Then there exists a function u ∈ W̊ 1,1(Ω) such that
(i) for every i ∈ {1, . . . , n}, bi(x,∇u) ∈ L1(Ω);
(ii) for every function ϕ ∈ C1

0 (Ω),∫
Ω

{ n∑
i=1

bi(x,∇u)Diϕ
}
dx =

∫
Ω

fϕ dx.

Now, let

p > 2− 1− α
n

. (3.7)

To apply Proposition 3.1, for every i ∈ {1, . . . , n} we set qi = p, νi = µ and bi = ai.
Since 1 < p < n, for every i ∈ {1, . . . , n} we have 1 < qi < n. Obviously, for every
i ∈ {1, . . . , n}, νi is a nonnegative function on Ω, νi > 0 a. e. in Ω and the first
inclusion of (3.1) holds. Furthermore, since, by (3.7), α/(p − 1) < n, the second
inclusion of (3.1) holds for every i ∈ {1, . . . , n}. Setting c′ = (2c1)p/(p−1)np+1,
c′′ = c2/n, g1 = 2p/(p−1)nµgp and g2 = h, we have c′, c′′ > 0, g1, g2 ∈ L1(Ω),
g1, g2 > 0 in Ω, and using (2.1) and (2.2), we obtain that for almost every x ∈ Ω
and for every ξ ∈ Rn inequalities (3.2) and (3.3) hold. Moreover, from (2.3) it
follows that for almost every x ∈ Ω and for every ξ, ξ′ ∈ Rn, ξ 6= ξ′, inequality (3.4)
holds.

Next, since α 6 1 and 1 < p, we have α < p. Also in view of (3.7), α <
n(p− 2 + 1/n). Therefore,

max
{n
p
,

1
p− 2 + 1/n

}
<
n

α
.
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Taking this inequality into account, we fix a number t such that

max
{n
p
,

1
p− 2 + 1/n

}
< t <

n

α
, (3.8)

and then we fix a number s such that

s >
nt

pt− n
. (3.9)

Let m,σ ∈ Rn be elements such that for every i ∈ {1, . . . , n}, mi = t and σi = s.
We have q = p and

1
pm

=
1
p
− 1
n

+
1
tp
.

Therefore, since, by (3.8), 1/t < p− 2 + 1/n, we obtain
q

pm(q − 1)
< p− 1− 1

t
, (3.10)

and using (3.9), we obtain
1
s
< 1− (p− 1)q

pm(q − 1)
. (3.11)

Finally, since, in view of (3.8), αt < n, we have 1/µ ∈ Lt(Ω), and it is obvious that
µ ∈ Ls(Ω). These inclusions along with (3.10) and (3.11) imply that conditions (3.5)
and (3.6) are satisfied. Then, by Proposition 3.1, for every function f ∈ L1(Ω) the
set D(f) is nonempty. This completes the proof of the theorem.

4. Proof of Theorem 2.4

Let
p 6 2− 1− α

n
. (4.1)

Then taking into account that α 6 1 and p > 1, we have 0 6 2− p < 1. We define

r =

{
1

2−p if p < 2,
+∞ if p = 2.

Obviously, r > 1.
We denote by W the set of all functions u ∈ L1(Ω) such that for every i ∈

{1, . . . , n} there exists the weak derivative Diu and µDiu ∈ Lr(Ω). W is a normed
space with respect to the norm

‖u‖ = ‖u‖L1(Ω) +
n∑
i=1

‖µDiu‖Lr(Ω) .

Evidently, C∞0 (Ω) ⊂W . We denote by W̊ the closure of C∞0 (Ω) in W .

Proposition 4.1. Assume that for every f ∈ L1(Ω) the set D(f) is nonempty.
Then W̊ ⊂ L∞(Ω).

Proof. Taking into account the assumption of the proposition, for every f ∈ L1(Ω)
we fix a function uf ∈ D(f). Thus, if f ∈ L1(Ω), then uf ∈ W̊ 1,1(Ω), for every
i ∈ {1, . . . , n} we have ai(x,∇uf ) ∈ L1(Ω), and

∀ϕ ∈ C∞0 (Ω),
∫

Ω

{ n∑
i=1

ai(x,∇uf )Diϕ
}
dx =

∫
Ω

fϕ dx. (4.2)
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Observe that, in view of (2.1) and the inclusions g ∈ L1(Ω) and |∇uf | ∈ L1(Ω)
where f ∈ L1(Ω), the following assertion holds:

if f ∈ L1(Ω) and i ∈ {1, . . . , n}, then (1/µ)ai(x,∇uf ) ∈ L1/(p−1)(Ω). (4.3)

Next, let f ∈ L1(Ω), ϕ ∈W and i ∈ {1, . . . , n}. It is clear that

|ai(x,∇uf )Diϕ| = |(1/µ)ai(x,∇uf )| · |µDiϕ| in Ω \ {0}. (4.4)

Suppose that p < 2. Then using Young’s inequality with the exponents 1/(p − 1)
and r, we obtain

|(1/µ)ai(x,∇uf )| · |µDiϕ| 6 |(1/µ)ai(x,∇uf )|1/(p−1) + |µDiϕ|r . (4.5)

Since ϕ ∈ W , we have |µDiϕ|r ∈ L1(Ω). This along with (4.3)–(4.5) implies that
ai(x,∇uf )Diϕ ∈ L1(Ω). Now, let p = 2. Then we have µDiϕ ∈ L∞(Ω). Therefore,
by (4.4),

|ai(x,∇uf )Diϕ| 6 ‖µDiϕ‖L∞(Ω)|(1/µ)ai(x,∇uf )| a. e. in Ω.

This and (4.3) imply that ai(x,∇uf )Diϕ ∈ L1(Ω).
Thus, the following assertion holds: if f ∈ L1(Ω), ϕ ∈W and i ∈ {1, . . . , n}, then

ai(x,∇uf )Diϕ ∈ L1(Ω). Taking this assertion into account, for every f ∈ L1(Ω)
we define the functional Hf : W → R by

〈Hf , ϕ〉 =
∫

Ω

{ n∑
i=1

ai(x,∇uf )Diϕ
}
dx, ϕ ∈W. (4.6)

Let f ∈ L1(Ω). Obviously, the functional Hf is linear. Moreover, if ϕ ∈W , using
(4.4), (4.3), the inclusions µDiϕ ∈ Lr(Ω), i = 1, . . . , n, and Hölder’s inequality, we
obtain

|〈Hf , ϕ〉| 6
n∑
i=1

∫
Ω

|(1/µ)ai(x,∇uf )||µDiϕ|dx

6
n∑
i=1

‖(1/µ)ai(x,∇uf )‖L1/(p−1)(Ω)‖µDiϕ‖Lr(Ω)

6
{ n∑
i=1

‖(1/µ)ai(x,∇uf )‖L1/(p−1)(Ω)

}
‖ϕ‖.

Therefore, the functional Hf is continuous. Thus,

∀f ∈ L1(Ω), Hf ∈W ∗. (4.7)

From (4.2) and (4.6) it follows that the following property holds:

if f ∈ L1(Ω) and ϕ ∈ C∞0 (Ω), then 〈Hf , ϕ〉 =
∫

Ω

fϕ dx. (4.8)

Now, let us fix an arbitrary ϕ ∈ W̊ , and let F : L1(Ω) → R be the functional
such that for every f ∈ L1(Ω),

〈F, f〉 = 〈Hf , ϕ〉.

We shall show that F ∈ (L1(Ω))∗. To this end we fix a sequence {ϕk} ⊂ C∞0 (Ω)
such that

‖ϕk − ϕ‖ → 0. (4.9)
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Taking f1, f2 ∈ L1(Ω) and λ1, λ2 ∈ R, owing to (4.8), for every k ∈ N we have

〈Hλ1f1+λ2f2 , ϕk〉 = λ1〈Hf1 , ϕk〉+ λ2〈Hf2 , ϕk〉.

Hence, by (4.7) and (4.9), we deduce the equality

〈Hλ1f1+λ2f2 , ϕ〉 = λ1〈Hf1 , ϕ〉+ λ2〈Hf2 , ϕ〉.

Therefore, in view of the definition of the functional F , we have

〈F, λ1f1 + λ2f2〉 = λ1〈F, f1〉+ λ2〈F, f2〉.

Thus, the functional F is linear. To prove the continuity of F , for every k ∈ N we
define the functional Fk : L1(Ω)→ R by

〈Fk, f〉 = 〈Hf , ϕk〉, f ∈ L1(Ω). (4.10)

From (4.8) it follows that {Fk} ⊂ (L1(Ω))∗. Moreover, owing to (4.7) and (4.9),
for every f ∈ L1(Ω) the sequence of the numbers 〈Fk, f〉 is bounded. Therefore, by
the Banach-Steinhaus theorem, there exists C > 0 such that

∀k ∈ N, ‖Fk‖(L1(Ω))∗ 6 C. (4.11)

Using (4.10) and (4.11), we obtain that for every f ∈ L1(Ω) and k ∈ N,

|〈Hf , ϕk〉| 6 C‖f‖L1(Ω) .

This along with (4.7), (4.9) and the definition of the functional F implies that for
every f ∈ L1(Ω),

|〈F, f〉| 6 C‖f‖L1(Ω) .

Hence, taking into account the linearity of F , we have F ∈ (L1(Ω))∗. Therefore,
there exists a function ψ ∈ L∞(Ω) such that

∀f ∈ L1(Ω), 〈F, f〉 =
∫

Ω

fψ dx. (4.12)

Let us show that ϕ = ψ a. e. in Ω. In fact, let f ∈ L∞(Ω). Using (4.8), for every
k ∈ N we have

〈Hf , ϕk〉 =
∫

Ω

fϕ dx+
∫

Ω

f(ϕk − ϕ)dx.

This along with (4.7) and (4.9) implies that

〈Hf , ϕ〉 =
∫

Ω

fϕ dx. (4.13)

On the other hand, by the definition of the functional F and (4.12), we have

〈Hf , ϕ〉 =
∫

Ω

fψ dx.

From this and (4.13) we derive that∫
Ω

f(ϕ− ψ)dx = 0.

Hence, taking into account the arbitrariness of f in L∞(Ω), we obtain that ϕ = ψ

a. e. in Ω. Then ϕ ∈ L∞(Ω), and due to the arbitrariness of ϕ in W̊ , we conclude
that W̊ ⊂ L∞(Ω). The proposition is proved. �

Proposition 4.2. The set W̊ \ L∞(Ω) is nonempty.
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Proof. Let B be a closed ball of Rn with center at the origin such that B ⊂ Ω. We
fix a function ϕ ∈ C∞0 (Ω) such that 0 6 ϕ 6 1 in Ω and ϕ = 1 in B, and also fix
M > (1 + diam Ω)e.

Now, let w : Ω→ R be the function such that w(0) = 0 and for every x ∈ Ω\{0},

w(x) = ϕ(x) ln ln
M

|x|
.

It is easy to see that w ∈ L1(Ω) and

w 6∈ L∞(Ω). (4.14)

Let us show that w ∈ W̊ . For this purpose, for every j ∈ N we define the function
wj : Ω→ R by

wj(x) = ϕ(x) ln ln
M

(|x|2 + 1/j)1/2
, x ∈ Ω.

We have

{wj} ⊂ C∞0 (Ω), (4.15)

wj → w in Ω \ {0}, (4.16)

∀j ∈ N, 0 6 wj 6 w in Ω \ {0}. (4.17)

Using (4.16), (4.17), the inclusion w ∈ L1(Ω) and Dominated Convergence Theo-
rem, we obtain that

wj → w strongly in L1(Ω). (4.18)
Next, let us fix i ∈ {1, . . . , n}, and let zi : Ω → R be the function such that

zi(0) = 0 and for every x ∈ Ω \ {0},

zi(x) = −ϕ(x)
xi
|x|2

(
ln
M

|x|

)−1

+ (Diϕ(x)) ln ln
M

|x|
.

Obviously, zi ∈ L1(Ω). For every j ∈ N and x ∈ Ω we have

Diwj(x) = −ϕ(x)
xi

|x|2 + 1/j

(
ln

M

(|x|2 + 1/j)1/2

)−1

+ (Diϕ(x)) ln ln
M

(|x|2 + 1/j)1/2
.

(4.19)

Evidently,
Diwj → zi in Ω \ {0}. (4.20)

Moreover, by (4.19), for every j ∈ N and x ∈ Ω \ {0} we have

|Diwj(x)| 6
(

1 +M max
Ω
|Diϕ|

) 1
|x|

.

Using this fact, the inclusion zi ∈ L1(Ω), (4.20) and Dominated Convergence The-
orem, we conclude that

Diwj → zi strongly in L1(Ω). (4.21)

In turn, using (4.18) and (4.21), in a standard way we establish that there exists
the weak derivative Diw and

Diw = zi a. e. in Ω. (4.22)

From (4.20) and (4.22) it follows that

Diwj → Diw a. e. in Ω. (4.23)
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Let us show that

µDiw ∈ Lr(Ω), (4.24)

‖µDi(wj − w)‖Lr(Ω) → 0. (4.25)

At first we suppose that p < 2. Then r = 1/(2− p), and from (4.1) we infer that

(1− α)r 6 n. (4.26)

We set Mi = maxΩ |Diϕ|, and let ψ : Ω → R be the function such that ψ(0) = 0
and for every x ∈ Ω \ {0},

ψ(x) =
(M
|x|

)n(
ln
M

|x|

)−r
.

Since r > 1, we have ψ ∈ L1(Ω). Fixing an arbitrary x ∈ Ω\{0}, from the definition
of the function zi we obtain

|zi(x)| 6 1
|x|

(
ln
M

|x|

)−1

+Mi ln ln
M

|x|
. (4.27)

It is easy to see that

ln ln
M

|x|
< ln

M

|x|
<

4M
|x|

(
ln
M

|x|

)−1

.

This and (4.27) imply that

|µzi|r(x) 6
(1 + 4MMi)r

|x|(1−α)r

(
ln
M

|x|

)−r
.

Then, taking into account (4.22) and (4.26), we find that

|µDiw|r 6 (1 + 4MMi)rψ a. e. in Ω. (4.28)

Hence, in view of the inclusion ψ ∈ L1(Ω), we obtain that inclusion (4.24) holds.
Besides, starting from (4.19), by analogy with (4.28), we establish that for every
j ∈ N,

|µDiwj |r 6 (1 + 4MMi)rψ in Ω \ {0}. (4.29)
Using (4.23), (4.28), (4.29), the inclusion ψ ∈ L1(Ω) and Dominated Convergence
Theorem, we obtain that assertion (4.25) holds.

Now, let p = 2. Then from the initial assumption α 6 1 and (4.1) it follows
that α = 1. Moreover, r = +∞. Taking into consideration the equality α = 1
and the definitions of the functions µ and zi, we find that for every x ∈ Ω \ {0},
µ(x)|zi(x)| 6 1 + 4MMi. This along with (4.22) and the equality r = +∞ implies
that inclusion (4.24) holds. In order to prove the validity of assertion (4.25) in the
case under consideration, for every j ∈ N and x ∈ Ω \ {0} we set

βj(x) =
1

j|x|2 + 1

(
ln

M

(|x|2 + 1/j)1/2

)−1

,

γj(x) =
(

ln
M

(|x|2 + 1/j)1/2

)−1

−
(

ln
M

|x|

)−1

,

λj(x) = |x|
{

ln ln
M

|x|
− ln ln

M

(|x|2 + 1/j)1/2

}
.

Using (4.19), the definitions of the functions zi and µ and the equality α = 1, we
find that for every j ∈ N and x ∈ Ω \ {0},

µ(x)|Diwj(x)− zi(x)| 6 βj(x) + γj(x) +Miλj(x). (4.30)
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Now, let ε ∈ (0, 1) and

ε1 = max
{

2e1/ε,
(2M
ε

)2}
.

We fix numbers ε2 and ε3 such that 0 < ε3 < ε2 < 1 and

ln(1 + ε2) 6
ε

1 + diam Ω
, ln(1 + ε3) 6 ε2, (4.31)

and then fix an arbitrary j ∈ N such that

j >
( ε1

Mε3

)2

ln
ε1

2
.

Let x ∈ Ω \ {0}, and assume that |x| 6 M/ε1. Then, taking into account that
ε1 > 2e1/ε and j > (ε1/M)2, we obtain

βj(x) 6
(

ln
M

(|x|2 + 1/j)1/2

)−1

6
(

ln
ε1

2

)−1

6 ε,

γj(x) 6
(

ln
M

(|x|2 + 1/j)1/2

)−1

6 ε.

Moreover, since ε1 > (2M/ε)2 and

ln ln
M

|x|
< ln

M

|x|
< 2
(M
|x|

)1/2

,

we obtain
λj(x) 6 |x| ln ln

M

|x|
6 2(M |x|)1/2 6

2M

ε
1/2
1

6 ε.

Therefore, if |x| 6M/ε1, then

βj(x) + γj(x) +Miλj(x) 6 (2 +Mi)ε. (4.32)

Suppose now that |x| > M/ε1. Then, taking into account that ε1 > 2e1/ε and
j > (ε1/M)2 ln(ε1/2), we obtain

βj(x) 6
1

j|x|2
6

1
j

( ε1

M

)2

6
(

ln
ε1

2

)−1

6 ε.

Moreover, since ε3 < ε2 and j > (ε1/Mε3)2, using the first inequality of (4.31), we
obtain

γj(x) 6 ln
M

|x|
− ln

M

(|x|2 + 1/j)1/2
6 ln

(
1 +

1
j1/2|x|

)
6 ln

(
1 +

ε1

j1/2M

)
6 ln(1 + ε3) 6 ε.

Hence, (
ln
M

|x|

)(
ln

M

(|x|2 + 1/j)1/2

)−1

6 1 + ln(1 + ε3).

This along with inequalities (4.31) implies that

λj(x) 6 |x| ln(1 + ln(1 + ε3)) 6 |x| ln(1 + ε2) 6 ε.

Therefore, if |x| > M/ε1, then inequality (4.32) also holds. From the result obtained
and (4.30) we deduce that for every x ∈ Ω \ {0},

µ(x)|Diwj(x)− zi(x)| 6 (2 +Mi)ε.

Then, taking into account (4.22) and the equality r = +∞, we obtain

‖µDi(wj − w)‖Lr(Ω) 6 (2 +Mi)ε.



EJDE-2015/52 SHARP CONDITION FOR THE EXISTENCE OF WEAK SOLUTIONS 11

Hence, we obtain that assertion (4.25) holds.
Using the inclusions w ∈ L1(Ω) and (4.24) along with (4.18) and (4.25), we

conclude that w ∈ W and ‖wj − w‖ → 0. This and (4.15) imply that w ∈ W̊ .
Then, in view of (4.14), we obtain the inclusion w ∈ W̊ \ L∞(Ω). Therefore, the
set W̊ \ L∞(Ω) is nonempty. The proposition is proved. �

From Propositions 4.1 and 4.2 we deduce that there exists a function f ∈ L1(Ω)
such that the set D(f) is empty. This completes the proof of the theorem.

5. An example

In this section, we consider an example where conditions (2.1)–(2.3) are satisfied.
Let ν : Ω→ R be a nonnegative function such that

ν1/(p−1)(1/µ)1/(p−1) ∈ L1(Ω), νp/(p−1)(1/µ)1/(p−1) ∈ L1(Ω), (5.1)

and let β : R→ R be a nondecreasing bounded and continuous function. We set

c = sup
s∈R
|β(s)|, c1 = n, c2 =

p− 1
p

,

g = (cn)1/(p−1)ν1/(p−1)(1/µ)1/(p−1), h = (cn)p/(p−1)νp/(p−1)(1/µ)1/(p−1).

Obviously, c1, c2 > 0, g, h > 0 in Ω, and by virtue of (5.1), we have g, h ∈ L1(Ω)
and µgp ∈ L1(Ω).

For every i ∈ {1, . . . , n} and for every (x, ξ) ∈ Ω× Rn, let

ai(x, ξ) = µ(x)|ξ|p−2ξi + ν(x)β(ξi). (5.2)

It is easy to verify that for every x ∈ Ω\{0} and for every ξ ∈ Rn inequalities (2.1)
and (2.2) hold, and for every x ∈ Ω\{0} and for every ξ, ξ′ ∈ Rn, ξ 6= ξ′, inequality
(2.3) holds.

Observe that the continuity of the function β guarantees the continuity on Rn
of the functions ai(x, ·) for every i ∈ {1, . . . , n} and for every x ∈ Ω.

Moreover, we remark that inclusions (5.1) hold if ν = µ or, more generally, if for
every x ∈ Ω\{0}, ν(x) = |x|γ where γ > α−n(p−1) and γ > (α−n(p−1))/p. Some
suitable examples of the function β in (5.2) are as follows: 1) β(s) = s/(1 + |s|); 2)
β(s) = −1 if s < 0 and β(s) = −1/(1 + s) if s > 0. In both cases the function β is
nondecreasing, bounded and continuous.

Finally, let us note that the requirements g ∈ L1(Ω) and µgp ∈ L1(Ω), given
in the beginning of Section 2, are independent one of other. The same concerns
inclusions (5.1). For instance, if p < 1 +α/n, we have n < (n+α)/p. Then, taking
γ such that n 6 γ < (n+ α)/p and g : Ω→ R such that g(x) = |x|−γ , x ∈ Ω \ {0},
we obtain g /∈ L1(Ω) but µgp ∈ L1(Ω). On the other hand, if p > 1 +α/n, we have
(n+ α)/p < n. Then, fixing γ such that (n+ α)/p 6 γ < n and taking g : Ω→ R
depending on γ as above, we obtain g ∈ L1(Ω) but µgp /∈ L1(Ω). Analogously, if
p < 1 +α/n, n 6 γ < (n+α)/p and for every x ∈ Ω \{0}, ν(x) = |x|α−γ(p−1), then
the first inclusion of (5.1) does not hold but the second inclusion of (5.1) is valid.
If p > 1 + α/n, (n+ α)/p 6 γ < n and ν is the same as in the previous case, then
the first inclusion of (5.1) is valid but the second inclusion of (5.1) does not hold.
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[3] Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez; An L1-theory

of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241–273.
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