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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF A UNIQUE
SOLUTION TO A SINGULAR DIRICHLET BOUNDARY-VALUE

PROBLEM WITH A CONVECTION TERM

HAITAO WAN

Abstract. In this article, we consider the problem

−∆u = b(x)g(u) + λa(x)|∇u|q + σ(x), u > 0, x ∈ Ω, u|∂Ω = 0

with λ ∈ R, q ∈ [0, 2] in a smooth bounded domain Ω of RN . The weight

functions b, a, σ belong to Cαloc(Ω) satisfying b(x), a(x) > 0, σ(x) ≥ 0, x ∈ Ω,

which may vanish or be singular on the boundary. g ∈ C1((0,∞), (0,∞))

satisfies limt→0+ g(t) =∞. Our results include the existence, uniqueness and

the exact boundary asymptotic behavior and global asymptotic behavior of
the solution.

1. Introduction and main results

In this article we study the existence and asymptotic behavior of the unique
classical solution to the problem

−∆u = b(x)g(u) + λa(x)|∇u|q + σ(x), u > 0, x ∈ Ω, u|∂Ω = 0, (1.1)

where Ω is a bounded domain with smooth boundary in RN , λ ∈ R, q ∈ [0, 2],
b, a, σ satisfy

(H1) b, a, σ ∈ Cαloc(Ω) for some α ∈ (0, 1), and b(x), a(x) > 0, σ(x) ≥ 0, x ∈ Ω,
and g satisfies the following hypotheses, not necessary simultaneously:

(G1) g ∈ C1((0,∞), (0,∞)), limt→0+ g(t) =∞;
(G2) there exists t0 > 0 such that g′(t) < 0, for all t ∈ (0, t0);
(G3) g is decreasing on (0,∞);
(G4) there exists Dg ≥ 0 such that

lim
t→0+

g′(t)
∫ t

0

ds

g(s)
= −Dg.

When λ = 0 and σ ≡ 0 in Ω, problem (1.1) becomes

−∆u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0. (1.2)

This problem arises in the study of non-Newtonian fluids, boundary layer phenom-
ena for viscous fluids, chemical heterogeneous catalysts, as well as in the theory
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of heat conduction in electrical materials, and has been studied and extended by
many authors, for instance [2]-[8], [13], [17, 18], [21], [25, 26], [29]-[32], [34, 35], [38],
[44]-[48], [51], [53]-[56] and the references therein.

Next, we review works about the existence, uniqueness and asymptotic behavior
of classical solutions to (1.1), which are summarized as the following two parts.

Part I: Existence and boundary behavior. For b ≡ 1 in Ω, when g satisfies
(G1) and (G3), Crandall, Rabinowitz and Tartar [13], Fulks and Maybee [17],
Stuart [45] showed that (1.2) has a unique solution u ∈ C2,α

loc (Ω) ∩ C(Ω̄), and
the authors in [13] established the asymptotic behavior of the unique solution.
Moreover, Anedda [2], Berhanu, Gladiali and Porru [5], Berhanu, Cuccu and Porru
[6], Ghergu and Rădulescu [18], Ghergu and Rădulescu [21], McKenna and Reichel
[34], Mi and Liu [35], Zhang [54] analyzed the first or second estimate of the solution
near the boundary to (1.2). In particular, when b ∈ Cα(Ω̄) satisfies the following
assumptions: there exist a constant δ > 0 and a positive non-decreasing function
k1 ∈ C((0, δ)) such that

(B01) limd(x)→0
b(x)

k1(d(x)) = b0 ∈ (0,∞), where d(x) := dist(x, ∂Ω);
(B02) limt→0+ k1(t)g(t) =∞;

and g satisfies (G1), (G3) and the conditions
(G01) there exist positive c0, η0 and γ ∈ (0, 1) such that g(t) ≤ c0t

−γ , for all
t ∈ (0, η0);

(G02) there exist θ > 0 and t0 ≥ 1 such that g(ξt) ≥ ξ−θg(t) for all ξ ∈ (0, 1) and
0 < t ≤ t0ξ;

(G03) the mapping ξ ∈ (0,∞)→ T (ξ) = limt→0+
g(ξt)
ξg(t) is a continuous function.

Ghergu and Rădulescu [18] showed that the unique solution u of (1.2) satisfies
u ∈ C1,1−α(Ω̄) ∩ C2(Ω) and

lim
d(x)→0

u(x)
φ(d(x))

= ξ,

where T (ξ) = b−1
0 , and φ ∈ C1([0, c]) ∩ C2((0, c]) (c ∈ (0, δ)) is the local solution of

the problem

−φ′′(t) = k1(t)g(φ(t)), φ(t) > 0, t ∈ (0, c), φ(0) = 0.

Zhang [51] extended the above result to the case where g is normalized regularly
varying at zero with index −γ (γ > 0) and k1 in (B01) is normalized regularly
varying at zero with index −β (β ∈ (0, 2)).

Later, Ben Othman et al [3], Gontara et al [25] extended the results in [18, 51] to
a large class of functions b which belongs to the Kato class K(Ω) and g is normalized
regularly varying at zero with index −γ (γ ≥ 0). In particular, they established an
exact boundary behavior of the unique solution to the problem

−∆v = b(x), v > 0, x ∈ Ω, v|∂Ω = 0, (1.3)

when b satisfies (H1) and the condition
(B03)

0 < b̃2 := lim inf
d(x)→0

b(x)
k1(d(x))

≤ b̃1 := lim sup
d(x)→0

b(x)
k1d(x)

<∞

with k1(t) = t−2
∏m
i=1(lni(t−1))−µi , t ∈ (0, δ), for some δ > 0,
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where lni(t−1) = ln ◦ ln ◦ ln ◦ · · · ◦ ln(t−1) (i times) and µ1 = µ2 = · · · = µj−1 =
1, µj > 1 and µi ∈ R for j + 1 ≤ i ≤ 1.

For the convenience of discussions, we introduce two classes of Karamata func-
tions as follows.

(i) Denote by Λ the set of all positive functions in C1((0, δ0])∩L1((0, δ0]) which
satisfy

lim
t→0+

d

dt

(K(t)
k(t)

)
∈ (0,∞), K(t) =

∫ t

0

k(s)ds (1.4)

and for each k ∈ Λ there exists δk ∈ (0, δ0] such that k is monotonic on (0, δk].
(ii) Denote by K the set of all positive functions k defined on (0, δ0] by

k(t) := c exp
(∫ δ0

t

y(s)
s
ds
)
, c > 0 and

y ∈ C((0, δ0]) with lim
t→0+

y(t) = 0.
(1.5)

Define

Dk := lim
t→0+

d

dt

(K(t)
k(t)

)
for each k ∈ Λ ∪ K.

Indeed, if k ∈ K, then it follows by Proposition 2.8(i) and a direct calculation that
Dk = 1.

The set Λ was first introduced by Ĉırstea and Rădulescu [9]-[12] for non-decreasing
functions and by Mohammed [37] for non-increasing functions to study the bound-
ary behavior and uniqueness of solutions for boundary blow-up elliptic problems,
which enables us to obtain significant information about the qualitative behavior
of the large solution in a general framework. Later, Based on their ideas, Huang
et al. [27]-[28], Mi and Liu [36], Zhang [55] and Repovš [41] further studied the
asymptotic behavior of boundary blow-up solutions.

Recently, Zhang and Li [56] obtained the following results.
(i) Let b satisfy (H1), (B03), g satisfy (G1), (G3)-(G4) with Dg > 0, then for

the unique classical solution u of (1.2),( b̃2
µj − 1

)1−Dg
≤ lim inf

d(x)→0

u(x)
ψ(h(d(x)))

≤ lim sup
d(x)→0

u(x)
ψ(h(d(x)))

≤
( b̃1
µj − 1

)1−Dg
,

where

h(t) = (lnj(t−1))1−µj
m∏

i=j+1

(lni(t−1))−µi , t ∈ (0, δ),

and the function ψ is uniquely determined by∫ ψ(t)

0

ds

g(s)
= t, t > 0. (1.6)

(ii) Let b satisfy (H1) and the condition that there exists k ∈ Λ such that

0 < b2 := lim inf
d(x)→0

b(x)
k2(d(x))

≤ b1 := lim sup
d(x)→0

b(x)
k2(d(x))

<∞, (1.7)

and g satisfy (G1), (G3)-(G4) with Dg > 0. If

Dk + 2Dg > 2, (1.8)
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then for the unique classical solution u of (1.2),

ξ
1−Dg
2 ≤ lim inf

d(x)→0

u(x)
ψ(K2(d(x)))

≤ lim sup
d(x)→0

u(x)
ψ(K2(d(x)))

≤ ξ1−Dg
1 ,

where

ξi =
bi

2(Dk + 2Dg − 2)
, i = 1, 2. (1.9)

Later, Zeddini, Alsaedi and Mâagli [48] extended the above results so that they
cover the case b(t) = t−2k(t), where k belongs to K and satisfies∫ δ0

0

k(s)
s
ds <∞. (1.10)

They obtained the following theorem.

Theorem 1.1. Let b satisfy (H1) and there exist k ∈ K such that

0 < b̃2 := lim inf
d(x)→0

b(x)
(d(x))γ−1k(d(x))

≤ b̃1 := lim sup
d(x)→0

b(x)
(d(x))γ−1k(d(x))

<∞,

where γ ≥ 0 and ∫ δ0

0

k(s)
s
ds =∞,

then the unique classical solution u of (1.2) in the case of g(u) = u−γ satisfies

a
1/(1+γ)
2 ≤ lim inf

d(x)→0

u(x)

d(x)
( ∫ δ0

d(x)
k(s)
s ds

)1/(1+γ)

≤ lim sup
d(x)→0

u(x)

d(x)
( ∫ δ0

d(x)
k(s)
s ds

)1/(1+γ)
≤ a1/(1+γ)

1 ,

where ai = b̃i(1 + γ), i = 1, 2.

This improves the result of Lazer and Mckenna [30]. Recently, Alsaedi, Mâagli
and Zeddini [1] extended the results in [48] to the case where Ω is an exterior domain
in RN with N ≥ 3.

When λ > 0, q = 2, b, a ≡ 1, σ ≡ 0 in Ω and g(u) = u−γ , γ > 0, by using the
change of variable v = eλu − 1, Zhang and Yu [49] proved that (1.1) possesses a
unique classical solution for each λ ∈ (0,∞). This was then used to deduce the
existence and nonexistence of classical solutions to (1.1) in the case q ∈ (0, 2).

When λ = ±1, q ∈ (0, 2), b, a ≡ 1, σ ≡ 0 in Ω and the function g : (0,∞) →
(0,∞) is locally Lipschitz continuous and decreasing, Giarrusso and Porru [22]
showed that if g satisfies the following conditions:

(i)
∫ 1

0
g(s)ds =∞,

∫∞
1
g(s)ds <∞;

(ii) there exist positive constants δ and M with M > 1 such that

G1(t) < MG1(2t), ∀t ∈ (0, δ), G1(t) =
∫ ∞
t

g(s)ds, t > 0,

then the unique solution u to (1.1) has the properties:
(i) |u(x)−Ψ(d(x))| < c0d(x), ∀x ∈ Ω for q ∈ (0, 1];



EJDE-2015/57 EXISTENCE AND ASYMPTOTIC BEHAVIOR 5

(ii) |u(x)−Ψ(d(x))| < c0d(x) (G1(Ψ(d(x))))(q−1)/2, for all x ∈ Ω for q ∈ (1, 2),
where c0 is a suitable positive constant and Ψ ∈ C([0,∞)) ∩ C2((0,∞)) is
uniquely determined by∫ Ψ(t)

0

ds√
2G1(s)

= t, t > 0. (1.11)

This implies

lim
d(x)→0

u(x)
Ψ(d(x))

= 1.

When λ ∈ R and g satisfies (G1) with limt→∞ g(t) = 0, (G3), Zhang [52] showed
that

(i) if q = 2, b satisfies (H1) and (1.3) possesses a unique solution which belongs
to C2,α

loc (Ω) ∩ C(Ω̄), then (1.1) has a unique solution uλ ∈ C2,α
loc (Ω) ∩ C(Ω̄)

for every λ ≥ 0;
(iii) if b ≡ 1 in Ω, then (1.1) has a unique solution uλ ∈ C2,α

loc (Ω) ∩ C(Ω̄) in one
of the following three cases: (i) q ∈ [0, 2], λ ≤ 0; (ii) q ∈ [0, 1), λ ≥ 0; (iii)
q = 1, 0 ≤ λ < λ

1/2
1 , where λ1 is the first eigenvalue of Laplace operator

(−∆) with the Dirichlet boundary condition.
When λ > 0, a ≡ 1, σ ≡ 0 in Ω, and g satisfies (G1), (G3), (G4), Zhang et al

[57] studied the boundary asymptotic behavior of the unique solution to (1.1) in
the following two cases: (i) q = 2 and b ∈ Cαloc(Ω); (ii) q ∈ (0, 2) and b ≡ 1 in Ω.

For other works, we refer the reader to [14]-[16], [19]-[20], [23], [39], [31] and the
references therein.

Part II: Existence and global behavior. In this part, we review these works
about the existence and global asymptotic behavior of classical solutions to (1.2)
in the case that g ∈ C1((0,∞)) is a nonnegative function. For the convenience , we
introduce the notation below.

For two nonnegative functions f and g defined on a set Ω,

f(x) ≈ g(x), x ∈ Ω,

means that there exists some constant c > 0 such that
f(x)
c
≤ g(x) ≤ cf(x), for all x ∈ Ω.

Let ϕ1 denote the positive normalized (i.e, maxx∈Ω ϕ1(x) = 1) eigenfunction corre-
sponding to the first positive eigenvalue λ1 of the Laplace operator (−∆). It is well
known (please refer to [40]) that ϕ1 ∈ C2(Ω̄) is a positive function, and we have for
x ∈ Ω,

ϕ1(x) ≈ d(x). (1.12)
When g(u) = u−γ , γ > 1 and b satisfies the condition that b(x) ≈ (d(x))−µ, x ∈ Ω,
where µ ∈ (0, 2). Lazer and Mckenna [30] showed that (1.2) has a unique solution
u satisfying

c2(d(x))2/(1+γ) ≤ u(x) ≤ c1(d(x))(2−µ)/(1+γ), for x ∈ Ω,

where c1, c2 are two positive constants.
When g satisfies (G1), (G3) and the conditions

(G04) there exist γ > 1 and c > 0 such that limt→0+ tγg(t) = c;
(G05)

∫∞
1
g(t)dt <∞,
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and the weight function b satisfies
(B04) there exists β ∈ (0, 2) such that b(x) ≈ (ϕ1(x))−β , x ∈ Ω,

Zhang and Cheng [50] obtained the following results:

(i) problem (1.2) has a unique solution u ∈ C2,α
loc (Ω) ∩ C(Ω̄) satisfying

u(x) ≈ Ψ((ϕ1(x))η), x ∈ Ω,

where Ψ is uniquely determined by (1.11) and η = (2− β)/2;
(ii) u ∈ H1

0 (Ω) if and only if∫
Ω

ϕβ1g(Ψ(ϕη1))Ψ(ϕη1)dx <∞.

Moreover, when g(u) = u−γ , γ > 0, they also obtained some more precise results.
specifically, for b ≡ 1 in Ω, i.e., β = 0, they proved that the above results still hold
as the condition (G04) is omitted.

Later, applying Karamata regular variation theory, many authors further studied
the global estimate of solutions to (1.2) (please refer to [4], [7], [25], [32]). In
particular, Mâagli [32] proved the following theorem.

Theorem 1.2. If b satisfies (H1) and for all x ∈ Ω,

b(x) ≈ (d(x))−µk̃(d(x)), µ ≤ 2

and
∫ l

0
k̃(s)
s ds < ∞, where k̃ ∈ C1((0, l)) (l > max{δ0, diam(Ω)}) is a positive

extension of k ∈ K, i.e.,

k̃ :=

{
k(t), 0 < t ≤ δ0,
k̃(t), δ0 < t < l,

then (1.2) in the case of g(u) = u−γ , γ > −1 has a unique classical solution u
satisfying, for x ∈ Ω,

u(x) ≈ (d(x))min{1,(2−µ)/(1+γ)}Ψk̃,µ,γ(d(x)),

where

Ψk̃,µ,γ(t) :=



(∫ t
0
k̃(s)
s ds

)1/(1+γ)
, if µ = 2, (i)

(k̃(t))1/(1+γ), if 1− γ < µ < 2, (ii)( ∫ l
t
k̃(s)
s ds

)1/(1+γ)
, if µ = 1− γ, (iii)

1, if µ < 1− γ. (iv)

(1.13)

Recently, Ben Othman and Khamessi [4] improved and generalized the above
result as follows.

Let k̃1, k̃2 ∈ C1((0, l)) (l > max{δ0,diam(Ω)}) be, respectively, the extensions of
k1, k2 ∈ K and ∫ δ0

0

ki(s)
s

ds <∞, i = 1, 2.

Assume that b satisfies (H1) and the condition

(d(x))−µ2 k̃2(d(x)) ≤ b(x) ≤ (d(x))−µ1 k̃1(d(x)), x ∈ Ω

with µ2 ≤ µ1 ≤ 2, and g ∈ C1((0,∞)) is a nonnegative function satisfying

c2u
−γ2 ≤ g(u) for 0 < u ≤ 1 and g(u) ≤ c1u−γ1 for u > 0,
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where γ1 ≥ γ2 > −1 and c1 > c2 > 0. Then (1.2) has a unique classical solution u
satisfying for each x ∈ Ω,

c−1(d(x))min{1, (2−µ2)/(1−γ2)}Ψk̃2, µ2, γ2
(d(x))

≤ u(x) ≤ c(d(x))min{1, (2−µ1)/(1−γ1)}Ψk̃1, µ1, γ1
(d(x)),

for some constant c > 0.
Inspired by the above works, in this paper we continue to study the existence

and asymptotic behavior of the unique classical solution to (1.1). For q ∈ [0, 1], we
first establish a local comparison principle of the unique solution to (1.1), where we
omit the usual condition that g is decreasing on (0,∞) as in [57]. Then we consider
the exact asymptotic behavior of the unique solution near the boundary to (1.1)
and reveal that the nonlinear term λa(x)|∇u|q+σ(x) does not affect the asymptotic
behavior for several kinds of functions b, a and σ. For q ∈ [0, 2], in view of the ideas
of boundary estimate we investigate the existence and global asymptotic behavior
of the unique solution to (1.1), and our approach is very different from that one in
[32].

In particular, when λ = 0 and σ ≡ 0 in Ω, we improve and extend the results in
[32] and [48] as follows:

(I1) By Theorem 1.4, we extend the result of Theorem 1.1 from the nonlinearity
g(u) = u−γ with γ ≥ 0 to the case where g is normalized regularly varying
at zero with index −γ, γ = Dg/(1−Dg) ≥ 0, Dg < 1;

(I2) By Theorems 1.8 -1.10, we extend partial results of Theorem 1.2, i.e., the
nonlinearity g(u) = u−γ , γ ≥ 0 is extended to the case where g is normalized
regularly varying at zero with index −γ, γ = Dg/(1 − Dg) ≥ 0, Dg < 1.
Exactly, we extend expressions (i), (ii) and (iii)-(iv) in (1.13) by Theorems
1.10, 1.8 and 1.9, respectively. It is worthwhile to point out that in our
results, if b satisfies (B3) and (1.8) holds or b satisfies (B4), then g is
admitted to be rapidly varying at zero.

Moreover, when λ > 0, a ≡ 1, σ ≡ 0 in Ω and q ∈ [0, 1), we extend the result of [57,
Theorem 1.4] from the case where b ≡ 1 in Ω to b ∈ Cαloc(Ω) for some α ∈ (0, 1),
i.e., we extend the range of Dg in (G4) from Dg > 1/2 to Dg ≥ 0.

To our aim, we assume that b satisfies one of the following conditions:
(B1) there exists k ∈ Λ ∪ K such that

0 < b2 := lim inf
d(x)→0

b(x)
k2(d(x))

≤ b1 := lim sup
d(x)→0

b(x)
k2(d(x))

<∞; (1.14)

(B2) there exists k ∈ K such that

0 < b4 := lim inf
d(x)→0

b(x)
(d(x))−2k(d(x))

≤ b3 := lim sup
d(x)→0

b(x)
(d(x))−2k(d(x))

<∞,

where k satisfies (1.10);
(B3) there exist k ∈ Λ ∪ K and ai(c) > 0, i = 1, 2 for each 0 < c < δ0 such that

a2(c) ≤ inf
x∈Ω

b(x)
k2(cϕ1(x))

≤ sup
x∈Ω

b(x)
k2(cϕ1(x))

≤ a1(c); (1.15)

(B4) there exist k ∈ K and ai(c) > 0, i = 1, 2 for each 0 < c < δ0 such that

a2(c) ≤ inf
x∈Ω

b(x)
(cϕ1(x))−2k(cϕ1(x))

≤ sup
x∈Ω

b(x)
(cϕ1(x))−2k(cϕ1(x))

≤ a1(c), (1.16)
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where k satisfies (1.10),
and a, σ satisfy one of the following conditions:

(H2) there exist constants ρi, i = 1, 2 satisfying

ρ1 <
(q − 1)(2− 2Dg) +Dk(2− q)

Dk
, ρ2 <

2Dk + 2Dg − 2
Dk

and functions k̂i ∈ K, i = 1, 2 such that

lim sup
d(x)→0

a(x)

(d(x))−ρ1 k̂1(d(x))
<∞, lim sup

d(x)→0

σ(x)

(d(x))−ρ2 k̂2(d(x))
<∞; (1.17)

(H3) there exist constants ρi, i = 1, 2 satisfying

ρ1, ρ2 <
Dk(γ + 2)− 2

Dk

and functions k̂i ∈ K, i = 1, 2 such that (1.17) holds;
(H4) there exist constants ρi, i = 1, 2 satisfying

ρ1 ≤ 2− q, q ∈ (1, 2],
ρ1 < 2− q, q ∈ [0, 1],
ρ2 < 2, q ∈ [0, 2]

and functions k̂i ∈ K, i = 1, 2 such that (1.17) holds here, and if ρ1 = 2−q,
then

lim sup
d(x)→0

k̂1(d(x)) <∞. (1.18)

Our results are summarized as the following two parts and the key of our esti-
mates is the solution ψ of (1.6).

Part 1: Boundary asymptotic behavior.

Theorem 1.3. Let b, a, σ satisfy (H1)–(H2), (B1), g satisfy (G1)–(G2), (G4) with
Dg + q < 3 and (1.8) hold.

(i) If q ∈ [0, 1), then the unique solution uλ of (1.1) for each λ ∈ R satisfies

ξ
1−Dg
2 ≤ lim inf

d(x)→0

uλ(x)
ψ(K2(d(x)))

≤ lim sup
d(x)→0

uλ(x)
ψ(K2(d(x)))

≤ ξ1−Dg
1 , (1.19)

where ξi, i = 1, 2 are as defined in (1.9).
(ii) If q = 1, then there exists λ0 > 0 such that the unique solution uλ of (1.1)

for each λ ∈ (−λ0, λ0) satisfies (1.19).

Theorem 1.4. Let b, a, σ satisfy (H1), (H3), (B1), and g satisfy (G1)–(G2) with
lim inft→0+ tγg(t) > 0. Also let (G4) and Dk + 2Dg = 2 hold, where γ = Dg/(1 −
Dg), Dg < 1. Further assume that

(H5)
∫ δ0

0
k2(s)s−γds =∞;

(H6)

lim
t→0+

(
g′(t)

∫ t

0

1
g(s)

ds+Dg

)∫ δ0
t
k2(s)s−γds
k2(t)t1−γ

= E ∈ (−∞, (1−Dg)2).

Then the following hold:
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(i) when q ∈ [0, 1), the unique solution uλ of (1.1) for each λ ∈ R satisfies

ξ
1−Dg
2 ≤ lim inf

d(x)→0

uλ(x)

ψ
(

(d(x))1+γ
∫ δ1
d(x)

k2(s)s−γds
)

≤ lim sup
d(x)→0

uλ(x)

ψ
(

(d(x))1+γ
∫ δ1
d(x)

k2(s)s−γds
) ≤ ξ1−Dg

1 ,

(1.20)

for some δ1 > 0, where

ξi =
bi

1− (1−Dg)−2E
, i = 1, 2;

(ii) when q = 1, there exists λ0 > 0 such that the unique solution uλ of (1.1)
for each λ ∈ (−λ0, λ0) satisfies (1.20).

Theorem 1.5. Let b, a, σ satisfy(H1), (H4), (B2), g satisfy (G1)–(G2), (G4). Also,
Dg < 1 in (G4) if ρ1 = 2− q in (H4). Then the following hold:

(i) when q ∈ [0, 1), the unique solution uλ of 1.1 for each λ ∈ R satisfies

b
1−Dg
4 ≤ lim inf

d(x)→0

uλ(x)

ψ
( ∫ d(x)

0
k(s)
s ds

) ≤ lim sup
d(x)→0

uλ(x)

ψ
( ∫ d(x)

0
k(s)
s ds

) ≤ b1−Dg3 ; (1.21)

(ii) when q = 1, there exists λ0 > 0 such that the unique solution uλ of (1.1)
for each λ ∈ (−λ0, λ0) satisfies (1.21).

Remark 1.6. Let k ∈ Λ ∪ K and Dk + 2Dg = 2 hold. Combining with Lemma
3.1 (iv) and Proposition 2.6, we know that there exists k1 ∈ K such that k2(t) =
t2(1−Dk)/Dkk1, t ∈ (0, δ0]. Hence, it follows by Lemma 3.3 that

lim
t→0+

∫ δ0
t
k2(s)s−γds
k2(t)t1−γ

= lim
t→0+

∫ δ0
t

k1(s)
s ds

k1(t)
=∞,

where γ = Dg/(1−Dg), Dg < 1.

Remark 1.7. In Theorem 1.4, let δ0 = 1, k2(t) = tγ−1(− ln t)β and

g(t) = ct−γ exp
(∫ 1

t

−E(1 + γ)2(1 + β)
s(− ln s)

ds
)

= ct−γ(− ln t)−E(1+γ)2(1+β),

c > 0, E ≤ 0, β ≥ 0, t ∈ (0, 1). By [35, Lemma 3 (iii)], we know that (H6) holds.

Part 2: Existence and global asymptotic behavior.

Theorem 1.8. Let b, a, σ satisfy (H1)–(H2), (B3), g satisfy (G1), (G3)–(G4) with
Dg + q < 3 and (1.8) hold.

(i) If q ∈ (0, 1), then for each λ ∈ R problem (1.1) has a unique classical
solution uλ satisfying

uλ(x) ≈ ψ(K̃2(d(x))), x ∈ Ω (1.22)

with K̃(t) =
∫ t

0
k̃(s)ds, t ∈ (0,∞), where k̃ ∈ C1((0,∞)) is a positive

extension of k ∈ C1((0, δ0]).
(ii) If q ∈ [1, 2], then there exists λ0 > 0 such that for each λ ∈ (−∞, λ0)

problem (1.1) has a unique classical solution uλ satisfying (1.22).
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Theorem 1.9. Let b, a, σ satisfy (H1), (H3), (B3), g satisfy (G1), (G3)–(G4) and
2/(2 + γ) < Dk ≤ 2/(1 + γ) hold, where γ = Dg/(1 − Dg), Dg < 1. If further
assume that (H6) holds, then the following hold:

(i) when q ∈ (0, 1), for each λ ∈ R problem (1.1) has a unique classical solution
uλ satisfying

uλ(x) ≈ ψ
(

(d(x))1+γ

∫ l

d(x)

k̃2(s)s−γds
)
, x ∈ Ω, (1.23)

where l > max{δ0,diam(Ω)} and k̃ ∈ C1((0, l)) is a positive extension of
k ∈ C1((0, δ0]);

(ii) when q ∈ [1, 2], there exists λ0 > 0 such that for each λ ∈ (−∞, λ0) problem
(1.1) has a unique classical solution uλ satisfying (1.23).

Theorem 1.10. Let b, a, σ satisfy (H1), (H4), (B4), g satisfy (G1), (G3)-(G4).
Moreover, Dg < 1 in (G4) if ρ1 = 2− p in (H4).

(i) If q ∈ (0, 1), then for each λ ∈ R, problem (1.1) has a unique classical
solution uλ satisfying

uλ(x) ≈ ψ
(∫ d(x)

0

k̃(s)
s
ds
)
, x ∈ Ω, (1.24)

where k̃ ∈ C1((0, l)) is a positive extension of k ∈ C1((0, δ0]) and l >
max{δ0,diam(Ω)}.

(ii) If q ∈ [1, 2], then there exists λ0 > 0 such that for each λ ∈ (−∞, λ0),
problem (1.1) has a unique classical solution satisfying (1.24).

Remark 1.11. Assume that b(x) ≈ (d(x))−αk1(d(x)), x ∈ Ω, α < 2, where

k1 = exp
(∫ l

t

y(s)
s

)
ds, y ∈ C((0, l]), lim

t→0+
y(t) = 0, l > max{diam(Ω), δ0}.

Then we can take k ∈ Λ ∪ K such that

k2(t) = t−α exp
(∫ δ0

t

y(s)
s
ds
)
, t ∈ (0, δ0]

such that (1.15) holds for each c ∈ (0,min{δ0, 1/c1}) and

a1(c) = c0c
αc
|α|
1 (c1/c)βM0, a2(c) = c−1

0 cαc
−|α|
1 (c/c1)βM0,

where β = maxt∈(0,l] |y(t)|, M0 = exp
( ∫ l

δ0

y(s)
s ds

)
, and c0, c1 are two large enough

constants.

Remark 1.12. As in Remark 1.11, If b(x) ≈ (d(x))−2k1(d(x)), then we can choose
k ∈ K such that (1.16) holds.

Remark 1.13. For each k ∈ C1((0, δ0]), there exists a positive function k̃ ∈
C1((0,∞)) such that k̃ ≡ k on (0, δ0], for instance, define

k̃(t) :=

{
k(t), 0 < t ≤ δ0,
k(δ0) exp

(k′(δ0)(t−δ0)
k(δ0)

)
, δ0 < t,

which is our desired function.

Remark 1.14. In Theorems 1.8 and 1.10, g is admitted to be rapidly varying at
zero.
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Remark 1.15. If q = 0, then Theorems 1.8-1.10 still hold for each λ ∈ [0,∞).

Remark 1.16. In Theorem 1.9, if λ = 0, then the lower bound of Dk can be
reduced to 2/(γ + 3).

We close this section with an outline of the paper. In Section 2, we give prelim-
inary considerations. In Section 3, we collect some auxiliary results. Section 4 is
devoted to prove Theorems 1.3-1.5. The proofs of Theorems 1.8-1.10 are given in
Section 5.

2. Preliminary results

In this section, we present some bases of Karamata regular variation theory which
come from Introductions and Appendix in Maric [33], Preliminaries in Resnick [42],
Seneta [43].

Definition 2.1. A positive measurable function g defined on (0, a1), for some
a1 > 0, is called regularly varying at zero with index ρ, written as g ∈ RVZρ, if for
each ξ > 0 and some ρ ∈ R,

lim
t→0+

g(ξt)
g(t)

= ξρ. (2.1)

In particular, when ρ = 0, g is called slowly varying at zero.

Clearly, if g ∈ RVZρ, then t 7→ g(t)t−ρ is slowly varying at zero. Some basic
examples of slowly varying functions at zero are

(i) every measurable function on (0, a1) which has a positive limit at zero;
(ii) (− ln t)p, (ln(− ln t))p, t ∈ (0, 1), p ∈ R;

(iii) exp
(
(− ln t)p

)
, t > 0, 0 < p < 1.

Definition 2.2. A positive measurable function g defined on (0, a1), for some
a1 > 0, is called rapidly varying at zero if for each p > 1

lim
t→0+

g(t)tp =∞.

Proposition 2.3 (Uniform convergence theorem). If g ∈ RV Zρ, then (2.1) holds
uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2 < a1.

Proposition 2.4 (Representation theorem). A function k is slowly varying at zero
if and only if it may be written in the form

k(t) = ϕ(t) exp
(∫ a0

t

y(τ)
τ

dτ
)
, t ∈ (0, a0],

for some a0 ∈ (0, a1), where the functions ϕ and y are measurable and for t →
0+, y(t)→ 0 and ϕ(t)→ c, with c > 0.

We call that

k(t) = c exp
(∫ a0

t

y(τ)
τ

dτ
)
, t ∈ (0, a0], (2.2)

is normalized slowly varying at zero and g(t) = tρk(t), t ∈ (0, a0] is normalized
regularly varying at zero with index ρ and written g ∈ NRV Zρ. By the above
definition, we know that K ⊆ NRV Z0. On the other hand, if k ∈ NRV Z0 ∩
C1((0, δ0]), then k ∈ K.
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Assume that g belongs to C1((0, a0]) for some a0 > 0 and is positive on (0, a0].
Then, g ∈ NRV Zρ if and only if

lim
t→0+

tg
′
(t)

g(t)
= ρ.

Proposition 2.5. If functions k, k1 are slowly varying at zero, then
(i) kρ for every ρ ∈ R, c1k + c2k1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), k ◦ k1 if

k1(t)→ 0 as t→ 0+), are also slowly varying at zero;
(ii) for every ρ > 0 and t→ 0+, tρk(t)→ 0, t−ρk(t)→∞;

(iii) for ρ ∈ R and t→ 0+, ln k(t)/ ln t→ 0 and ln(tρk(t))/ ln t→ ρ.

Proposition 2.6. If g1 ∈ RV Zρ1 , g2 ∈ RV Zρ2 with limt→0+ g2(t) = 0, then
g1 ◦ g2 ∈ RV Zρ1ρ2 .

Proposition 2.7. If g1 ∈ RV Zρ1 , g2 ∈ RV Zρ2 , then g1 · g2 ∈ RV Zρ1+ρ2 .

Proposition 2.8 (Asymptotic Behavior). If a function k is slowly varying at zero,
then for a > 0 and t→ 0+,

(i)
∫ t

0
sρk(s)ds ∼= (1 + ρ)−1t1+ρk(t) for ρ > −1;

(ii)
∫ a
t
sρk(s)ds ∼= −(1 + ρ)−1t1+ρk(t) for ρ < −1.

3. Auxiliary results

In this section, we collect some useful results.

Lemma 3.1. Let k ∈ Λ ∪ K. Then
(i) limt→0+

K(t)
k(t) = 0;

(ii) limt→0+
tk(t)
K(t) = D−1

k , i.e., K ∈ NRV ZD−1
k

;

(iii) limt→0+
K(t)k′(t)
k2(t) = 1−Dk;

(iv) limt→0+
tk′(t)
k(t) = 1−Dk

Dk
.

Proof. Here, we only prove the results in the case of k ∈ K because the ones have
been given by Lemma 2.1 in [54] when k ∈ Λ.

(i)-(iii) By Proposition 2.8(i), we obtain that (i)-(iii) hold. (iv) (iv) follows by
(ii)-(iii). �

Lemma 3.2 ([56, Lemma 2.2]). Let g satisfy (G1)-(G2),

(i) if g satisfies (G4), then limt→0+
g(t)
t

∫ t
0

ds
g(s) = 1−Dg and Dg ≤ 1;

(ii) (G4) holds with Dg ∈ [0, 1) if and only if g ∈ NRV Z−Dg/(1−Dg);
(iii) if (G4) holds with Dg = 1, then g is rapidly varying at zero.

Lemma 3.3 ([48, lemma 2.3]). Let k ∈ K, then

lim
t→0+

k(t)∫ δ0
t

k(s)
s ds

= 0.

If further
∫ δ0

0
k(s)
s ds converges, then we have

lim
t→0+

k(t)∫ t
0
k(s)
s ds

= 0.
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Lemma 3.4. Suppose g satisfies (G1)–(G2), (G4) and let ψ be the solution of
(1.6). Then

(i) ψ′(t) = g(ψ(t)), ψ(t) > 0, ψ(0) = 0 and ψ′′(t) = g(ψ(t))g′(ψ(t)), t > 0;
(ii) limt→0+

tψ′(t)
ψ(t) = 1−Dg;

(iii) limt→0+
tψ′′(t)
ψ′(t) = −Dg;

(iv) if k ∈ Λ ∪ K and Dk(1 + γ) ≤ 2, γ = Dg/(1−Dg), Dg < 1, then

lim
t→0+

t1−γk2(t)∫ δ0
t

k(s)
s ds

= 0;

(v) if k ∈ Λ ∪ K and (1.8) holds, then

lim
t→0+

t−ρ1 k̂(t)(ψ′(K2(t)))q−1Kq(t)kq−2(t) = 0;

lim
t→0+

t−ρ2 k̂(t)
(
ψ′(K2(t))k2(t)

)−1 = 0,

where q ∈ [0, 2], Dg + q < 3, k̂ ∈ K and ρ1, ρ2 are as defined in (H2);
(vi) if k ∈ Λ∪K and 2/(2+γ) < Dk ≤ 2/(1+γ) with γ = Dg/(1−Dg), Dg < 1,

then

lim
t→0+

tγ(k2(t))−1

∫ δ0

t

k2(s)s−γds = 0;

lim
t→0+

t−ρ1 k̂(t)(k2(t))−1tqγ
[
ψ′
(
t1+γ

∫ δ0

t

k2(s)s−γds
)]q−1(∫ δ0

t

k2(s)s−γds
)q

= 0;

lim
t→0+

t−ρ1 k̂(t)(k2(t))q−1tq
[
ψ′
(
t1+γ

∫ δ0

t

k2(s)s−γds
)]q−1

= 0;

lim
t→0+

t−ρ2 k̂(t)
[
ψ′
(
t1+γ

∫ δ0

t

k2(s)s−γds
)
k2(t)

]−1

= 0,

where q ∈ [0, 2], k̂ ∈ K, and ρ1, ρ2 are as defined in (H3);
(vii) if k̂1, k̂2, k ∈ K and (1.10) holds, then

lim
t→0+

t−ρ1 k̂1(t)t2−q(k(t))q−1
[
ψ′
(∫ t

0

k(s)
s
ds
)]q−1

= 0;

lim
t→0+

t2−ρ2 k̂2(t)
[
k(t)ψ′

(∫ t

0

k(s)
s
ds
)]−1

= 0,

where q ∈ [0, 2] and ρ1, ρ2 are as defined in (H4), moreover, (1.18) and
Dg < 1 hold if ρ1 = 2− p.

Proof. (i)-(iii) By the definition of ψ and a direct calculation, we get (i). By (i),
Lemma 3.2 (i), we obtain that

lim
t→0+

tψ′(t)
ψ(t)

= lim
t→0+

g(ψ(t))
ψ(t)

∫ ψ(t)

0

ds

g(s)
= 1−Dg,

i.e. (ii) holds.

lim
t→0+

tψ′′(t)
ψ′(t)

= lim
t→0+

tg′(ψ(t)) = lim
t→0+

g′(ψ(t))
∫ ψ(t)

0

ds

g(s)
= −Dg,

i.e. (iii) holds.
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(iv) By Lemma 3.1 (iv) and Proposition 2.6, we know that

k2 ∈ NRV Z2(1−Dk)/Dk . (3.1)

Hence, there exists k0 ∈ K such that

k2(t)t−γ = t(2(1−Dk)/Dk)−γk0(t), t ∈ (0, δ0]. (3.2)

When Dk(1 + γ) = 2, a simple calculation shows that (2(1 −Dk)/Dk) − γ = −1.
So, we conclude by Lemma 3.3 that

lim
t→0+

t1−γk2(t)∫ δ0
t
k2(s)s−γds

=
k0(t)∫ δ0

t
k0(s)
s ds

= 0.

When Dk(1 + γ) < 2, a simple calculation shows that −1 < (2(1 −Dk)/Dk) − γ.
So, we have

lim
t→0+

∫ δ0

t

k2(s)s−γds <∞, i.e.,
∫ δ0

t

k2(s)s−γds ∈ K. (3.3)

By (3.1) and Proposition 2.7, we know that there exists k0 ∈ K such that

t1−γk2(t) = t1−γ−2(1−Dk)/Dkk0(t), t ∈ (0, δ0].

(iv) follows by Proposition 2.5 (ii).
(v) By Lemma 3.1, Proposition 2.6 and (iii), we obtain

K ∈ NRV ZD−1
k
, k ∈ NRV Z(1−Dk)/Dk and ψ′ ◦K2 ∈ NRV Z−2Dg/Dk .

By Propositions 2.6 and 2.7, we arrive at

(ψ′ ◦K2)q−1 ·Kq · kq−2 ∈ NRV Zτ1 and (ψ′ ◦K2)−1k−2 ∈ NRV Zτ2 ,

where

τ1 =
(q − 1)(2− 2Dg) +Dk(2− q)

Dk
> 0, τ2 =

2Dk + 2Dg − 2
Dk

> 0.

Thus, there exist k1, k2 ∈ K such that

(ψ′ ◦K2(t))q−1 ·Kq(t) · kq−2(t) = tτ1k1(t), t ∈ (0, δ0],

(ψ′ ◦K2(t))−1k−2(t) = tτ2k2(t), t ∈ (0, δ0].

It follows by Proposition 2.5 (ii) that

lim
t→0+

t−ρ1 k̂(t)(ψ′ ◦K2(t))q−1 ·Kq(t) · kq−2(t) = lim
t→0+

tτ1−ρ1 k̂(t)k1(t) = 0;

lim
t→0+

t−ρ2 k̂(t)(ψ′(K2(t))k2(t))−1 = lim
t→0+

tτ2−ρ2 k̂(t)k2(t) = 0.

(vi) By Lemma 3.1 (iv) and Proposition 2.6, we know that (3.1) holds. Hence,
there exists k0 ∈ K such that (3.2) holds here. As before, when Dk = 2/(1 + γ), we
have (2(1−Dk)/Dk)− γ = −1. So, it follows by Lemma 3.3 that

lim
t→0+

t
( ∫ δ0

t
k0(s)
s ds

)′∫ δ0
t

k0(s)
s ds

= − lim
t→0+

k0(t)∫ δ0
t

k0(s)
s ds

= 0, (3.4)

This implies ∫ δ0

t

k2(s)s−γds ∈ K.
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Moreover, when 2/(2 + γ) < Dk < 2/(1 + γ), by the proof of (iv), we know that
(3.3) holds here. Combining (iii) with Propositions 2.6 and 2.7, we see that there
exist ki ∈ K, i = 1, 2, 3, 4 such that for any t ∈ (0, δ0],

tγ(k2(t))−1

∫ δ0

t

k2(s)s−γds = t((γ+2)Dk−2)/Dkk1(t);

t−ρ1 k̂(t)(k2(t))−1tqγ
[
ψ′
(
t1+γ

∫ δ0

t

k2(s)s−γds
)]q−1(∫ δ0

t

k2(s)s−γds
)q

= tτ1−ρ1 k̂(t)k2(t);

t−ρ1 k̂(t)(k2(t))q−1tq
[
ψ′
(
t1+γ

∫ δ0

t

k2(s)s−γds
)]q−1

= tτ2−ρ1 k̂(t)k3(t);

t−ρ2 k̂(t)
[
ψ′
(
t1+γ

∫ δ0

t

k2(s)s−γds
)
k2(t)

]−1

= tτ3−ρ2 k̂(t)k4(t),

where

τ1 = τ3 =
Dk(γ + 2)− 2

Dk
> 0, τ2 =

q(2−Dk(1 + γ)) +Dk(γ + 2)− 2
Dk

> 0.

Hence, (vi) follows by Proposition 2.5 (ii).
(vii) By (iii), we see that there exists k1 ∈ K such that

k(t)ψ′
(∫ t

0

k(s)
s
ds
)

=
k(t)∫ t

0
k(s)
s ds

(∫ t

0

k(s)
s
ds
)1−Dg

k1

(∫ t

0

k(s)
s
ds
)
,

where ∫ t

0

k(s)
s
ds ∈ K, (3.5)

which can be obtained by a simple calculation as for (3.4).
If ρ1 < 2− q, then by Proposition 2.5 (ii) we have

lim
t→0+

t−ρ1 k̂1(t)t2−qkq−1(t)
[
ψ′
(∫ t

0

k(s)
s
ds
)]q−1

= 0. (3.6)

If ρ1 = 2−q, then it follows by Lemma 3.3 and Proposition 2.5 (ii) that (3.6) holds.
On the other hand, we conclude by Proposition 2.5 (ii) that

lim
t→0+

t2−ρ2 k̂2(t)
[
k(t)ψ′

(∫ t

0

k(s)
s
ds
)]−1

= 0.

�

4. Boundary asymptotic behavior

In this section, we prove Theorems 1.3-1.5. First, we introduce some notations
and two significant lemmas, which are necessary for the proofs.

For δ > 0, we define Ωδ = {x ∈ Ω : d(x) < δ}. Since Ω is a C2 - smooth domain,
we take δ1 ∈ (0, δ0] such that

d ∈ C2(Ωδ1), |∇d(x)| = 1, ∆d(x) = −(N − 1)H(x̄) + o(1), x ∈ Ωδ1 , (4.1)

where, for all x ∈ Ω near the boundary of Ω, x̄ ∈ ∂Ω is the nearest point to x, and
H(x̄) denotes the mean curvature of ∂Ω at x̄ (please refer to [24, Lemmas 14.6 and
14.7]).
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For a satisfies (H1), let V a ∈ C2,α
loc (Ω) ∩ C(Ω̄) be the unique solution to the

following problem
−∆v = a(x), v > 0, v|∂Ω = 0.

specifically, if a ≡ 1 in Ω, then V 1 ∈ C2,α
loc (Ω) ∩ C1(Ω̄). It follows by Höpf’s

maximum principle in [24] that

∇V 1(x) 6= 0, ∀x ∈ ∂Ω and V 1(x) ≈ d(x),∀x ∈ Ω.

Lemma 4.1. For fixed λ ∈ R, let g satisfy (G1)-(G2), b, a and σ satisfy (H1)
and q ∈ [0, 1]. Let uλ ∈ C2(Ωδ) ∩ C(Ω̄δ) be a unique solution to (1.1), uλ ∈
C2(Ωδ) ∩ C(Ω̄δ) satisfy

−∆uλ ≥ b(x)g(uλ) + λa(x)|∇uλ|q + σ(x), uλ(x) > 0, x ∈ Ωδ, uλ|∂Ω = 0,

and uλ ∈ C2(Ωδ) ∩ C(Ω̄δ) satisfy

−∆uλ ≤ b(x)g(uλ) + λa(x)|∇uλ|q + σ(x), uλ(x) > 0, x ∈ Ωδ, uλ|∂Ω = 0,

where δ sufficiently small such that uλ(x), uλ(x), uλ(x) ∈ (0, t1), x ∈ Ωδ. The
constant t1 < t0 and t0 is in (G2).

(I1) When q ∈ [0, 1), there exists a positive constant M such that

uλ(x)−MV a(x) ≤ uλ(x) ≤ uλ(x) +MV a(x), x ∈ Ωδ. (4.2)

(I2) When q = 1, there exists two positive constants M and λ0 such that if
λ ∈ (−λ0, λ0), then (4.2) still holds.

Proof. (I1) When q ∈ [0, 1), there exists a sufficiently large constant

M >
(
|λ| sup

x∈Ω
|∇V a(x)|

)1/(1−q)

such that

uλ −MV a ≤ uλ(x) ≤ uλ +MV a on {x ∈ Ω : d(x) = δ}. (4.3)

We assert that for all x ∈ Ωδ

uλ(x) ≤ uλ(x) +MV a(x), (4.4)

uλ(x) ≥ uλ(x)−MV a(x). (4.5)

Assume the contrary, there exists x0 ∈ Ωδ such that the following hold,

uλ(x0)− (uλ(x0) +MV a(x0)) > 0.

By the continuity of uλ and uλ on Ωδ and uλ(x) = uλ(x) +MV a(x) = 0, x ∈ ∂Ω,
we see that there exists x1 ∈ Ωδ such that

uλ(x1)− (uλ(x1) +MV a(x1)) = max
x∈Ωδ

uλ(x)− (uλ(x) +MV a(x)) > 0.

At the point x1, by using [24, Theorem 2.2] we have

∇uλ −∇uλ = M∇V a and −∆(uλ − (uλ +MV a)) ≥ 0. (4.6)

By using the backward Minkowski inequality, we obtain

||∇uλ|q − |∇uλ|q| ≤ ||∇uλ| − |∇uλ||q. (4.7)

Moreover, combining with (4.6), (4.7) and the basic fact

||∇uλ| − |∇uλ||q ≤ |∇uλ −∇uλ|q,
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we have
||∇uλ|q − |∇uλ|q| ≤Mq|∇V a|q. (4.8)

Thus, it follows by (H1), (G2) and (4.8) that

−∆(uλ − (uλ +MV a))(x1)

≤ b(x1)(g(uλ(x1))− g(uλ(x1)))−Ma(x) + |λ|a(x)
∣∣|∇uλ|q − |∇uλ|q∣∣

≤ b(x1)(g(uλ(x1))− g(uλ(x1)))−Ma(x) +Mq|λ|a(x)|∇V a|q < 0,

which is a contradiction. Hence, (4.4) holds. In the same way, we can show that
(4.5) holds.

(I2) When q = 1, we can still choose a large M > 0 such that (4.3) holds. By
the same proof as the above, we obtain that (4.4) and (4.5) hold in the case of

|λ| < λ0 =
(

sup
x∈Ω
|∇V a(x)|

)−1
.

�

For the next lemma we assume that a satisfies

a(x) ≈ (d(x))−ρk̃(d(x)), x ∈ Ω, (4.9)

where ρ ≤ 2 and k̃ ∈ C1((0, l]) (l > max{δ0, diam(Ω)}) is a positive extension of
k ∈ K, moreover, if ρ = 2, then (1.10) holds.

Lemma 4.2 ([32, Proposition 1]). Assume that a satisfies (H1) and (4.9). Then
V a(x) ≈ ϕ(d(x)), x ∈ Ω, where

ϕ(t) :=



∫ t
0
k̃(s)
s ds, ρ = 2;

t2−ρk̃(t), 1 < ρ < 2;

t
∫ l
t
k̃(s)
s ds, ρ = 1;

t, ρ < 1.

(4.10)

Proof of Theorem 1.3. Let ε ∈ (0, b2/2) and put

τ1 = ξ1 + εξ1/b1, τ2 = ξ2 − εξ2/b2.
We see that

ξ2/2 < τ2 < τ1 < 3ξ1/2.
Let

uε = ψ(τ1K2(d(x))), uε = ψ(τ2K2(d(x))).
A straightforward calculation shows that

∆uε + b(x)g(uε) + λa(x)|∇uε|q + σ(x)

= ψ′(τ1K2(d(x)))k2(d(x))
[
4τ1
(
τ1K

2(d(x))g′(ψ(τ1K2(d(x)))) +Dg

)
+ 2τ1

(K(d(x))k′(d(x))
k2(d(x))

− (1−Dk)
)

+ 2τ1
(K(d(x))
k(d(x))

)
∆d(x)

+
( b(x)
k2(d(x))

− b1
)
− 4τ1Dg + 2τ1 + 2τ1(1−Dk) + b1

+ λa(x)(2τ1)q(ψ′(τ1K2(d(x))))q−1Kq(d(x))kq−2(d(x))

+ σ(x)
(
ψ′(τ1K2(d(x)))k2(d(x))

)−1
]
.
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Combining Lemma 3.1, Lemma 3.4 (v) with the hypotheses (B1), (H2) and (G4),
we obtain that for fixed ε > 0, there exists δε ∈ (0, δ1) such that for x ∈ Ωδε ,∣∣∣4τ1(τ1K2(d(x))g′(ψ(τ1K2(d(x)))) +Dg

)
+ 2τ1

(K(d(x))k′(d(x))
k2(d(x))

− (1−Dk)
)

+ 2τ1
(K(d(x))
k(d(x))

)
∆d(x)

+
( λa(x)

(d(x))−ρ1 k̂1(d(x))

)
(d(x))−ρ1 k̂1(d(x))(2τ1)q(ψ′(τ1K2(d(x))))q−1Kq(d(x))

× kq−2(d(x)) +
( σ(x)

(d(x))−ρ2 k̂2(d(x))

)
(d(x))−ρ2 k̂2(d(x))

×
(
ψ′(τ1K2(d(x)))k2(d(x))

)−1
∣∣∣

< ε/2

and
k2(d(x))(b2 − ε/2) < b(x) < k2(d(x))(b1 + ε/2), x ∈ Ωδε .

This implies that for x ∈ Ωδε , we have

∆uε + b(x)g(uε) + λa(x)|∇uε|q + σ(x) ≤ 0,

i.e., uε is a supersolution of (1.1) in Ωδε .
In a similar way, we can show that uε is a subsolution of (1.1) in Ωδε .
Let uλ ∈ C2,α

loc (Ω)∩C(Ω̄) be the unique solution of (1.1). We choose δ < δε such
that uε, uε, uλ ∈ (0, t1), where t1 is in Lemma 4.1. Now, we consider the following
two cases.
Case 1: q ∈ [0, 1). By Lemma 4.1 (I1), we know that there exists M > 0 such
that

uε(x)−MV a(x) ≤ uλ(x) ≤ uε(x) +MV a(x), x ∈ Ωδ, (4.11)
i.e., for any x ∈ Ωδ

1 +
MV a(x)

ψ(τ1K2(d(x)))
≥ uλ(x)
ψ(τ1K2(d(x)))

1− MV a(x)
ψ(τ2K2(d(x)))

≤ uλ(x)
ψ(τ2K2(d(x)))

.

(4.12)

Subsequently, we prove

lim
d(x)→0

MV a(x)
ψ(τiK2(d(x)))

= 0, i = 1, 2. (4.13)

In fact, by (H2) we can take a constant c1 > 0 such that

a(x) < w(x), x ∈ Ω, where w(x) = c1(d(x))−ρ1 ˜̂
k1(d(x)) (4.14)

with

2− ρ1 >
q(Dk + 2Dg − 2) + 2(1−Dg)

Dk
, (4.15)

where ˜̂
k1 ∈ C1((0, l)) (l > max{δ0, diam(Ω)}) is a positive extension of k̂1.

A basic fact, [24, Theorem 3.1], shows that V a(x) ≤ V w(x), x ∈ Ω. We conclude
by Lemma 4.2 that there exists a constant c2 > 0 such that

V a(x) ≤ c2ϕ(d(x)), x ∈ Ω, (4.16)
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where ϕ is defined by (4.10). Combining Lemma 3.1 (ii), Lemma 3.4 (ii) with
Propositions 2.6 and 2.7, we obtain

ϕ · (ψ ◦ τiK2)−1 ∈ NRV Zρ, i = 1, 2 with ρ = min{2− ρ1, 1} − 2(1−Dg)/Dk.

It follows by (1.8) and (4.15) that ρ > 0. Hence, we have

lim
d(x)→0

c2ϕ(x)
ψ(τiK2(d(x)))

= 0.

This fact, combined with (4.16), shows that (4.13) holds. It follows by (4.12) that

lim sup
d(x)→0

uλ(x)
ψ(τ1K2(d(x)))

≤ 1 and lim inf
d(x)→0

uλ(x)
ψ(τ2K2(d(x)))

≥ 1. (4.17)

Consequently, by Lemma 3.4 (ii), we deduce that

τ
1−Dg
1 = lim

d(x)→0

ψ(τ1(K2(d(x))))
ψ((K2(d(x))))

≥ lim sup
d(x)→0

uλ(x)
ψ(K2(d(x)))

;

τ
1−Dg
2 = lim

d(x)→0

ψ(τ2(K2(d(x))))
ψ((K2(d(x))))

≤ lim inf
d(x)→0

uλ(x)
ψ(K2(d(x)))

.

(4.18)

Case 2: p = 1. By Lemma 4.1 (I2), we know that there exist positive constants
M,λ0 such that (4.11) holds here if λ ∈ (−λ0, λ0). As in the proof of the above,
we obtain (4.18) still holds.

The proof is complete when passing to the limit as ε→ 0. �

Proof of Theorem 1.4. Let ε ∈ (0, b2/2) and put

τ1 = ξ1 + εξ1/b1, τ2 = ξ2 − εξ2/b2.

Clearly, ξ2/2 < τ2 < τ1 < 3ξ1/2. Let

uε(x) = ψ
(
τ1(d(x))1+γθ(x)

)
, uε(x) = ψ

(
τ2(d(x))1+γθ(x)

)
,

where γ = Dg/(1−Dg) and θ(x) =
∫ δ
d(x)

k2(s)s−γds. Denote

I(x)

= τ1(1 + γ)2
(τ1(d(x))1+γθ(x)ψ′′

(
τ1(d(x))1+γθ(x)

)
ψ′ (τ1(d(x))1+γθ(x))

+Dg

)
× (d(x))γ−1θ(x)

k2(d(x))
− τ1(1 + γ)2E

+
τ1(d(x))1+γθ(x)ψ′′

(
τ1(d(x))1+γθ(x)

)
ψ′ (τ1(d(x))1+γθ(x))

τ1(d(x))1−γk2(d(x))
θ(x)

−
(2(1 + γ)τ2

1 (d(x))1+γθ(x)ψ′′
(
τ1(d(x))1+γθ(x)

)
ψ′ (τ1(d(x))1+γθ(x))

+ 2τ1γ
)

−
(2τ1d(x)k′(d(x))

k(d(x))
− 2τ1(1−Dk)

Dk

)
+
(τ1(1 + γ)(d(x))γθ(x)

k2(d(x))
− τ1d(x)

)
∆d(x)

+
( λτ q1a(x)

(d(x))−ρ1 k̂1(d(x))

)
(d(x))−ρ1 k̂1(d(x))(k2(d(x)))q−1

×
∣∣ψ′ (τ1(d(x))1+γθ(x)

)∣∣q−1
∣∣∣ (1 + γ)(d(x))γθ(x)

k2(d(x))
− d(x)

∣∣∣q



20 H. WAN EJDE-2015/57

+
( σ(x)

(d(x))−ρ2 k̂2(d(x))

)
(d(x))−ρ2 k̂2(d(x))

(
ψ′
(
τ1(d(x))1+γθ(x)

)
k2(d(x))

)−1
.

Combining Lemma 3.1 (iv) and Lemma 3.4 (iii)-(iv) (vi) with the hypotheses (B1),
(H3), (H6) and (G4), we obtain that for fixed ε > 0, there exists δε ∈ (0, δ1) such
that |I(x)| < ε/2 for x ∈ Ωδε , and

k2(d(x))(b2 − ε/2) < b(x) < k2(d(x))(b1 + ε/2), x ∈ Ωδε .

Hence, a straightforward calculation shows that

∆uε + b(x)g(uε) + λa(x)|∇uε|q + σ(x)

= ψ′
(
τ1(d(x))1+γθ(x)

)
k2(d(x))

(
I(x) + τ1(1 + γ)2E

− 2τ1(1−Dk)/Dk + 2τ1γ − τ1(1 + γ)− τ1 + b(x)/k2(d(x))
)

≤ ψ′
(
τ1(d(x))1+γθ(x)

)
k2(d(x))

(
ε+ τ1(1 + γ)2E − 2τ1(1−Dk)/Dk

+ 2τ1γ − τ1(1 + γ)− τ1 + b1
)
≤ 0;

i.e., uε is a supersolution of (1.1) in Ωδε .
In a similar way, we can show that uε is a subsolution of (1.1) in Ωδε .
Let uλ ∈ C2,α

loc (Ω) ∩ C(Ω̄) be the unique solution of (1.1). As before, we choose
δ < δε such that uε, uε, uλ ∈ (0, t1), where t1 is in Lemma 4.1. Now, we consider
the following two cases.

Case 1: p ∈ [0, 1). By Lemma 4.1(I1), we know that there exists M > 0 such that
(4.11) holds here, i.e., for any x ∈ Ωδ

1 +
MV a(x)

ψ(τ1(d(x))1+γθ(x))
≥ uλ(x)
ψ(τ1(d(x))1+γθ(x))

;

1− MV a(x)
ψ(τ2(d(x))1+γθ(x))

≤ uλ(x)
ψ(τ2(d(x))1+γθ(x))

.

(4.19)

Subsequently, we prove

lim
d(x)→0

MV a(x)
ψ (τi(d(x))1+γθ(x))

= 0, i = 1, 2. (4.20)

As before, by (H3), we can take a constant c1 > 0 such that (4.14) holds here with
ρ1 < 1. On the other hand, we can also take a constant c2 > 0 such that (4.16)
holds here.

By Lemma 3.2 (ii) and the hypotheses on g, we know that there exists k1 ∈ K
such that

g(t) = t−γk1(t), t ∈ (0, δ0] and lim inf
t→0+

k1(t) > 0.

Therefore, by (1.6) and Proposition 2.8 (i), as t→ 0+, we obtain

ψ(t) ∼= ((1 + γ)tk1(ψ(t)))1/(1+γ).

This fact, combined with Lemma 4.2 and (4.16), shows that (4.20) holds. Combin-
ing with (4.19), we have

lim sup
d(x)→0

uλ(x)
ψ(τ1(d(x))1+γθ(x))

≤ 1 and lim inf
d(x)→0

uλ(x)
ψ(τ2(d(x))1+γθ(x))

≥ 1.
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Consequently, by Lemma 3.4 (ii), we deduce that

τ
1−Dg
1 = lim

d(x)→0

ψ(τ1(d(x))1+γθ(x))
ψ((d(x))1+γθ(x))

≥ lim sup
d(x)→0

uλ(x)
ψ((d(x))1+γθ(x))

;

τ
1−Dg
2 = lim

d(x)→0

ψ(τ2(d(x))1+γθ(x))
ψ((d(x))1+γθ(x))

≤ lim inf
d(x)→0

uλ(x)
ψ((d(x))1+γθ(x))

.

(4.21)

Case 2: p = 1. By Lemma 4.1 (I2), we know that there exist positive constants
M, λ0 such that (4.11) holds here if λ ∈ (−λ0, λ0). As in the proof of the above,
we obtain that (4.21) still holds.

The proof is complete, when passing to the limit ε→ 0. �

Proof of Theorem 1.5. Let ε ∈ (0, b4/2) and put

τ1 = b3 + ε, τ2 = b4 − ε.

We see that
b4/2 < τ2 < τ1 < 3b3/2.

Let

uε(x) = ψ
(
τ1

∫ d(x)

0

k(s)
s
ds
)
, uε(x) = ψ

(
τ2

∫ d(x)

0

k(s)
s
ds
)
.

By using Lemma 3.1 (iv), Lemma 3.3 and Lemma 3.4 (vii), combining with the
hypotheses (B2), (H4) and (G4) we obtain that for fixed ε > 0, there exists δε ∈
(0, δ) such that for x ∈ Ωδε∣∣∣τ2

1 k(d(x))g′(uε) + τ1

(d(x)k′(d(x))
k(d(x))

+ d(x)∆d(x)
)

+
( λa(x)

(d(x))−ρ1 k̂1(d(x))

)
× (d(x))−ρ1 k̂1(d(x))τ q1 (d(x))2−q(k(d(x)))q−1

[
ψ′
(
τ1

∫ d(x)

0

k(s)
s
ds
)]q−1

|∇d(x)|q

+
( σ(x)

(d(x))−ρ2 k̂2(d(x))

)
(d(x))2−ρ2 k̂2(d(x))

[
k(d(x))ψ′

(
τ1

∫ d(x)

0

k(s)
s

)]−1∣∣∣
< ε/2

and

(d(x))−2k(d(x))(b4 − ε/2) < b(x) < (d(x))−2k(d(x))(b3 + ε/2), x ∈ Ωδε

Hence, we see that for x ∈ Ωδε

∆uε + b(x)g(uε) + λa(x)|∇uε|q + σ(x)

= (d(x))−2k(d(x))g(uε)
[
τ2
1 k(d(x))g′(uε) + τ1

(d(x)k′(d(x))
k(d(x))

+ d(x)∆d(x)
)

+
b(x)

(d(x))−2k(d(x))
− τ1 + λa(x)τ q1 (d(x))2−q(k(d(x)))q−1

×
[
ψ′
(
τ1

∫ d(x)

0

k(s)
s
ds
)]q−1

|∇d(x)|q + σ(x)(d(x))2
[
k(d(x))ψ′

(
τ1

∫ t

0

k(s)
s

)]−1]
≤ (d(x))−2k(d(x))g(uε)

(
ε+ b3 − τ1

)
≤ 0,

i.e., uε is a supersolution of Eq. (1.1) in Ωδε .
In a similar way, we can show that uε is a subsolution of Eq. (1.1) in Ωδε .
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Let uλ ∈ C2,α
loc (Ω) ∩ C(Ω̄) be the unique solution of (1.1). We can still choose

δ < δε such that uε, uε, uλ ∈ (0, t1), where t1 is in Lemma 4.1. As before, we
consider the following two cases.
Case 1: p ∈ [0, 1). By Lemma 4.1 (I1), we know that there exists M > 0 such
that (4.11) holds here, i.e., for any x ∈ Ωδ,

1 +
MV a(x)

ψ
(
τ1
∫ d(x)

0
k(s)
s ds

) ≥ uλ(x)

ψ
(
τ1
∫ d(x)

0
k(s)
s ds

) ,
1− MV a(x)

ψ
(
τ2
∫ d(x)

0
k(s)
s ds

) ≤ uλ(x)

ψ
(
τ2
∫ d(x)

0
k(s)
s ds

) .
Subsequently, we prove

lim
d(x)→0

MV a(x)

ψ
(
τi
∫ d(x)

0
k(s)
s ds

) = 0, i = 1, 2. (4.22)

By (3.5), Lemma 3.4 (ii) and Proposition 2.7, we can see that

ψ
(
τi

∫ d(x)

0

k(s)
s
ds
)
∈ K, i = 1, 2.

It follows by (H4) and Lemma 4.2 that (4.22) holds. Hence, we have

lim sup
d(x)→0

uλ(x)

ψ
(
τ1
∫ d(x)

0
k(s)
s ds

) ≤ 1 lim inf
d(x)→0

uλ(x)

ψ
(
τ2
∫ d(x)

0
k(s)
s ds

) ≥ 1.

Consequently, by Lemma 3.4 (ii), we deduce that

τ
1−Dg
1 = lim

d(x)→0

ψ
(
τ1
∫ d(x)

0
k(s)
s ds

)
ψ
( ∫ d(x)

0
k(s)
s ds

) ≥ lim sup
d(x)→0

uλ(x)

ψ
( ∫ d(x)

0
k(s)
s ds

) ;

τ
1−Dg
2 = lim

d(x)→0

ψ
(
τ2
∫ d(x)

0
k(s)
s ds

)
ψ
( ∫ d(x)

0
k(s)
s ds

) ≤ lim inf
d(x)→0

uλ(x)

ψ
( ∫ d(x)

0
k(s)
s ds

) .
(4.23)

Case 2: p = 1. As in the proofs of Theorems 1.3-1.4, there exists a positive
constant λ0 such that if λ ∈ (−λ0, λ0), then (4.23) still holds. The proof is complete
when passing to the limit ε→ 0.

5. Existence and global asymptotic behavior

In this section, we prove Theorems 1.8-1.10.

Proof of Theorem 1.8. Our proof is done in the following two steps.
Step 1 (Existence and global behavior) For 0 < c < δ0, we define

Q1(c, x) = −4
(
K2(c ϕ1(x))g′((K2(c ϕ1(x)))) +Dg

)
+ 2(Dk + 2Dg − 2)

− 2
(K(c ϕ1(x))k′(c ϕ1(x))

k2(cϕ1(x))
− (1−Dk)

)
, x ∈ Ω;

Q2(c, x) = cψ′(K2(cϕ1(x)))K(c ϕ1(x))k(cϕ1(x)), x ∈ Ω.

By (G4) and Lemma 3.1 (iii), we can take a small enough 0 < c0 < δ0 such that
for x ∈ Ω,

Dk + 2Dg − 2 ≤ Q1(c0, x) ≤ 4(Dk + 2Dg − 2).
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Let
uλ := Ma1(c0)ψ(K2(c0ϕ1)), in Ω,

where M is a positive constant to be determined.
First, by choosing a suitable M , we prove that uλ is a supersolution of (1.1).

Indeed, a straightforward calculation shows that

−∆uλ = Ma1(c0)c20g(ψ((K2(c0ϕ1))))k2(c0ϕ1)Q1(c0, ·)|∇ϕ1|2

+ 2Mλ1ϕ1a1(c0)Q2(c0, ·)
≥MI + 2Mλ1ϕ1a1(c0)Q2(c0, ·),

where
I = a1(c0)c20(Dk + 2Dg − 2) g(ψ(K2(c0ϕ1)))k2(c0ϕ1)|∇ϕ1|2.

By Hopf’s maximum principle, there exist ω b Ω and a constant δ1 > 0 such that

|∇ϕ1|2 ≥ δ1, in Ω \ ω.
Put

M ≥ max
{

2/(c20δ1(Dk + 2Dg − 2)), 1/a1(c0)
}
.

Combining with (B3) and (G3), we derive that for x ∈ Ω \ ω,

MI(x)/2 ≥ b(x)g(Ma1(c0)ψ(K2(c0ϕ1(x)))). (5.1)

On the other hand, by (H2), (1.12), Proposition 2.3 and Lemma 3.4 (v) we see that

lim
d(x)→0

[( a(x)

(d(x))−ρ1 k̂1(d(x))

)
(d(x))−ρ1 k̂1(d(x))(ψ′(K2(c0ϕ1(x))))q−1

×Kq(c0ϕ1(x))kq−2(c0ϕ1(x)) +
( σ(x)

(d(x))−ρ2 k̂2(d(x))

)
(d(x))−ρ2

× k̂2(d(x))
(
ψ′(K2(c0ϕ1(x)))k2(c0ϕ1(x))

)−1
]

= 0.

(5.2)

Hence, there exists ω′ b Ω satisfying ω b ω′ and dist(ω′, ∂Ω) < δ0 such that for
x ∈ Ω \ ω′,
MI(x)/2

= k2(c0ϕ1(x))ψ′(K2(c0ϕ1(x)))
(
a1(c0)c20(Dk + 2Dg − 2)|∇ϕ1|2/2

)
≥ k2(c0ϕ1(x))ψ′(K2(c0ϕ1(x)))

[
λ(2Ma1(c0)c0)q|∇ϕ1(x)|q

( a(x)

(d(x))−ρ1 k̂1(d(x))

)
× (d(x))−ρ1 k̂1(d(x))(ψ′(K2(c0ϕ1(x))))q−1Kq(c0ϕ1(x))kq−2(c0ϕ1(x))

+
( σ(x)

(d(x))−ρ2 k̂2(d(x))

)
(d(x))−ρ2 k̂2(d(x))

(
k2(c0ϕ1(x))ψ′(K2(c0ϕ1(x)))

)−1
]

= λa(x)(2Ma1(c0))qQq2(c0, x)|∇ϕ1(x)|q + σ(x).
(5.3)

This together with (5.1) implies that uλ is a supersolution of (1.1) in Ω \ ω′.
Now, by taking a suitable constant M > 0, we prove uλ is a supersolution of Eq.

(1.1) in ω′. Define

m1 := sup
x∈ω′

b(x)g(ψ(K2(c0ϕ1(x)))); m2 := inf
x∈ω′

a1(c0)ϕ1(x)Q2(c0, x);

m3 := sup
x∈ω′

a(x)(a1(c0))qQq2(c0, x)|∇ϕ1(x)|q; m4 := sup
x∈ω′

σ(x).
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Let
M ≥ max

{
m1/m2λ1, 1/a1(c0)

}
.

It follows from the monotonicity of g that for any x ∈ ω′

Mλ1a1(c0)ϕ1(x)Q2(c0, x) ≥Mλ1m2 ≥ m1 ≥ b(x)g(Ma1(c0)ψ(K2(c0ϕ1(x)))).
(5.4)

Here, we distinguish the following two cases.
Case 1: q ∈ [0, 1)). Let

M > max
{(

2q+1m3 max{0, λ}/m2λ1

)1/(1−q)
, 2m4/λ1m2

}
.

By a direct calculation, we have for any x ∈ ω′,
Mλ1a1(c0)ϕ1(x)Q2(c0, x)/2

≥Mλ1m2/2 ≥ m3(2M)q max{0, λ}
≥ λa(x)(2Ma1(c0))qQq2(c0, x)|∇ϕ1(x)|q

(5.5)

and
Mλ1a1(c0)ϕ1(x)Q2(c0, x)/2 ≥Mλ1m2/2 ≥ m4 ≥ σ(x). (5.6)

So, we see that uλ is a supersolution of (1.1) in ω′. Finally, combining with (5.1),
(5.3)-(5.6), we conclude by choosing

M ≥ max
{

2/(c20δ1(Dk + 2Dg − 2)), 1/a1(c0), m1/(m2λ1),(
2q+1m3 max{0, λ})/m2λ1

)1/(1−q)
, 2m4/λ1m2

}
that uλ is a supersolution of (1.1).
Case 2: q ∈ [1, 2]. In this case, let

M ≥ max
{

2/(c20δ1(Dk + 2Dg − 2)), 1/a1(c0), m1/(m2λ1), 2m4/λ1m2

}
,

λ < M1−qλ1m2/(2q+1m3). (5.7)

By the same argument as Case 1, we obtain that (5.5)-(5.6) still hold. So, for every
λ satisfying (5.7), we can take M > 0 such that uλ is a supersolution of (1.1).

On the other hand, let

uλ := ma2(c0)ψ(K2(c0ϕ1)) in Ω,

where m is a positive constant to be determined.
Next, by choosing a suitable m > 0, we prove uλ is a subsolution of (1.1). Indeed,

by (5.2), we arrive at

sup
x∈Ω

a(x)(ψ′(K2(c0ϕ1(x))))q−1Kq(c0ϕ1(x))kq−2(c0ϕ1(x)) <∞.

Hence, we can take sufficiently small 0 < m < min{M, 1/a2(c0)} such that for each
q ∈ (0, 2]

−∆uλ − λa(x)|∇uλ|q − σ(x)

≤ a2(c0)k2(c0ϕ1)ψ′(K2(c0ϕ1))
(
mc20Q1(c0, ·)|∇ϕ1|2 + 2mλ1ϕ1K(c0ϕ1)/k(c0ϕ1)

+ |λ|(2mc0)q(a2(c0))q−1a(x)(ψ′(K2(c0ϕ1)))q−1Kq(c0ϕ1)kq−2(c0ϕ1)|∇ϕ1|q
)

≤ b(x)ψ′(K2(c0ϕ1))
(

4mc20(Dk + 2Dg − 2) sup
x∈Ω
|∇ϕ1(x)|2

+ sup
x∈Ω

2mc0λ1

(
K(c0ϕ1(x))/k(c0ϕ1(x))

)
+ |λ|(2mc0)q(a2(c0))q−1
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× sup
x∈Ω

a(x)(ψ′(K2(c0ϕ1(x))))q−1Kq(c0ϕ1(x))kq−2(c0ϕ1(x))|∇ϕ1(x)|q
)

≤ b(x)g(ψ(K2(c0ϕ1)))

≤ b(x)g(ma2(c0)ψ(K2(c0ϕ1))).

This implies that uλ is a subsolution of (1.1).
It follows by [15, Lemma 3] that (1.1) possesses a classical solution uλ satisfying

uλ ≤ uλ ≤ uλ in Ω;

i.e.,
uλ(x) ≈ ψ(K2(c0ϕ1(x))), x ∈ Ω.

Let k̃ ∈ C1((0,∞)) is a positive extension of k ∈ C1((0, δ0]) and K̃(t) =∫ t
0
k̃(s)ds, t > 0. By Lemma 3.1 (ii), Lemma 3.4 (ii) and Proposition 2.6, we

have
ψ ◦ K̃2 ∈ NRV Z2(1−Dg)/Dk .

Since ψ ◦ K̃2 ∈ C1((0,∞)), we can take a positive constant δ < min{δ0,diam(Ω)}
and a function y ∈ C((0, δ]) with limt→0+ y(t) = 0 such that

ψ ◦ K̃2(t) = ψ ◦K2(t) = c̄ t2(1−Dg)/Dk exp
(∫ δ

t

y(s)
s
ds
)
, t ∈ (0, δ], c̄ > 0.

On the other hand, by (1.12), we obtain that there exists c1 > 1 such that

d(x)/c1 ≤ ϕ1(x) ≤ c1d(x), x ∈ Ω.

In fact, we can adjust c0 > 0 such that c0 < min{δ, 1/c1}.
Let β = maxt∈(0,δ] |y(t)|. Then we deduce that∣∣ exp

(∫ c0ϕ1(x)

d(x)

y(s)
s
ds
)∣∣ ≤ (c1/c0)β , x ∈ Ωδ.

Hence

(c0/c1)(2(1−Dg)/Dk)+β ≤ ψ◦K2(c0ϕ1(x))/ψ◦K̃2(d(x)) ≤ (c1c0)2(1−Dg)/Dk (c1/c0)β ,

for x ∈ Ωδ. Let

M1 = max
{

(c1c0)2(1−Dg)/Dk (c1/c0)β ,

sup
x∈Ω\Ωδ

ψ ◦K2(c0ϕ1(x))/ inf
x∈Ω\Ωδ

ψ ◦ K̃2(d(x))
}
,

M2 = min
{

(c0/c1)(2(1−Dg)/Dk)+β
, inf
x∈Ω\Ωδ

ψ ◦K2(c0ϕ1(x))/ sup
x∈Ω\Ωδ

ψ ◦ K̃2(d(x))
}
.

Then we obtain that for x ∈ Ω,

M2ψ ◦ K̃2(d(x)) ≤ ψ ◦K2(c0ϕ1(x)) ≤M1ψ ◦ K̃2(d(x)),

i.e., (1.22) holds.
Step 2 (Uniqueness) Since uniqueness is an easy consequence of the relationship
v ≤ w whenever v ≤ w on ∂Ω, we prove only this relationship, where v and w are
two solutions of (1.1) in Ω. Suppose minx∈Ω(w(x) − v(x)) < 0, then there exists
x0 ∈ Ω such that w(x0)− v(x0) = minx∈Ω(w(x)− v(x)). At the point, we have by
the basic fact

∇(w − v) = 0 and −∆(w − v) ≤ 0.
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On the other hand, we see by (H1) and (G3) that

−∆(w − u) = b(x0)(g(w(x0))− g(v(x0)))) > 0,

which is a contradiction. Hence, w ≥ v in Ω. The proof is complete �

Proof of Theorem 1.9. For 0 < c < δ0, let

θ(c, x) =
∫ δ0

cϕ1(x)

k2(s)s−γds

and define

Q1(c, x)

= −
( (c(1 + γ))2(cϕ1(x))1+γθ(c, x)ψ′′((cϕ1(x))1+γθ(c, x))

ψ′((cϕ1(x))1+γθ(c, x))
+ c2(1 + γ)γ

)
× (cϕ1(x))γ−1θ(c, x)

k2(cϕ1(x))
− (cϕ1(x))1+γθ(c, x)ψ′′((cϕ1(x))1+γθ(c, x))

ψ′((cϕ1(x))1+γθ(c, x))

× (cϕ1(x))1−γk2(cϕ1(x))c2

θ(c, x)

+
2c2(1 + γ)(cϕ1(x))1+γθ(c, x)ψ′′((cϕ1(x))1+γθ(c, x))

ψ′((cϕ1(x))1+γθ(c, x))

+ (1 + γ)c2 +
2k′(cϕ1(x))cϕ1(x)c2

k(cϕ1(x))
+ c2;

Q2(c, x) = k2(cϕ1(x))ψ′((cϕ1(x))1+γθ(c, x))

× λ1

( (1 + γ)(cϕ1(x))1+γθ(c, x)
k2(cϕ1(x))

− (cϕ1(x))2
)

;

Q3(c, x) =
∣∣∣a1(c)ψ′((cϕ1(x))1+γθ(c, x))

(
c(1 + γ)(cϕ1(x))γθ(c, x)

− c(cϕ1(x))k2(cϕ1(x))
)∣∣∣|∇ϕ1(x)|.

By (H6), Lemmas 3.1 (iv) and 3.4 (iii)-(iv), we can take a sufficiently small 0 <
c0 < δ0 such that for x ∈ Ω,

((2−Dkγ−(1+γ)2EDk)c20)/2Dk < Q1(c0, x) < ((2−Dkγ−(1+γ)2EDk)3c20)/2Dk

and Q2(c0, x), Q3(c0, x) > 0.
Let

uλ := Ma1(c0)ψ((c0ϕ1)1+γθ(c0, ·)) in Ω,

where M is a positive constant to be determined. As before, by choosing a suitable
constant M > 0, we prove uλ is a supersolution of (1.1).

By a straightforward calculation,

−∆uλ = Ma1(c0)k2(c0ϕ1)ψ′((c0ϕ1)1+γθ(c0, ·))Q1(c0, ·)|∇ϕ1|2 +Ma1(c0)Q2(c0, ·)
≥MI +Ma1(c0)Q2(c0, ·),

where

I = (1/2Dk)(2−Dkγ − (1 + γ)2EDk)c20a1(c0)k2(c0ϕ1)ψ′((c0ϕ1)1+γθ(c0, ·))|∇ϕ1|2.
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By Hopf’s maximum principle, there exist ω b Ω and a constant δ1 > 0 such
that

|∇ϕ1| ≥ δ1, in Ω \ ω.
Let

M > max
{

4Dk/((2−Dkγ − (1 + γ)2EDk)δ1c20), 1/a1(c0)
}
.

Combining with (B3) and (G3), for x ∈ Ω \ ω, we obtain

MI(x)/2 ≥ b(x)g(Ma1(c0)ψ((c0ϕ1(x))1+γθ(c0, x))). (5.8)

On the other hand, by (H3), (1.12), Proposition 2.3 and Lemma 3.4 (vi) we see
that

lim
d(x)→0

[( a(x)

(d(x))−ρ1 k̂1(d(x))

)
(d(x))−ρ1 k̂1(d(x))

(
(k2(c0ϕ1(x)))−1(c0ϕ1(x))qγ

× (ψ′((c0ϕ1(x))1+γθ(c0, x)))q−1θq(c0, x) + (k2(c0ϕ1(x)))q−1(c0ϕ1(x))q

× (ψ′((c0ϕ1(x))1+γθ(c0, x)))q−1
)

+
( σ(x)

(d(x))−ρ2 k̂2(d(x))

)
(d(x))−ρ2 k̂2(d(x))

×
(
ψ′((c0ϕ1(x))1+γθ(c0, x))k2(c0ϕ1(x))

)−1
]

= 0.
(5.9)

Hence, there exists ω′ b Ω satisfying ω b ω′ and dist(ω′, ∂Ω) < δ0 such that for
x ∈ Ω \ ω′,

MI(x)/2 ≥ k2(c0ϕ1(x))ψ′((c0ϕ1(x))1+γθ(c0, x))
[
λMq(a1(c0))q|∇ϕ1(x)|q

×
( a(x)

(d(x))−ρ1 k̂1(d(x))

)
(d(x))−ρ1 k̂1(d(x))

(
(2c0(1 + γ))q(k2(c0ϕ1(x)))−1

× (c0ϕ1(x))qγ(ψ′((c0ϕ1(x))1+γθ(c0, x)))q−1θq(c0, x)

+ (2c0)q(k2(c0ϕ1(x)))q−1(c0ϕ1(x))q

× (ψ′((c0ϕ1(x))1+γθ(c0, x)))q−1
)

+
( σ(x)

(d(x))−ρ2 k̂2(d(x))

)
(d(x))−ρ2 k̂2(d(x))

(
k2(c0ϕ1(x))

× ψ′((c0ϕ1(x))1+γθ(c0, x))
)−1
]

≥ λa(x)MqQq3(c0, x) + σ(x).
(5.10)

This fact, combined with (5.8), shows that uλ is a supersolution of Eq. (1.1) in
Ω \ ω′.

Now, by taking a suitable constant M > 0, we prove uλ is a supersolution of
(1.1) in ω′.

As before, we define

m1 := sup
x∈ω′

b(x)g(ψ((c0ϕ1(x))1+γθ(c0, x))); m2 := inf
x∈ω′

(a1(c0)/2)Q2(c0, x);

m3 := sup
x∈ω′

a(x)Qq3(c0, x); m4 := sup
x∈ω′

σ(x).
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Let M > max
{
m1/m2, 1/a1(c0)

}
. Using the monotonicity of g, we obtain that

M(a1(c0)/2)Q2(c0, x) ≥Mm2 ≥ m1

≥ b(x)g(Ma1(c0)ψ((c0ϕ1(x))1+γθ(c0, x))), x ∈ ω′.
(5.11)

Here, we distinguish the following cases.
Case 1: q ∈ [0, 1). Put

M > max
{(

2m3 max{0, λ}/m2

)1/(1−q)
, 2m4/m2

}
.

We obtain

M(a1(c0)/4)Q2(c0, x) ≥Mm2/2 ≥ max{0, λ}Mqm3 ≥ λMqa(x)Qq3(c0, x), (5.12)

for x ∈ ω′, and

M(a1(c0)/4)Q2(c0, x) ≥Mm2/2 ≥ m4 ≥ σ(x), x ∈ ω′. (5.13)

Thus, uλ is a supersolution of (1.1) in ω′. Finally, combining with (5.8), (5.10)-
(5.13), we conclude by choosing

M > max
{

4Dk/((2−Dkγ − (1 + γ)2EDk)δ1c20), 1/a1(c0), m1/m2,(
2m3 max{0, λ}/m2

)1/(1−q)
, 2m4/m2

}
that uλ is a supersolution of (1.1).
Case 2: q ∈ [1, 2]. Put

M > max
{

4Dk/((2−Dkγ − (1 + γ)2EDk)δ1c20), 1/a1(c0), m1/m2, 2m4/m2

}
,

λ < (M1−qm2)/2m3. (5.14)

It follows by a direct calculation that (5.12)-(5.13) still hold. So, for every λ satis-
fying (5.14), we can take M > 0 such that uλ is a supersolution of (1.1).

On the other hand, let

uλ := ma2(c0)ψ((c0ϕ1)1+γθ(c0, ·)) in Ω,

where m is a positive constant to be determined.
Next, by choosing a suitable m > 0, we prove that uλ is a subsolution of (1.1).

By (5.9), we arrive at

sup
x∈Ω

[
a(x)(ψ′((c0ϕ1(x))1+γθ(c0, x)))q−1(k2(c0ϕ1(x)))−1

×
∣∣c0(1 + γ)(c0ϕ1(x))γθ(c0, x)− c0(c0ϕ1(x))k2(c0ϕ1(x))

∣∣q] <∞.
Moreover, by Lemma 3.4 (vi), we obtain

sup
x∈Ω

[
(c0ϕ1(x))γ(k2(c0ϕ1(x)))−1θ(c0, x)

]
<∞.

Using a similar proof as for Theorem 1.8, we can take a small enough 0 < m <
min{M, 1/a2(c0)} such that for any q ∈ (0, 2]

−∆uλ(x)− λa(x)|∇uλ(x)|q − σ(x)

≤ a2(c0)k2(c0ϕ1)ψ′((c0ϕ1)1+γθ(c0, ·))
[
m|∇ϕ1|2((2−Dkγ

− (1 + γ)2EDk)3c20)/2Dk +mλ1

( (1 + γ)(c0ϕ1(x))1+γθ(c0, x)
k2(c0ϕ1(x))

− (c0ϕ1(x))2
)

+ |λ|mq(a2(c0))q−1(ψ′((c0ϕ1(x))1+γθ(c0, x)))q−1(k2(c0ϕ1(x)))−1
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×
∣∣c0(1 + γ)(c0ϕ1(x))γθ(c0, x)− c0(c0ϕ1(x))k2(c0ϕ1(x))

∣∣q]
≤ b(x)g(ψ(k2(c0ϕ1(x))θ(c0, x)))

≤ b(x)g(ma2(c0)ψ(k2(c0ϕ1(x))θ(c0, x))).

Hence, by [15, Lemma 3], problem (1.1) has a classical solution uλ satisfying

uλ ≤ uλ ≤ uλ in Ω,

i.e.,
uλ(x) ≈ ψ((c0ϕ1)1+γθ(c0, x)), x ∈ Ω.

Since the function t 7→ ψ(t1+γ
∫ δ0
t
k2(s)s−γds) belongs to NRV Z1 ∩ C1((0, δ0]),

we can take δ > 0 satisfying

c0 < δ < min
{
δ0, diam(Ω)

}
and a function y ∈ C((0, δ]) with limt→0+ y(t) = 0, such that

ψ
(

(c0ϕ1(x))1+γ

∫ δ

c0ϕ1(x)

k2(s)s−γds
)

= c̄ c0ϕ1(x)
∫ δ

c0ϕ1(x)

y(s)
s
ds, x ∈ Ω, c̄ > 0.

Let k̃ ∈ C1((0, l)) be a positive extension of k ∈ C1((0, δ0]). As in the proof of
Theorem 1.8, we can take M1 > M2 > 0 such that

M2ψ
(

(d(x))1+γ

∫ l

d(x)

k̃(s)s−γds
)
≤ ψ

(
(c0ϕ1(x))1+γθ(c0, x)

)
≤M1ψ

(
(d(x))1+γ

∫ l

d(x)

k̃(s)s−γds
)
.

The proof is complete.

Proof of Theorem 1.10. We note that this proof is essentially the same as the proofs
of Theorems 1.8 and 1.9, so we only provide an outline. For 0 < c < δ0, we define

Q1(c, x) = −
ψ′′
( ∫ cϕ1(x)

0
k(s)
s ds

)
k(cϕ1(x))

ψ′
( ∫ cϕ1(x)

0
k(s)
s ds

) − cϕ1k
′(cϕ1)

k(cϕ1)
+ 1;

Q2(c, x) = λ1ψ
′
(∫ cϕ1(x)

0

k(s)
s
ds
)
k(cϕ1(x));

Q3(c, x) =
∣∣∣a1(c)ψ′

(∫ cϕ1(x)

0

k(s)
s
ds
)k(cϕ1(x))

ϕ1(x)

∣∣∣|∇ϕ1|.

As before, by Lemmas 3.1 (iv), 3.3 and 3.4 (iii), we can take a small enough c0 > 0
such that

1/2 < Q1(c0, x) < 3/2.
Define

uλ(x) := Ma1(c0)ψ
(∫ c0ϕ1(x)

0

k(s)
s
ds
)
, x ∈ Ω,

where M is a positive constant to be determined.
A straightforward calculation shows that

−∆uλ = Ma1(c0)ψ′
(∫ c0ϕ1

0

k(s)
s
ds
)

(c0ϕ1)−2k(c0ϕ1)c20Q1(c0, ·)|∇ϕ1|2

+Ma1(c0)Q2(c0, ·)
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≥MI +Ma1(c0)Q2(c0, ·),
where

I = (1/2)a1(c0)ψ′
(∫ c0ϕ1

0

k(s)
s
ds
)

(c0ϕ1)−2k(c0ϕ1)c20.

By Hopf’s maximum principle, there exists ω b Ω and a constant δ1 > 0 such that

|∇ϕ1| ≥ δ1, in Ω \ ω.
Let

M >
{

4/(c20δ1), 1/a1(c0)
}
.

Combining with (B4) and (G3), we have for any x ∈ Ω \ ω

MI(x)/2 ≥ a1(c0)(c0ϕ1)−2k(c0ϕ1(x))g
(
ψ
(∫ c0ϕ1(x)

0

k(s)
s
ds
))

≥ b(x)g
(
Ma1(c0)ψ

(∫ c0ϕ1(x)

0

k(s)
s
ds
))
.

(5.15)

On the other hand, by (H4), (1.12), Proposition 2.3 and Lemma 3.4 (vii) we see
that

lim
d(x)→0

[( a(x)

(d(x))−ρ1 k̂1(d(x))

)
(d(x))−ρ1 k̂1(d(x))(c0ϕ1(x))2−p

(
k(c0ϕ1(x))

× ψ′
(∫ c0ϕ1(x)

0

k(s)
s
ds
))q−1

+
( σ(x)

(d(x))−ρ2 k̂2(d(x))

)
(d(x))−ρ2 k̂2(d(x))(c0ϕ1(x))2

×
(
k(c0ϕ1(x))ψ′

(∫ c0ϕ1(x)

0

k(s)
s
ds
))−1]

= 0.

By the same arguments as for Theorems 1.9 and 1.10, we know that there exists
ω′ b Ω satisfying ω b ω′ and dist(ω′, ∂Ω) < δ0 such that for x ∈ Ω \ ω′

MI(x)/2 ≥ λa(x)MqQq3(c0, x) + σ(x). (5.16)

It follows by (5.15) and (5.16) that uλ is a supersolution of (1.1) in Ω \ ω′.
Define

m1 := sup
x∈ω′

b(x)g
(
ψ
(∫ c0ϕ1(x)

0

k(s)
s
ds
))

; m2 := inf
x∈ω′

(a1(c0)/2)Q2(c0, x);

m3 := sup
x∈ω′

a(x)Qq3(c0, x); m4 := sup
x∈ω′

σ(x).

As in the proof of Theorem 1.10, when q ∈ [0, 1), we can take

M ≥ max
{

4/(c20δ1), 1/a1(c0), m1/m2,
(
2m3 max{0, λ}/m2

)1/(1−q)
, 2m4/m2

}
such that uλ is a supersolution of (1.1).

When q ∈ [1, 2], let

M ≥ max
{

4/(c20δ1), 1/a1(c0), m1/m2, 2m4/m2

}
and λ < M1−qm2/2m3.

A simple calculation shows that uλ is a supersolution of (1.1).
On the other hand, by choosing a small m > 0, we show that

uλ := ma2(c0)ψ
(∫ c0ϕ1(x)

0

k(s)
s
ds
)

is a subsolution of (1.1) with q ∈ (0, 2].
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Hence, by [15, Lemma 3], problem (1.1) possesses a classical solution uλ satisfying

uλ ≤ uλ ≤ uλ in Ω,

i.e.,

uλ(x) ≈ ψ
(∫ c0ϕ1(x)

0

k(s)
s

)
, x ∈ Ω.

As in the proof of Theorem 1.8, we obtain that (1.24) holds. �
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[40] V. Rădulescu; Singular phenomena in nonlinear elliptic problems: from blow-up boundary
solutions to equations with singular nonlinearities, in Handbook of Differential Equations:

Stationary Partial Differential Equations, vol. 4 (2007) 483-591.
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