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BLOW-UP CRITERION FOR THE ZERO-DIFFUSIVE
BOUSSINESQ EQUATIONS VIA THE VELOCITY

COMPONENTS

WEIHUA WANG

Abstract. This article concerns the blow up for the smooth solutions of the

three-dimensional Boussinesq equations with zero diffusivity. It is shown that
if any two components of the velocity field u satisfyZ T

0

‖|u1|+ |u2|‖qLp,∞

1 + ln(e+ ‖∇u‖2
L2 )

ds <∞,
2

q
+

3

p
= 1, 3 < p <∞,

then the local smooth solution (u, θ) can be continuously extended to (0, T1)

for some T1 > T .

1. Introduction

Since the famous laboratory experiments on turbulence derived by Reynolds in
1883, the mathematical models which described the motion of the viscous incom-
pressible fluid flow have attracted more and more attention. Those mathematical
models are usually controlled by the nonlinear partial differential equations. In
this study, we consider a dynamical model of the ocean and atmosphere dynamics
[1, 18] which is so-called Boussinesq equations

∂tu+ u · ∇u+∇p = ν∆u+ θe3,

div u = 0,
∂tθ + u · ∇θ = κ∆θ,

(1.1)

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and θ(x, t) are the unknown velocity
vector field and the unknown scalar temperature, p(x, t) is the unknown scalar
pressure field. ν > 0, κ ≥ 0 are the constants kinematic viscosity and the thermal
diffusivity, e3 = (0, 0, 1)T .

As an important mathematical model in the atmospheric sciences [1], the Boussi-
nesq equations have play an important role in many geophysical applications [18].
When θ = 0, the Boussinesq equations (1.1) become the classic Navier-Stokes equa-
tions

∂tu+ u · ∇u+∇p = ν∆u,
div u = 0.

(1.2)
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From the viewpoint of mathematics, the Boussinesq system is the generalization of
the Navier-Stokes equations. There is a large body of literature on the existence,
uniqueness and regularity of solutions for the Boussinesq equations. In the two-
dimensional case, when ν, κ > 0, the global existence and uniqueness of smooth
solution Boussinesq equations are obtained by Cannon and DiBenedetto [2]. When
ν = 0, κ > 0 or ν > 0, κ = 0, the global regularity of local smooth solution of the
Boussinesq equations is also well studied in [3, 4, 12, 16, 21].

In the three-dimensional case, corresponding three-dimensional Navier-Stokes
equations [10, 15], the global regularity or finite time singularity of weak solutions
for the Boussinesq equations (1.1) with positive dissipation is a big challenging
problem. Therefore, it is an important problem to consider the blow-up issue
for the three-dimensional Boussinesq equations (1.1) and related fluid dynamical
models such as the Navier-Stokes equations and micropolar fluid flows (refer to
[7, 8, 9]). Ishimura and Morimoto [13] (see also [19])first proved the Beale-Kato-
Majda blow-up criteria of local smooth solution for the Boussinesq equations (1.1).
That is to say, if T is the maximal existence time of the local smooth solution for
the Boussinesq equations (1.1), then

T <∞⇒
∫ T

0

‖∇u(s)‖L∞ds = +∞ (1.3)

When κ = 0, the diffusive equation in Boussinesq equations(1.1) is reduced to a
transport equation

∂tθ + u · ∇θ = 0,

and Boussinesq system (1.1) namely becomes the following parabolic-hyperbolic
system (for simplicity taking ν = 1)

∂tu+ u · ∇u+∇p = ∆u+ θe3,

div u = 0,
∂tθ + u · ∇θ = 0

(1.4)

together with the initial data

u(x, 0) = u0, θ(x, 0) = θ0. (1.5)

It should be mentioned that the temperature function θ(x, t) in the transport
equation does not gain smoothness whatsoever. The blow-up issue of the zero-
diffusive Boussinesq equations (1.4)-(1.5) is more difficult compared with that of
Boussinesq system (1.1) with full viscosities. Fan and Zhou [11] recently studied
the blow-up criterion of the local smooth solution of the zero-diffusive Boussinesq
equations (1.4)-(1.5) and derived the following Beale-Kato-Majda criterion∫ T

0

‖∇ × u‖Ḃ0
∞,∞(R3)ds <∞ (1.6)

Jia, Zhang and Dong [14] further refined the blow-up criterion for local smooth
solutions of zero-diffusive Boussinesq equations (1.4)-(1.5) in the large critical Besov
space ∫ T

0

‖u‖pBs
q,∞(R3)ds <∞ (1.7)
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with 2
p + 3

q = 1 + s and

3
1 + s

< p ≤ ∞, −1 < s ≤ 1, (p, s) 6= (∞, 1).

To the author’s knowledge, there are a few results on the blow-up criterion for
local smooth solution of zero-diffusive Boussinesq equations (1.4)-(1.5) in terms of
the components of the velocity. The main purpose of this study is to investigate
the blow-up criterion for local smooth solution via horizontal velocity u1, u2 in the
critical Lorentz spaces. More precisely, we show the following blow-up criterion for
local smooth solution of zero-diffusive Boussinesq equations (1.4)-(1.5)∫ T

0

‖|u1|+ |u2|‖qLp,∞

1 + ln(e+ ‖∇u‖2L2)
ds <∞, 2

q
+

3
p

= 1, 3 < p <∞ ,

where Lp,∞ is Lorentz space (see the definition in the next section).

2. Preliminaries and main results

In this section, we first recall some basic notation. We denote by C the positive
constant which may be different from line to line. We denote by Lq(R3) with
1 ≤ p ≤ ∞ the usual vector or scalar Lebesgue space under the norm

‖ϕ‖Lp =


(∫

R3 |ϕ(x)|p dx
)1/p

, 1 ≤ p <∞,
ess supx∈R3 |ϕ(x)|, p =∞.

We also denote by Hk(R3) the usual Sobolev space {ϕ ∈ L2(R3); ‖∇kϕ‖L2 <∞}.
We denote by Lp,q(R3) with 1 ≤ p, q ≤ ∞ the Lorenz space with the norm [20]

‖ϕ‖Lp,q =
(∫ ∞

0

tq(m(ϕ, t))q/p
dt

t

)1/q

<∞ for 1 ≤ q <∞,

where m(ϕ, t) is the Lebesgue measure of the set {x ∈ R3 : |ϕ(x)| > t}, i.e.

m(ϕ, t) := m{x ∈ R3 : |ϕ(x)| > t}.

In particular, when q =∞,

‖ϕ‖Lp,∞ = sup
t≥0
{t(m(ϕ, t))

1
p } <∞ .

The Lorents space Lp,∞ is also called weak Lp space. The norm is equivalent to
the norm

‖f‖Lq,∞ = sup
0<|E|<∞

|E|1/q−1

∫
E

|f(x)|dx.

As stated by Triebel [20], Lorentz space Lp,q(R3) may be defined by real inter-
polation methods

Lp,q(R3) = (Lp1(R3), Lp2(R3))α,q, (2.1)

with
1
p

=
1− α
p1

+
α

p2
, 1 ≤ p1 < p < p2 ≤ ∞.

We now recall some basic inequality which will be used in the next section.
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Lemma 2.1 (O’Neil [17]). Assume 1 ≤ pa, pb ≤ ∞, 1 ≤ qa, qb ≤ ∞ and u ∈
Lpa,qa(R3), v ∈ Lpb,qb(R3). Then uv ∈ Lpc,qc(R3) with

1
pc

=
1
pa

+
1
pb
,

1
qc
≤ 1
qa

+
1
qb

and the inequality
‖uv‖Lpc,qc ≤ C‖u‖Lpa,qa ‖v‖Lpb,qb (2.2)

is valid.

Our main results are read as follows.

Theorem 2.2. Assume (u, θ) is the local smooth solution of zero-diffusive Boussi-
nesq equations (1.4)-(1.5) satisfying that

(u, θ) ∈ C([0, T );Hm(R3)), m > 3.

If T is the maximal existence time of the solution (u, θ), then for
2
q

+
3
p

= 1, 3 < p <∞,

the following necessary blow-up condition

T <∞⇒
∫ T

0

‖|u1|+ |u2|‖qLp,∞

1 + ln(e+ ‖∇u‖2L2)
ds = +∞ (2.3)

holds.

The above theorem obviously implies the following corollary.

Corollary 2.3. Assume (u, θ) is the local smooth solution of zero-diffusive Boussi-
nesq equations (1.4)-(1.5) satisfying

(u, θ) ∈ C([0, T );Hm(R3)), m > 3.

If the velocity satisfies∫ T

0

‖|u1|+ |u2|‖qLp,∞

1 + ln(e+ ‖∇u‖2L2)
ds <∞, 2

q
+

3
p

= 1, 3 < p <∞

then the solution (u, θ) can be continually extended to the interval (0, T1) for some
T1 > T .

Remark 2.4. When ν = κ = 0, the existence and uniqueness of local smooth
solution (u, θ) for zero-dissipation Boussinesq equations (1.1) have been investigated
by Chae and Nam [5], therefore, we only need to prove the blow-up criterion of
Theorem 2.2. Moreover, once the proof of Theorem 2.2 is obtained, the proof of
Corollary 2.1 follows directly from Theorem 2.2 and we omit it here.

3. Proof of Theorem 2.2

3.1. Lp estimate for θ. Multiplying both sides of the transport equation of zero-
diffusive Boussinesq equations (1.4)-(1.5) by |θ|p−2θ and integrating in R3, we have

d

dt

∫
R3
|θ|p dx = 0, p ≥ 2 (3.1)

where we have used ∫
R3
u · ∇θθdx = 0.
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Integrating in time becomes

ess sup0<t<T ‖θ‖Lp ≤ ‖θ0‖Lp , p ≥ 2 (3.2)

3.2. Energy estimate for (u, θ). Taking the inner product of the zero-diffusive
Boussinesq equations (1.4)-(1.5) with u, we obtain

1
2
d

dt

∫
R3
|u|2 dx+

∫
R3
|∇u|2 dx =

∫
R3
θe3udx (3.3)

where we have also used∫
R3
u · ∇uu dx = 0,

∫
R3
∇pu dx = 0.

Thanks to ∫
R3
θe3u dx ≤ ‖θ‖L2‖u‖L2 ≤ ‖θ0‖L2‖u‖L2 ,

we have
1
2
d

dt

∫
R3
|u|2 dx+

∫
R3
|∇u|2 dx ≤ ‖θ0‖2‖u‖2;

the Gronwall inequality gives

sup
0≤t<T

‖u(t)‖2L2 + 2
∫ T

0

‖∇u(τ)‖2L2dτ ≤ C(u0, θ0). (3.4)

3.3. Uniform estimate for ‖∇u‖L2 . Multiplying both sides of the momentum
equations zero-diffusive Boussinesq equations (1.4)-(1.5) with ∆u and integrating
in R3, it follows that

1
2
d

dt

∫
R3
|∇u|2 dx+

∫
R3
|∆u|2 dx = −

∫
R3
u · ∇u∆u dx (3.5)

where we have used ∫
R3
∇p∆u dx = 0.

Integrating by parts and using the divergence free condition
∑3
k=1 ∂kuk = 0, we

have

−
∫

R3
u · ∇u∆udx

= −
3∑

i,j,k=1

∫
R3
∂kkujui∂iuj dx

=
3∑

i,j,k=1

∫
R3
∂k(ui∂iuj) ∂kuj dx

=
3∑

i,j,k=1

∫
R3
∂kui∂kuj∂iuj dx+

1
2

3∑
i,j,k=1

∫
R3
ui∂i(∂kuj∂kuj) dx

= I + J.

(3.6)
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We now estimate I and J . When i = 1, 2 or j = 1, 2, by integrating by parts,

I =
∑

i,j=1,2

3∑
k=1

∫
R3
∂kui∂kuj ∂iujdx

=
2∑
i=1

3∑
j,k=1

∫
R3
∂kui∂kuj∂iujdx+

2∑
j=1

3∑
k=1

∫
R3
∂ku3∂kuj∂3ujdx

≤ C
∫

R3
(|u1|+ |u2|)|∇u||∆u| dx.

(3.7)

When i = j = 3, applying the fact

−∂3u3 = ∂1u1 + ∂2u2

and integrating by parts, we have

−
3∑

i,j,k=1

∫
R3
ui∂iuj∂kkuj dx = −

∑
i,j=3

3∑
k=1

∫
R3
∂k(ui∂iuj) ∂kuj dx

=
3∑
k=1

∫
R3
∂ku3∂ku3∂3u3 dx

=
3∑
k=1

∫
R3
∂ku3∂ku3(∂1u1 + ∂2u2) dx

≤ C
∫

R3
(|u1|+ |u2|)|∇u||∆u| dx dx.

(3.8)

Inserting the inequalities (3.7) and(3.8) in (3.10), we have

I ≤ C
∫

R3
(|u1|+ |u2|)|∇u||∆u| dx dx. (3.9)

For J ,

1
2

3∑
i,j,k=1

∫
R3
ui∂i(∂kuj∂kuj) dx = −1

2

3∑
i,j,k=1

∫
R3
∂iui(∂kuj∂kuj) dx = 0. (3.10)

Substituting the estimates I, J in the right hand side of (3.5), we obtain

d

dt

∫
R3
|∇u|2 dx+ 2

∫
R3
|∆u|2 dx ≤ C

∫
R3

(|u1|+ |u2|)|∇u||∆u| dx dx. (3.11)

To control the right hand side of (3.11), with the aid of the Hölder inequality,the
Young inequality and Lemma 2.1, it follows that∫

R3
(|u1|+ |u2|)|∇u||∆u|dx

≤ C‖(|u1|+ |u2|)|∇u|‖L2‖∆u‖L2

≤ C‖(|u1|+ |u2|)|∇u|‖2L2 +
1
2
‖∆u‖2L2

≤ C‖(|u1|+ |u2|)|∇u|‖2L2 +
1
2
‖∆u‖2L2,2

≤ C‖|u1|+ |u2|‖2Lp,∞‖∇u‖2
L

2p
p−2 ,2

+
1
2
‖∆u‖2L2 ,
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thus we rewrite the inequality (3.11) as

d

dt

∫
R3
|∇u|2 dx+

3
2

∫
R3
|∆u|2 dx ≤ C‖|u1|+ |u2|‖2Lp,∞‖∇u‖2

L
2p

p−2 ,2
(3.12)

Since
L

2p
p−2 ,2(R3) =

(
L

2p1
p1−2 (R3), L

2p2
p2−2 (R3)

)
1
2 ,2

with
3 < p1 < p < p2 <∞,

2
p

=
1
p1

+
1
p2

it follows that

‖g‖
L

2p
p−2 ,2 ≤ C‖g‖

1/2

L
2p1

p1−2
‖g‖1/2

L
2p2

p2−2

≤ C
(
‖g‖

p1−3
p1

L2 ‖∇g‖
3

p2
L2

)1/2(
‖g‖

p2−3
p2

L2 ‖∇g‖
3

p2
L2

)1/2

≤ C‖g‖
p−3

p

L2 ‖∇g‖
3
p

L2

which implies

‖∇u‖2
L

2p
p−2 ,2

≤ C‖∇u‖
2(p−3)

p

L2 ‖∆u‖6/pL2

Hence inserting the above inequality into the right hand side of (3.12) and applying
the Young inequality, one shows that

d

dt

∫
R3
|∇u|2 dx+

3
2

∫
R3
|∆u|2 dx

≤ C‖|u1|+ |u2|‖2Lp,∞‖∇u‖
2(p−3)

p

L2 ‖∆u‖6/pL2

≤ C‖|u1|+ |u2|‖qLp,∞‖∇u‖2L2 +
1
2
‖∆u‖2L2

(3.13)

where we have used that q = 2p/(p− 3). Thus we derive

d

dt

∫
R3
|∇u|2 dx+

∫
R3
|∆u|2 dx

≤ C‖|u1|+ |u2|‖qLp,∞‖∇u‖2L2

≤ C
‖|u1|+ |u2|‖qLp,∞

1 + ln(e+ ‖∇u‖2L2)
(1 + ln(e+ ‖∇u‖2L2))‖∇u‖2L2 .

(3.14)

Taking the Gronwall inequality into consideration, it follows that

‖∇u‖2L2 ≤ ‖∇u0‖2L2 exp
{∫ T

0

( ‖|u1|+ |u2|‖qLp,∞

1 + ln(e+ ‖∇u‖2L2)
{1 + ln(e+ ‖∇u‖2L2)}

)
dt
}
.

(3.15)
Hence we have

ln(e+ ‖∇u‖2L2) ≤ ln(e+ ‖∇u0‖2L2)

+
∫ T

0

( ‖|u1|+ |u2|‖qLp,∞

1 + ln(e+ ‖∇u‖2L2)
{1 + ln(e+ ‖∇u‖2L2)}

)
dt.

(3.16)

Taking the Gronwall inequality into account again, we have

ln{e+ ‖∇u‖2L2} ≤ C(u0) exp
{∫ T

0

‖|u1|+ |u2|‖qLp,∞

1 + ln(e+ ‖∇u‖2L2)
ds
}
<∞ (3.17)
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which implies the uniform estimates of ∇u,

ess sup0<t<T ‖∇u‖2L2 <∞. (3.18)

3.4. Uniform Hmestimate for (u, θ). Since

∆u = ∂tu+∇p+ u · ∇u− θe3,
by the standard elliptic regularity theory, we can derive

ess sup0<t<T ‖u‖H2(R3) ≤ C, (3.19)

from which and together with the standard bootstrap technique, we can obtain
uniform Hm estimates

sup
0≤t<T1

(‖u‖2Hm + ‖θ‖2Hm) ≤ C. (3.20)

The detail argument can be found in [14], we omit it here. The proof of Theorem
2.2 is complete.
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