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NONLOCAL SINGULAR PROBLEM WITH INTEGRAL
CONDITION FOR A SECOND-ORDER PARABOLIC EQUATION

AHMED LAKHDAR MARHOUNE, AMEUR MEMOU

Abstract. We prove the existence and uniqueness of a strong solution for a

parabolic singular equation in which we combine Dirichlet with integral bound-

ary conditions given only on parts of the boundary. The proof uses a priori
estimate and the density of the range of the operator generated by the problem

considered.

1. Introduction

In the rectangle Ω = [0, 1]× [0, T ], we consider the equation

£u =
∂u

∂t
− 1
x

∂

∂x

(
x
∂u

∂x

)
= f(x, t), (1.1)

with the initial condition

u(x, 0) = ϕ(x), x ∈ [0, 1], (1.2)

and the Dirichlet condition

u(1, t) = 0, t ∈ [0, T ], (1.3)

and the nonlocal condition∫ α

0

u(x, t)dx+
∫ 1

β

u(x, t)dx = 0, 0 ≤ α ≤ β ≤ 1, t ∈ [0, T ]. (1.4)

The functions ϕ(x), f(x, t) are given, and we assume that the matching conditions
are satisfied

ϕ(1) = 0,∫ α

0

ϕ(x)dx+
∫ 1

β

ϕ(x)dx = 0.

Over the previous few years, many physical phenomena were formulated by means
of nonlocal mathematical models with integral boundary conditions. These integral
boundary conditions appear when the data on the body can not be measured di-
rectly, but their average values are known. For instance, in some cases, describing
the solution u (pressure, temperature, etc.) pointwise is not possible, because only
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the average value of the solution can be estimate along the boundary or along a
part of it. These mathematical models are encountered in many engineering models
such as heat conduction [7], plasma physics [14], thermoelasticity [15], electrochem-
istry , chemical diffusion [3] and underground water flow [7, 17]. The importance
of this kind of problems have been also pointed out by Samarskii [14]. The first
paper, devoted to second order partial differential equations with nonlocal integral
conditions goes back to Cannon [4].This type of boundary value problems with
combined Dirichlet or Newmann and integral condition, or with purely integral
conditions has been investigated in [1, 2, 10, 19] for parabolic equations, for hyper-
bolic equations in [1, 13, 18], and in [6, 9] for mixed type equations. Problems for
elliptic equations with operator nonlocal conditions were considered by Mikhailov
and Gushin [8], A.L.Skubachevski, Steblov [16], Peneiah [12].

In this article we prove the existence and uniqueness of the strong solution of
a class of non local mixed second-order singular parabolic problem in which we
combine Dirichlet and integral conditions given only on parts of the boundary.
Case of α = 0, is treated in [5, 10]. This kind of problems for parabolic equations
was considered in [11].

2. Preliminaries

In this article, we prove the existence and uniqueness of a strong solution of
problem (1.1)-(1.4). For this, we consider the solution of problem (1.1)-(1.4) as a
solution of operator equation Lu = F = (f, ϕ), where the operator L is considred
from E to F , where E is the Banach space of the functions u, with the norm

‖u‖2E =
∫

Ω

x2
(
|∂u
∂t
|2 + |∂

2u

∂x2
|2
)
dx dt+ sup

t

∫ 1

0

x2
(
|u|2 + |∂u

∂x
|2
)
dx,

F is the Hilbert space of vector valued functions F = (f, ϕ) obtained by the com-
pletion of the space L2(Ω)×W 2

2 (0, 1), with respect to the norm

‖F‖2F =
∫

Ω

x2|f |2 dx dt+
∫ 1

0

x2
(
|ϕ|2 + |dϕ

dx
|2
)
dx,

with domain of definition D(L) consisting of functions u ∈ E, such that u, ∂u∂x ,
∂2u
∂x∂t

belong to L2(Ω) and u satisfies conditions (1.3)-(1.4). Then we establish an energy
inequality

‖u‖E ≤ C‖Lu‖F , ∀u ∈ D(L), (2.1)

and we show that the operator L has a closure L.

Definition 2.1. A solution of the operator equation Lu = F is called a strong
solution of problem (1.1)-(1.4).

Inequality (2.1), can be extended to u ∈ D(L), that is

‖u‖E ≤ C‖Lu‖F , ∀u ∈ D(L). (2.2)

From this inequality, we obtain the uniqueness of a strong solution, if it exists, and
the equality of the sets R(L) and R(L). Thus, to prove the existence of the strong
solution of the problem (1.1)-(1.4) for any F ∈ F , it remains to prove that the set
R(L) is dense in F .
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3. An energy inequality and its applications

Theorem 3.1. There exists a positive constant C, such that, for any function
u ∈ D(L) we have

‖u‖E ≤ C‖Lu‖F . (3.1)

Proof. Let

Mu = x2 ∂u

∂t
− x

∫ x

0

∂u

∂t
(ζ, t)dζ + x

∫ x

α

∂u

∂t
(ζ, t)dζ − x

∫ x

β

∂u

∂t
(ζ, t)dζ,

We consider the quadratic form obtained by multiplying (1.1) by exp(−ct)Mu,
where c > 0 and integrating over Ωs = [0, 1]× [0, s] with 0 ≤ s ≤ T , and taking the
real part, formally

Φ(u, u)

= Re
∫

Ωs

exp(−ct)∂u
∂t
Mudx dt−

∫
Ωs

exp(−ct) 1
x

∂

∂x
(x
∂u

∂x
)Mudxdt.

(3.2)

Integrating each term by parts in (3.2) with respect to x and using the condition
(1.4), we obtain

Re
∫

Ωs

exp(−ct)∂u
∂t
Mudx dt

=
∫

Ωs

x2 exp(−ct)|∂u
∂t
|2 dx dt+

∫
Ωs

exp(−ct)∂u
∂t

∫ x

0

ζ
∂u

∂t
dζ

=
∫

Ωs

x2 exp(−ct)|∂u
∂t
|2 dx dt+

1
2

∫ s

0

exp(−ct)dt|
∫ 1

0

x
∂u

∂t
dx|2

+
∫

Ωs

exp(−ct)
∫ x

0
|ζ ∂u∂t |

2dζ

2x2
dx dt .

(3.3)

Using conditions (1.3), (1.4), we obtain

−
∫

Ωs

exp(−ct) 1
x

∂

∂x
(x
∂u

∂x
)Mudxdt =

∫
Ωs

x2 ∂u

∂x

∂2u

∂x∂t
dx dt. (3.4)

Integrating with respect to t, in the right hind side of (3.4), using (3.3), expression
(3.2) becomes∫

Ωs

x2|∂u
∂t
|2 dx dt+

1
2

∫ s

0

dt|
∫ 1

0

x
∂u

∂t
dx|2 +

∫
Ωs

∫ x
0
|ζ ∂u∂t |

2dζ

2x2
dx dt

+ c

∫
Ωs

x2

2
exp(−ct)|∂u

∂x
|2 dx dt+

∫ 1

0

x2

2
exp(−ct)|∂u

∂x
|2dx

∣∣∣
t=s

dx

= Re
∫

Ωs

exp(−ct)£uMudx dt+
∫ 1

0

x2

2
|dϕ
dx
|2dx.

(3.5)

Substituting Mu by its expression in the first term in the right-hand side of (3.5),
we obtain

Re
∫

Ωs

exp(−ct)£uMudx dt

= Re
∫

Ωs

x2 exp(−ct)f ∂u
∂t

dx dt− Re
∫

Ωs

xf
(∫ x

0

∂u

∂t
dζ −

∫ x

α

∂u

∂t
dζ
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+
∫ x

β

∂u

∂t
dζ
)
dx dt.

By integrating with respect to x, using the condition (1.4), we obtain

−Re
∫

Ωs

xf(
∫ x

0

∂u

∂t
dζ −

∫ x

α

∂u

∂t
dζ +

∫ x

β

∂u

∂t
dζ) dx dt =

∫
Ωs

∂u

∂t

∫ x

0

ζfdζ dx dt,

then by using ε-inequalities, we have

Re
∫

Ωs

x2 exp(−ct)f ∂u
∂t

dx dt

≤ ε1

2

∫
Ωs

x2 exp(−ct)|f |2 dx dt+
1

2ε1

∫
Ωs

x2 exp(−ct)|∂u
∂t
|2 dx dt,∫

Ωs

∂u

∂t

∫ x

0

ζfdζ dx dt

≤ 1
2ε2

∫
Ωs

x2 exp(−ct)|∂u
∂t
|2 dx dt+

ε2

2

∫
Ωs

exp(−ct)
|
∫ x

0
ζfdζ|2

x2
dx dt

It is easy to show that∫
Ωs

exp(−ct)
|
∫ x

0
ζf(ζ, t)dζ|2

x2
dx dt ≤ 4

∫
Ωs

x2 exp(−ct)|f |2 dx dt.

Then, from the previous inequalities, formula (3.5) becomes∫
Ωs

(1− 1
2ε1
− 1

2ε2
)x2 exp(−ct)|∂u

∂t
|2 dx dt+

1
2

∫ s

0

dt|
∫ 1

0

x
∂u

∂t
dx|2

+
∫

Ωs

∫ x
0
|ζ ∂u∂t |

2dζ

2x2
dx dt+ c

∫
Ωs

x2

2
exp(−ct)|∂u

∂x
|2 dx dt

+
∫ 1

0

x2

2
exp(−ct)|∂u

∂x
|2dx

∣∣∣
t=s

dx

≤ (
ε1

2
+ 2ε2)

∫
Ωs

x2 exp(−ct)|f |2 dx dt+
∫ 1

0

x2

2
|dϕ
dx
|2dx,

we choose ε1 = ε2 = 2, then∫
Ωs

x2 exp(−ct)|∂u
∂t
|2 dx dt+

∫
Ωs

x2 exp(−ct)|∂u
∂x
|2 dx dt

+
∫ 1

0

x2 exp(−ct)|∂u
∂x
|2dx

∣∣∣
t=s

dx

≤ 10
min(1, c)

(∫
Ωs

x2 exp(−ct)|f |2 dx dt+
∫ 1

0

x2|dϕ
dx
|2dx

)
.

(3.6)

Hence from (1.1), (3.6) we deduce that∫
Ωs

x2 exp(−ct)|∂
2u

∂x2
|2 dx dt

≤ (
80

min(1, c)
+ 2)

(∫
Ωs

x2 exp(−ct)|f |2 dx dt+
∫ 1

0

x2|dϕ
dx
|2dx

)
.
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Integrating the term x2 exp(−ct)u∂u∂t with respect to t and using (3.6), we obtain∫ 1

0

x2 exp(−ct)|u|2dx
∣∣∣
t=s

dx

≤ (
10

cmin(1, c)
+ 1)

(∫
Ωs

x2 exp(−ct)|f |2 dx dt+
∫ 1

0

x2|ϕ|2dx
)
.

Then from the previous inequalities we obtain∫
Ωs

x2
(
|∂u
∂t
|2 + |∂

2u

∂x2
|2
)
dx dt+

∫ 1

0

x2
(
|∂u
∂x
|2 + |u|2

)
dx
∣∣∣
t=s

dx

≤ β
(∫

Ω

x2|f |2 dx dt+
∫ 1

0

x2(|dϕ
dx
|2 + |ϕ|2)dx

)
.

(3.7)

The left side of (3.7) is independent of t, then by taking the upper bound with
respect to t from 0 to T , we obtain the desired inequality

‖u‖E ≤ C‖Lu‖F ,∀u ∈ D(L),

where

C2 = β = max
( 90

min(1, c)
+ 3 +

10
cmin(1, c)

)
ecT .

�

Lemma 3.2. The operator L from E to F admits a closure L.

The previous Theorem is valid for a strong solution, then we have the inequalities

‖u‖E ≤ C‖Lu‖F ,∀u ∈ D(L).

Hence we obtain the following corollaries

Corollary 3.3. A strong solution of problem (1.1)-(1.4) is unique if it exists, and
depends continuously on F .

Corollary 3.4. The range R(L) of the operator L is closed in F , and R(L) = R(L).

4. Solvability of problem (1.1)-(1.4)

To prove the solvability of problem (1.1)-(1.4), it is sufficient to show that R(L)
is dense in F . The proof is based on the following lemma.

Lemma 4.1. Let D0(L) = {u ∈ D(L), u(x, 0) = 0, }. If, for u ∈ D0(L) and for
some function w ∈ L2(Ω), ∫

Ω

φ(x)£uw dx dt = 0, (4.1)

where

φ(x) =

{
x3, x ∈ (0, α) ∪ (α, β),
x(x− β)2, x ∈ (β, 1),

then w = 0.
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Proof. Equality (4.1) can be written as∫
Ω

∂u

∂t
Nv dx dt =

∫
Ω

A(t)uv dx dt, (4.2)

where

v =


xw −

∫ α
x
wdζ, x ∈ (0, α),

x2w, x ∈ (α, β),
(x− β)w −

∫ 1

x
wdζ, x ∈ (β, 1),

(4.3)

and

A(t)u =
∂

∂x

(
xρ(x)

∂u

∂x

)
,

where

ρ(x) =


x, x ∈ (0, α),
1, x ∈ (α, β),
(x− β), x ∈ (β, 1),

and

Nv =


x2v − x

∫ x
0
vdζ = x3w, x ∈ (0, α),

xv = x3w, x ∈ (α, β),
x(x− β)v − x

∫ x
β
vdζ = x(x− β)2w, x ∈ (β, 1).

(4.4)

From (4.3), we conclude that
∫ α

0
vdx+

∫ 1

β
vdx = 0.

We introduce the smoothing operators

J−1
ε =

(
I + ε

∂

∂t

)−1
,
(
J−1
ε

)∗ =
(
I − ε ∂

∂t

)−1
,

with respect to t, then, these operators provide the solution of the problems:

uε(t)− ε
∂uε
∂t

= u(t) uε(0) = 0,

v∗ε (t) + ε
∂v∗ε
∂t

= v(t) v∗ε (T ) = 0 .

We also have the following properties: for any g ∈ L2(0, T ), the functions J−1
ε g,

(J−1
ε )∗g ∈W 1

2 (0, T ). If g ∈ D(L), then J−1
ε g ∈ D(L) and we have

lim ‖J−1
ε g − g‖L2(0,T ) = 0, for ε→ 0,

lim ‖(J−1
ε )∗g − g‖L2(0,T ) = 0, for ε→ 0 .

(4.5)

Substituting u in (4.2) by the smoothing function uε and using the relation

A(t)uε = J−1
ε Au,

we obtain ∫
Ω

uN
∂v∗ε
∂t

dx dt = −
∫

Ω

A(t)uv∗ε dx dt. (4.6)

The left-hand side of (4.6) is a continuous linear functional of u. Hence the function
v∗ε has the derivatives xρ(x)∂v

∗
ε

∂x , ∂
∂x (xρ(x)∂v

∗
ε

∂x ) ∈ L2(Ω) and the following conditions
are satisfied:

v∗ε
∣∣
x=α

= v∗ε
∣∣
x=β

= v∗ε
∣∣
x=1

= 0,

∂v∗ε
∂x

∣∣∣
x=α

=
∂v∗ε
∂x

∣∣∣
x=β

= x2 ∂v
∗
ε

∂x

∣∣∣
x=0

=
∂v∗ε
∂x

∣∣∣
x=1

= 0 .
(4.7)
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Substituting u =
∫ t

0
exp(−cτ)v∗εdτ in (4.2), where the constant c < 0, we obtain∫

Ω

exp(−ct)v∗εNv dx dt =
∫

Ω

A(t)uv dx dt. (4.8)

Using the properties of the smoothing operators we have∫
Ω

exp(−ct)v∗εNv dx dt =
∫

Ω

A(t)uv∗ε dx dt− ε
∫

Ω

A(t)u
∂v∗ε
∂t

dx dt. (4.9)

Integrating with respect to x and t, using (4.7) we obtain

Re
∫

Ω

A(t)uv∗ε dx dt

= −
∫

Ω

xρ(x) exp(ct)
∂u

∂t

∂2u

∂x∂t
dx dt

= −
∫ 1

0

xρ(x)
2

exp(ct)|∂u
∂x
|2|t=T + c

∫
Ω

xρ(x)
2

exp(ct)|∂u
∂x
|2 dx dt ≤ 0.

Integrating by parts the second terms with respect to x and t in the right hand side
of (4.9) we obtain

−ε
∫

Ω

A(t)u
∂v∗ε
∂t

dx dt = ε

∫
Ω

xρ(x)
∂u

∂t

∂2v∗ε
∂x∂t

dx dt

= −ε
∫

Ω

xρ(x) exp(ct)| ∂
2u

∂x∂t
|2 dx dt ≤ 0.

(4.10)

Substituting the expression of Nv in (4.8), we obtain∫
Ω

exp(−ct)v∗εNv dx dt =
∫

Ω

exp(−ct)(v∗ε − v)Nv dx dt+
∫

Ω

exp(−ct)vNv dx dt,

since ∫
Ω

exp(−ct)vNv dx dt

=
∫ T

0

∫ α

0

exp(−ct)x2|v|2 dx dt+
∫ T

0

∫ β

α

exp(−ct)x|v|2 dx dt

+
∫ T

0

∫ 1

β

exp(−ct)x(x− β)|v|2 dx dt+
1
2

∫ T

0

∫ α

0

|
∫ x

0

vdζ|2 dx dt

+
1
2

∫ T

0

∫ 1

β

|
∫ x

β

vdζ|2 dx dt,

then by passing to the limit as ε −→ 0, we obtain v = 0, so that w = 0. �

Theorem 4.2. The range R(L) of L coincides with F .

Proof. Since F is the Hilbert space, R(L) = F if and only if the relation∫
Ω

x2£uF 1 dx dt+
∫ 1

0

x2ϕϕ1dx+
∫ 1

0

x2 dϕ

dx

dϕ1

dx
dx = 0, (4.11)

is satisfied for arbitrary u ∈ D(L) and F1 = (g, ϕ1) ∈ F imply F1 = 0. Taking
u ∈ D0(L) in (4.11), we obtain that

∫
Ω
x2£uF 1 dx dt = 0 and using Lemma 4.1, we
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obtain that φ(x)w = x2g, then g = 0. Consequently for u ∈ D(L) we have∫ 1

0

x2ϕϕ1dx+
∫ 1

0

x2 dϕ

dx

dϕ1

dx
dx = 0,

since the range of the operator trace is dense in the Hilbert space with the norm∫ 1

0

x2
(
|dϕ
dx
|2 + |ϕ|2

)
dx.

then ϕ = 0. �
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