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EXISTENCE AND CONVERGENCE THEOREMS FOR
EVOLUTIONARY HEMIVARIATIONAL INEQUALITIES OF

SECOND ORDER

ZIJIA PENG, CUIE XIAO

Abstract. This article concerns with a class of evolutionary hemivariational

inequalities in the framework of evolution triple. Based on the Rothe method,

monotonicity-compactness technique and the properties of Clarke’s generalized
derivative and gradient, the existence and convergence theorems to these prob-

lems are established. The main idea in the proof is using the time difference to

construct the approximate problems. The work generalizes the existence re-
sults on evolution inclusions and hemivariational inequalities of second order.

1. Introduction

Let V be a separable and reflexive Banach space and V ∗ be its dual space. Let
H be a separable Hilbert space which is identified with its dual H∗. We assume
that V,H and V ∗ form an evolution triple, i.e., V ⊂ H ⊂ V ∗ with the embeddings
being dense and continuous.

Setting T > 0 and I = [0, T ], the evolutionary hemivariational inequalities (EHI)
considered in this article is stated as follows: find a pair (z, v) with z(0) = z0, v(0) =
v0 such that for a.e. t ∈ I, v(t) ∈ B(z′(t)) and〈

v′(t) +A(t, z′(t)) + E(z(t))− f(t), w
〉

+
∫

Ω

j◦(x, z(x, t), z′(x, t);w(x), w(x))dx ≥ 0
(1.1)

holds for all w ∈ V . Here A(t, ·) : V 7→ V ∗ is a nonlinear and pseudomono-
tone operator, B : H → 2H is the subdifferential of convex functional Ψ de-
fined on H, E(·) : V 7→ V ∗ is a linear and bounded operator, Ω ∈ RN and
j◦(x, z(x, t), z′(x, t);w(x), w(x)) denotes the Clarke’s generalized direction deriv-
ative of a locally Lipschitz function j(x, ·, ·).

The notation of hemivariational inequality was introduced by Panagiotopoulos
in the 1980s and 1990s as the variational formulations of the problems in Mechanics
and Engineering Science (cf. [26, 27]). These variational forms involve nonconvex
and nonsmooth energy functionals and express the principle of virtual work in their
inequality forms. In last several decades, plenty of monographs are concerned with
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the study in this field, see, e.g., Naniewicz and Panagiotopoulos [25], Motreanu
and Panagiotopoulos [22], Motreanu and Radulescu [23], Carl and Heikkila [4],
Migorski, Ochal and Sofonea [21]. As to related papers, Motreanu and Radulescu
[24], Radulescu and Repovs [32] have studied the existence results for elliptic in-
equality problems lack of convexity; Goeleven, Motreanu and Panagiotopoulos [10],
Ciulcu, Motreanu and Radulescu [3] have dealt with existence and multiplicity of so-
lutions to elliptic hemivariational inequalities. For recent studies on the first-order
evolution inclusions and parabolic hemivariational inequalities, we refer readers to
Papageorgiou et al [28], Migorski and Ochal [19], Liu [15, 16], Carl and Motreanu
[6], Carl, Le and Motreanu [5], Peng and Liu [30, 31], Kalita [11, 12]. Besides,
the evolution inclusions and hemivariational inequalities of second order have been
considered by Papageorgiou and Yannakakis [29], Gasinski and Smolka[9], Migorski
[17], Migorski and Ochal [18], Li and Liu [13] and so on.

The study of hemivariational problem (EHI) is connected with the nonlinear
evolution inclusion(

B(z′(t))
)′ +A(t, z′(t)) + E(z(t)) +G(z(t), z′(t)) 3 f(t)

v0 ∈ B(z′(0)), z(0) = z0,
(1.2)

where B = ∂Ψ and G : H × H 7→ 2H is a multivalued operator with nonempty,
closed and convex values. Particularly, if Ψ(u) = 1

2‖u‖
2
H , B(u) = u. As a result,

(1.2) reduces to the following second order evolution inclusion:

z′′(t) +A(t, z′(t)) + E(z(t)) +G(z(t), z′(t)) 3 f(t),

z′(0) = v0, z(0) = z0.
(1.3)

This kind of evolution inclusions and their applications to dynamic viscoelastic
contact problems were studied in such references as [13, 17, 18, 29]. Usually, by
introducing an integration operator, this inclusion was transformed into a first
order integro-differential inclusion to which the existence theorem is based on the
classical surjectivity result for parabolic inclusions; see, e.g., [28, Theorem 2.1].
Other methods such as upper and lower method (see, e.g., [5, 6]) and Rothe method
(see [12]) are also used to parabolic hemivariational inequalities and inclusions. In
this paper, Rothe method is adopted and the reason is two folds: one is this method
is more effective to (1.2) than others because of the nonlinearity of B. Another
reason lies that it is more constructive in numerical sense (cf. [11, 12]). The main
idea in this paper is more or less similar to [12, 30, 31] due to the same structure of
Rothe method. However, the difference and difficulties usually lie in the concrete
estimates and limit procedure. As the same strategy in [13, 17, 18, 29], (1.2) will be
studied by being transformed into the first order integral and differential inclusion.

The rest of this paper is organized as follows. Section 2 is concerned with some
definitions and Lemmas. The hypotheses and the existence theorem to (1.2) (Theo-
rem 3.2) are presented in Section 3; Section 4 and 5 are concerned with the estimates
and convergence of Rothe sequences and the proof the main results. Finally, we
solve the hemivariational inequality problem (EHI) in Section 6 by using the ex-
istence theorem in Section 3 and the properties of Clarke’s generalized directional
derivative and gradient.
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2. Preliminaries

In this section, we introduce the necessary preliminary material on convex, non-
smooth analysis and monotone operators in Banach spaces. We refer the reader to
monographs and textbooks, e.g., [5, 7, 8, 25] for the proofs of the results presented
in this section.

Let Γ0(X) denote the set of proper, convex and lower semicontinuous functionals
defined on a Banach space X. For φ ∈ Γ0(X), the subdifferential ∂φ is the subset
of X∗, defined by

∂φ(x) := {x∗ ∈ X∗ : 〈x∗, v − x〉X ≤ φ(v)− φ(x) for all v ∈ X}.
The convex conjugate of φ is defined as

φ∗(v) := sup
u∈X
{〈v, u〉X − φ(u)}, for all v ∈ X∗.

It is well known that φ∗ belongs to Γ0(X∗), and for each pair (u,w) ∈ X ×X∗, the
following three conditions are equivalent to each other:

w ∈ ∂φ(u); φ∗(w) = 〈w, u〉X − φ(u); u ∈ ∂φ∗(w). (2.1)

Next, we recall some basic tools from nonsmooth analysis.

Definition 2.1. Let X be a Banach space and let ϕ : X → R be a locally Lipschitz
function. The generalized (Clarke) directional derivative of ϕ at x ∈ X in the
direction v ∈ X, denoted by ϕ0(x; v), is defined by

ϕ0(x; v) := lim sup
y→x,λ↓0

ϕ(y + λv)− ϕ(y)
λ

and the generalized gradient (subdifferential) of ϕ at x, denoted by ∂ϕ(x), is a
subset of a dual space X∗ given by

∂ϕ(x) := {x∗ ∈ X∗ : 〈x∗, v〉X ≤ ϕ
0(x; v) for all v ∈ X}.

It is well known, that for every x ∈ X, the set ∂ϕ(x) is nonempty, convex and w∗-
compact in X∗. If ϕ : X → R is a convex and continuous function, then ϕ is locally
Lipschitz and the generalized subdifferential of ϕ coincides with the subdifferential
in the sense of convex analysis;

Definition 2.2. Let A : X 7→ X∗ be a bounded operator. We say it is pseu-
domonotone if for any sequence {un}n≥1 weakly convergent to u in X , from
lim supn→∞〈A(un), un − u〉X ≤ 0, it follows that

lim inf
n→∞

〈A(un), un − v〉X ≥ 〈A(u), u− v〉X , ∀v ∈ X. (2.2)

Recall that in the above definition the inequality (2.2) could be equivalently re-
placed by limn→∞〈A(un), un−u〉X = 0 and A(un)→ A(u) weakly in X∗ as n→∞.
Pseudomonotone operator, introduced by Brézis [1], is a significant generalization
of monotone operator. It contains a variety of variational-type operators as special
cases and play an important role in the studies of nonlinear problems (see, for ex-
ample, [14, 5]). Moreover, this notation was generalized by Browder and Hess [2]
to multi-valued case and it has been widely applied to dealing with hemivariational
or variational-hemivariational inequality problems.

Definition 2.3. A multi-valued operator G : X → 2X
∗

is said to be pseudomono-
tone if the following are satisfied:
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(i) for each u ∈ X, G(u) ⊂ X∗ is nonempty, bounded, closed and convex;
(ii) the restriction of G to each finite-dimensional subspace F of X is weakly

upper semicontinuous as an operator from F to X∗ ;
(iii) if for any sequence {un}n≥1 weakly convergent to u in X, from lim supn→∞

〈u∗n, un − u〉X ≤ 0 with u∗n ∈ G(un), it follows: to each element v ∈ X,
there exists u∗(v) ∈ G(u) such that

lim inf
n→∞

〈u∗n, un − v〉X ≥ 〈u∗(v), u− v〉X .

Lemma 2.4 ([20, Proposition 2]). Let X and Y be Banach spaces, and let F :
(0, T )×X → 2Y be a multifunction such that

(1) the values of F are nonempty, closed and convex subsets of Y ;
(2) for each x ∈ X, F (·, x) is measurable;
(3) for a.e. t ∈ (0, T ), F (t, ·) is upper semicontinuous from X to w-Y .

Let xn : (0, T ) → X, yn : (0, T ) → Y, n ∈ N , be measurable functions such that
xn converges almost everywhere on (0, T ) to a function x : (0, T ) → X and yn
converges weakly in L1(0, T ;Y ) to y : (0, T ) → Y . If yn(t) ∈ F (t, xn(t)) for all
n ∈ N and almost all t ∈ (0, T ), then y(t) ∈ F (t, x(t)) for a.e. t ∈ (0, T ).

Following is an existence lemma to elliptic inclusions governed by the sum of
a maximal monotone operator and a multi-valued pseudomonotone operator [25,
Theorem 2.11]. This lemma shall be used to show the existence of solutions to the
approximate problems in Section 4.

Lemma 2.5. Let V be a reflexive Banach Space and T̃ : V → 2V
∗

a maximal mono-
tone mapping with u0 ∈ D(T̃ ). Let T be a bounded and pseudomonotone mapping
from V to 2V

∗
. Suppose that there exists a function c : R+ 7→ R with c(r)→ +∞

as r → +∞ such that for (u∗, u) ∈Graph(T ), 〈u∗, u− u0〉V ≥ c(‖u‖V )‖u‖V . Then
R(T̃ + T ) = V ∗.

3. Hypotheses and main theorems

Now we are in a position to present the hypotheses of the operators involving in
our problems.
A : [0, T ]× V to V ∗ is such that

(A1) for all u ∈ V , t→ A(t, u) is measurable;
(A2) A(t, ·) : V → V ∗ is demicontinuous and pseudomonotone for a.e. t ∈ I and

there exists a constant c1 > 0 such that

‖A(t, u)‖V ∗ ≤ c1(1 + ‖u‖V ), a.e. t ∈ I;

(A3) there exists a constant c2 > 0 such that

〈A(t, u), u〉 ≥ c2‖u‖2V − 1, for all u ∈ V and a.e. t ∈ I.

B = ∂Ψ where Ψ ∈ Γ0(H) and it is finite and continuous at 0. We assume that
there exist c3, c4 > 0 such that

(B1) ‖ξ‖H ≤ c3 (1 + ‖u‖H) for all u ∈ H, ξ ∈ ∂Ψ(u).
(B2) for all u1, u2 ∈ H and v1 ∈ ∂Ψ(u1), v2 ∈ ∂Ψ(u2), one has

〈v1 − v2, u1 − u2〉 ≥ c4‖u1 − u2‖2H .
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Without loss of generality, we assume Ψ(0) = 0 and thus Ψ∗(v) ≥ 0 for all v ∈ H.
Let i and i∗ denote the injection from V to H and H to V ∗, respectively. From the
chain rule ( [8, Proposition 5.7] it follows that ∂(Ψ◦ i) = i∗ ◦∂Ψ◦ i. So if we restrict
the domain of B on V , then we have B = ∂(Ψ ◦ i). For simplicity, we sometimes
omit notations i and i∗.

Let E : V → V ∗ be a linear, bounded, symmetric and monotone operator,
namely, one has

(E1) E ∈ L(V, V ∗), ‖E(u)‖V ∗ ≤ c5‖u‖V for all u ∈ V for some constant c5 > 0.
(E2) 〈E(u), v〉 = 〈E(v), u〉, 〈E(u), u〉 ≥ 0 for all u, v ∈ V .
G : H ×H → 2H is a multi-valued operator with nonempty, convex and closed

values and satisfies
(G1) ‖η‖H ≤ c6(1 + ‖u‖H + ‖v‖H) for all u, v ∈ H, η ∈ G(u, v) with c6 > 0;
(G2) the graph of G, i.e., (u, v,G(u, v)), is sequentially closed in H×H×Hw (here

by Hw we denote the Hilbert space H equipped with the weak topology).
Also we assume that

(H0) f ∈ L2(I;V ∗) and v0 ∈ B(u0) for some u0 ∈ V .
(H1) the embedding operator i is compact and c6c20 < c2 where c0 is the embed-

ding constant from V to H.

Definition 3.1. Given f ∈ L2(I;V ∗), z0 ∈ V, v0 ∈ V ∗, a triple (z, v, g) of functions
from I to V × V ∗ × V ∗ is said to be a solution to (1.2) if:

(a) z ∈ H1(I;V ), v ∈ L∞(I;H) ∩H1(I;V ∗) and g ∈ L2(I;H);
(b) v′(t) +A(t, z′(t)) + E(z(t)) + g(t) = f(t) in V ∗ a.e. t ∈ I;
(c) z(0) = z0, v(0) = v0, v(t) ∈ B(z′(t)), g(t) ∈ G(z(t), z′(t)) a.e. t ∈ I.

Theorem 3.2. Under the hypotheses (A1)–(A3), (B1)–(B2), (E1)–(E2), (G1)–
(G2), (H0)–(H1), the nonlinear evolution inclusion (1.2) admits at least one solu-
tion.

To prove this theorem, we set u(t) = z′(t),K(u)(t) = z0 +
∫ t

0
u(s)ds and trans-

form (1.2) into the first-order evolution inclusion

B′(u(t)) +A(t, u(t)) + E(K(u)(t)) +G(K(u)(t), u(t)) 3 f(t),

v0 ∈ B(u(0)).
(3.1)

As we can see, (3.1) is an integro-differential inclusion where the integration term
involves in both E and G, which complicates the study.

Theorem 3.3. Under assumptions (A1)–(A3),(B1)–(B2),(E1)–(E2), (G1)–(G2),
(H0)–(H1), there exist u ∈ L2(I;V ), v ∈ L∞(I;H) ∩H1(I;V ∗) and g ∈ L2(I;H)
such that

v′(t) +A(t, u(t)) + E(K(u)(t)) + g(t) = f(t) in V ∗ a.e. t ∈ I,
v(0) = v0, v(t) ∈ B(u(t)), g(t) ∈ G(K(u)(t), u(t)) a.e. t ∈ I.

(3.2)

Note that v(0) = v0 makes sense, because v, v′ ∈ L2(I;V ∗) implies v ∈ C(I;V ∗)
by possibly modifying the values on a set of null measure.

4. Rothe method and a priori estimates

4.1. Rothe method and approximate problems. In the sequel, the Rothe
method, also known as implicit time-discritization method, is applied for proving
Theorem 3.3.
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Let m ∈ Z+ and (ti)0≤i≤m be a subdivision of I whose step is µ = T/m.
Setting u0

µ = u0, v
0
µ = v0 and g0

µ = 0; for n = 0, 1, . . . ,m − 1, we aim to find
(un+1
µ , vn+1

µ , gn+1
µ ) ∈ V × V ∗ × V ∗ such that

vn+1
µ − vnµ

µ
+Anµ(un+1

µ ) + E
(
µ

n+1∑
j=0

ujµ
)

+ gn+1
µ = fnµ in V ∗,

vn+1
µ ∈ B(un+1

µ ), gn+1
µ ∈ G

(
µ

n+1∑
j=0

ujµ, u
n+1
µ

)
.

(4.1)

where we set

tnµ = nµ; Anµ(u) =
1
µ

∫ tn+1
µ

tnµ

A(t, u)dt; fnµ =
1
µ

∫ tn+1
µ

tnµ

f(t)dt.

As is seen, the integration term K(u)(t) in (3.1) is approximated by µ
∑n+1
j=0 u

j
µ for

t ∈ (tnµ, t
n+1
µ ]. Before proceeding further, we present a proposition which is useful

to limit procedure of evolutionary problems with pseudomonotone operator. We
refer the reader to [31, Lemma 4.1] for its proof.

Proposition 4.1. Suppose that (A1)–(A3) hold, un → u weakly in L2(I;V ) as
n → ∞ and lim supn→∞〈Aun, un − u〉L2(I;V ) ≤ 0. If we further have un → u in
L2(I;H), then limn→∞〈Aun, un〉 = 〈Au, u〉 and Aun → Au weakly in L2(I;V ∗) as
n→∞.

Theorem 4.2. Provided that (A1)–(A3) are satisfied, then operator Anµ is bounded
and pseudomonotone from V to V ∗ for each n, n = 0, 1, . . . ,m− 1.

This theorem can be proved by using Proposition 4.1, we also refer reader to [31]
for its proof and omit it here.

Theorem 4.3. Let us define Fnµ : V → 2V
∗

by Fnµ (u) = Anµ(u) + µE(u) +
G
(
µ
∑n
j=0 u

j
µ +µu, u

)
,∀u ∈ V . Then Fnµ is pseudomonotone and bounded.

Proof. We shall verify the items of Definition 2.3 one by one. As (i) is obviously
true, we focus on the second and third ones. To prove (ii), it suffice to show
(Fnµ )−1(D) := {u ∈ V : Fnµ (u) ∩ D 6= ∅} is closed in V for any weakly closed
subset D of V ∗. Indeed, letting {uk} ⊂ (Fnµ )−1(D) and uk → u in V as k → ∞,
there exist sequences ηk ∈ V ∗ and wk ∈ G

(
µ
∑n
j=0 u

j
µ + µuk, uk

)
such that ηk =

Anµ(uk)+µE(uk)+wk. From (A2) and (G1), it follows Anµ(uk) and wk are bounded
in V ∗ and H, respectively, and thus we may assume Anµ(uk) → ξ weakly in V ∗,
wk → w weakly in H as k →∞. By Theorem 4.2, one has Anµ(u) = ξ. Meanwhile,
w ∈ G

(
µ
∑n
j=0 u

j
µ + µu, u

)
follows from (G2). From E ∈ L(V, V ∗), E(uk)→ E(u).

Therefore, ξ + µE(u) + w ∈ Fnµ (u). Since ηk ∈ D, ηk → ξ + µE(u) + w weakly in
V ∗ as k → ∞ and D is a weakly closed set in V ∗, we have ξ + µE(u) + w ∈ D.
This, together with ξ+µE(u) +w ∈ Fnµ (u), implies that (Fnµ )−1(D) is closed in V .

We proceed to check condition (iii). To this end, we assume that uk → u weakly
in V , ηk → η weakly in V ∗ as k → ∞ such that ηk = Anµ(uk) + µE(uk) + wk
with wk ∈ G

(
µ
∑n
j=0 u

j
µ + µuk, uk

)
and lim supk→∞〈ηk, uk − u〉V ≤ 0. Owing

to V ⊂ H compactly, one has uk → u in H. Similar as before, we assume that
Anµ(uk) → ξ weakly in V ∗, wk → w weakly in H as k → ∞. By (G2), we have



EJDE-2015/65 EXISTENCE AND CONVERGENCE THEOREMS 7

w ∈ G
(
µ
∑n
j=0 u

j
µ +µu, u

)
. On the other hand, due to 〈E(uk −u), uk −u〉 ≥ 0 and

uk → u weakly in V as k →∞, one has

lim inf
k→∞

µ〈E(uk), uk − u〉 = lim inf
k→∞

(
µ〈E(uk − u), uk − u〉+ µ〈E(u), uk − u〉

)
≥ 0.

Moreover, taking 〈wk, uk − u〉V = 〈wk, uk − u〉H → 0 as k → ∞ into account, one
has lim supk→∞〈Anµ(uk), uk − u〉V ≤ 0. Again by Theorem 4.2, one has Anµ(u) = ξ
and limk→∞〈Anµ(uk), uk − u〉 = 0. Besides, from E ∈ L(V, V ∗), uk → u weakly in
V and the fact that a bounded and linear operator is weakly continuous, we have
E(uk)→ E(u) weakly in V ∗. Consequently, η = ξ+µE(u)+w ∈ Fnµ (u). Moreover,
using the above results, it is easy to check that

lim inf
k→∞

〈ηk, uk − v〉V ≥ 〈η, u− v〉V , ∀v ∈ V.

Therefore, Fnµ : V → 2V
∗

is pseudomonotone. On the other hand, by virtue of (A2),
(E1) and (G1), we can obtain that Fnµ is bounded. The proof is complete. �

Now we are in a position to show the existence of solutions to the discrete
problem (4.1) for n = 1, 2, . . . ,m − 1. Firstly, (4.1) can be equivalently written in
the following form: find un+1

µ such that

B(un+1
µ ) + µFnµ (un+1

µ ) 3 µfnµ + µ2
n∑
j=0

E(ujµ) + vnµ . (4.2)

We have Fnµ is a bounded and pseudomonotone mapping from V to 2V
∗

by Theorem
4.3. So, µFnµ is also bounded and pseudomonotone for given µ > 0. Since the
subdifferential operator is maximal monotone, B is a maximal monotone operator
from V to 2V

∗
. Next, we check that Fnµ , so as to µFµ, is coercive for small and

fixed µ. Let u ∈ V and u∗ ∈ Fnµ (u). So, there exists g ∈ G
(
µ
∑n
j=0 u

j
µ + µu, u

)
such that u∗ = Anµ(u) + µE(u) + g. By (G1), we have

‖g‖H ≤ c6
(
1 + µ

n∑
j=0

‖ujµ‖H + µ‖u‖H + ‖u‖H
)
.

Furthermore, by using (A3) and (E1) we have

〈u∗, u〉V
= 〈Anµ(u) + µE(u), u〉V + 〈g, u〉H

≥ c2‖u‖2V − 1− µc5‖u‖2V − c6(1 + µ)‖u‖2H − c6
(
µ

n∑
j=0

‖ujµ‖H + 1
)
‖u‖H

≥ (c2 − µc5 − c20c6 − µc20c6)‖u‖2V − c6c0
(
µ

n∑
j=0

‖ujµ‖H + 1
)
‖u‖V − 1

(4.3)

In view of c6c20 < c2, let us choose µ < µ0 = (c5 + c6c
2
0)−1(c2 − c6c20). By taking

u0 = 0 ∈ D(B), T = µFnµ and T̃ = B, it is easy to see the coercive condition
in Lemma 2.5 is satisfied for µ < µ0. So, by Lemma 2.5, we have the following
conclusion:

Theorem 4.4. Under the hypotheses of Theorem 3.3, there exists at least one
solution to the discrete problem (4.1) for µ < µ0 and n = 0, 1, . . .m− 1.

In what follows, we always assume µ < µ0.
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4.2. A priori estimates. Let the functions uµ and vµ be defined as follows:

uµ(t) = un+1
µ , t ∈ (tnµ, t

n+1
µ ], uµ(0) = u0;

vµ(t) = vn+1
µ , t ∈ (tnµ, t

n+1
µ ], vµ(0) = v0.

Let v̂µ denote the linear time-interpolate function of vµ, i.e.,

v̂µ(t) = vnµ +
t− nµ
µ

(vn+1
µ − vnµ) for t ∈ (tnµ, t

n+1
µ ]; v̂µ(0) = v0.

Clearly, the time derivative of v̂µ on (tnµ, t
n+1
µ ) is 1

µ (vn+1
µ − vnµ). It follows from

Theorem 4.4 that
d

dt
v̂µ(t) +Aµ(t) + Eµ(t) + gµ(t) = fµ(t) in V ∗, for a.e. t ∈ I, (4.4)

where Aµ, Eµ(t), gµ and fµ : I 7→ V ∗ take values Anµ(un+1
µ ), E

(
µ
∑n+1
k=0 u

k
µ

)
, gn+1

µ

and fnµ , respectively for t ∈ (tnµ, t
n+1
µ ). We remark that fµ is a possible approximate

choice that converges to f in L2(I;V ∗) and satisfies ‖fµ‖L2(I;V ∗) ≤ ‖f‖L2(I;V ∗).
Multiplying the equation in (4.1) by un+1

µ , we have

1
µ
〈vn+1
µ − vnµ , un+1

µ 〉+
〈
Anµ(un+1

µ ) + E
(
µ

n+1∑
k=0

ukµ
)

+ gn+1
µ , un+1

µ

〉
= 〈fnµ , un+1

µ 〉.

Noting that (Ψ ◦ i)∗ ∈ Γ0(V ∗) and un+1
µ ∈ ∂(Ψ ◦ i)∗(vn+1

µ ), we have

(Ψ ◦ i)∗(vn+1
µ )− (Ψ ◦ i)∗(vnµ) ≤ 〈vn+1

µ − vnµ , un+1
µ 〉.

Applying this inequality to the above equation and summing it from n = 0 to
j, 0 < j ≤ m− 1, we deduce that

(Ψ ◦ i)∗(vj+1
µ ) + µ

j∑
n=0

〈
Anµ(un+1

µ ) + E
(
µ

n+1∑
k=0

ukµ
)

+ gn+1
µ , un+1

µ

〉
≤ µ

j∑
n=0

〈fnµ , un+1
µ 〉+ (Ψ ◦ i)∗(v0).

(4.5)

By (A2), (E1), (G1) and ‖fµ‖L2(I;V ∗) ≤ ‖f‖L2(I;V ∗), we deduce that

(Ψ ◦ i)∗(vj+1
µ ) + µ(c2 − c20c6 − µc5 − µc20c6)

j∑
n=0

‖un+1
µ ‖2V

≤ µ
j∑

n=0

‖un+1
µ ‖V

(
µc5

n∑
k=0

‖ukµ‖V + µc0c6

n∑
k=0

‖ukµ‖H + c0c6
)

+ ‖f‖
(
µ

j∑
n=0

‖un+1
µ ‖2V

)1/2

+ C

≤ µ
j∑

n=0

‖un+1
µ ‖V (c5 + c20c6)((n+ 1)µ)1/2

(
µ

n∑
k=0

‖ukµ‖2V
)1/2

+ c0c6µ

j∑
n=0

‖un+1
µ ‖V + ‖f‖

(
µ

j∑
n=0

‖un+1
µ ‖2V

)1/2

+ C
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≤ (c5 + c20c6)
√
T
(
µ

j∑
n=0

‖un+1
µ ‖2V

)1/2(
µ

j∑
n=0

µ

n∑
k=0

‖ukµ‖2V
)1/2

+
(
c0c6
√
T + ‖f‖

)(
µ

j∑
n=0

‖un+1
µ ‖2V

)1/2

+ C,

where the Hölder inequality and similar estimates to (4.3) are used. Here and in
what follows, C denotes a positive constant that only depends on c0, c1, . . . , c7,
‖f‖L2(I;V ∗), (Ψ ◦ i)∗(v0), and may change from line to line. Using the Young
inequality, we have

(Ψ ◦ i)∗(vj+1
µ ) + µ

j∑
n=0

‖un+1
µ ‖2V ≤ C

(
1 + µ

j∑
n=0

µ

n∑
k=0

‖ukµ‖2V
)
. (4.6)

Recall that (Ψ ◦ i)∗(v) ≥ 0,∀v ∈ V ∗. By applying the discrete Gronwall lemma, we
deduce that

‖uµ‖2L2(I;V ) = µ

m−1∑
n=0

‖un+1
µ ‖2V ≤ C. (4.7)

Taking into account (A2), we can deduce that

‖Auµ‖2L2(I;V ∗) =
m−1∑
n=0

∫ tn+1
µ

tnµ

‖A(t, un+1
µ )‖2V ∗dt ≤ C. (4.8)

‖Aµ‖2L2(I;V ∗) = µ

m−1∑
n=0

‖Anµ(un+1
µ )‖2V ∗ ≤ C. (4.9)

Moreover, from (E1) and (G1), we compute

‖Eµ‖2L2(I;V ∗) =
∫ T

0

‖Eµ(t)‖2V ∗dt = µ

m−1∑
n=0

‖E(µ
n+1∑
k=0

ukµ)‖2V ∗

≤ µ
m−1∑
n=0

(n+ 1)µc25µ
n+1∑
k=0

‖ukµ‖2V

≤ Tc25µ
m−1∑
n=0

µ

n+1∑
k=0

‖ukµ‖2V ≤ C,

(4.10)

and

‖gµ‖2L2(I;H) =
∫ T

0

‖gµ(t)‖2Hdt = µ

m−1∑
n=0

‖G(µ
n+1∑
k=0

ukµ, u
n+1
µ )‖2H

≤ 2µc26
m−1∑
n=0

(
1 + Tµ

n+1∑
k=0

‖ukµ‖2V + ‖un+1
µ ‖2V

)
≤ C.

(4.11)

Thus, from the above four inequalities and (4.4), it follows that

‖v̂′µ‖L2(I;V ∗) ≤ C. (4.12)

It follows from (4.7), (4.8) and v0
µ = v0 that fo rall µ > 0,

(Ψ ◦ i)∗(vjµ) ≤ C, j ∈ {0, 1, . . . ,m− 1}.
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Furthermore, for any w ∈ B(u) = i∗ ◦ ∂Ψ ◦ i(u) with u ∈ V , we have

(Ψ ◦ i)∗(w) = 〈w, u〉V − (Ψ ◦ i)(u) = 〈w, u〉H −Ψ(u) = Ψ∗(w).

Hence, we have Ψ∗(vµ(t)) = (Ψ ◦ i)∗(vµ(t)) ≤ C, t ∈ I. By the definition of the
conjugate functional, we have

Ψ∗(vµ(t)) ≥ 〈vµ(t), u〉 −Ψ(u) ∀u ∈ H, t ∈ I.

Choosing u = ‖vµ(t)‖−1
H vµ(t), we have ‖u‖H = 1 and

Ψ∗(vµ(t)) ≥ ‖vµ(t)‖H −Ψ(u).

Consequently,

‖vµ(t)‖H ≤ Ψ∗(vµ(t)) + Ψ(u)

≤ Ψ∗(vµ(t)) + 〈ξ, u〉 (ξ ∈ ∂Ψ(u),Ψ(0) = 0)

≤ Ψ∗(vµ(t)) + c3‖u‖H(1 + ‖u‖H),

which implies
‖vµ‖L∞(I;H) ≤ C, ‖v̂µ‖C(0,T ;H) ≤ C. (4.13)

5. Convergence and limit procedure

By the a priori estimates(4.7)-(4.12), (4.13), there exist u ∈ L2(I;V ), v ∈
L∞(I;H) ∩H1(I;V ∗) and g ∈ L2(I;H) such that

uµ → u weakly in L2(I;V ) (5.1)

Aµ, Auµ → ξ weakly in L2(I;V ∗) (5.2)

Eµ → η weakly in L2(I;V ∗) (5.3)

gµ → g weakly in L2(I;H) (5.4)

v̂′µ → v′ weakly in L2(I;V ∗) (5.5)

vµ, v̂µ → v weakly star in L∞(I;H), (5.6)

by possibly taking subsequences. We remark that (5.2) follows from (4.8), (4.9)
and the fact that limµ→0〈Aµ−Auµ, v〉 = 0 for all v ∈ L2(I;V ); (5.6) is followed by
(4.13), the density embedding of V into H and the fact that

‖v̂µ − vµ‖2L2(I;V ∗) ≤
1
3
µ2
∥∥v̂′µ∥∥2

L2(I;V ∗)
−→ 0, as µ→ 0. (5.7)

In view of (5.1)-(5.5), passing to the limit in (4.4) we have

v′(t) + ξ(t) + η(t) + g(t) = f(t) in V ∗ a.e. t ∈ I. (5.8)

Note that v̂µ → v in L2(I;V ∗) due to (5.6), (5.6) and the compact embedding of
H ⊂ V ∗. On the other hand, we shall show that uµ converges to u in L2(I;H) in
the subsequent Theorem 5.1.

It follows from (5.7) that vµ → v in L2(I;V ∗) as µ→ 0. Observing that B is a
maximal monotone operator from L2(I;V ) to L2(I;V ∗), from (5.1) and vµ ∈ B(uµ),
we conclude that v ∈ B(u), i.e., v(t) ∈ B(u(t)) a.e. t ∈ I.

By its construction, v̂µ ∈ C(0, T ;V ∗) for any µ > 0. Owing to v ∈W 1,q(0, T ;V ∗),
we may assume v ∈ C(0, T ;V ∗) by modifying the values on a set of null measure.
Since v̂µ → v in L2(I;V ∗), we obtain that passing to a subsequence, v̂µ(t) → v(t)
in V ∗ for all t ∈ I. Therefore, v̂µ(0) = v0 leads to v(0) = v0.
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Next, we aim to show that η(t) = E(K(u)(t)) a.e. t ∈ I. For convenience,
we define Ẽµ, Ẽ0 ∈ L2(I;V ∗) as Ẽµ(t) = E(K(uµ)(t)) and Ẽ0(t) = E(K(u)(t))
respectively, a.e. t ∈ I. We check that

‖Eµ − Ẽµ‖2L2(I;V ∗)

=
m−1∑
n=0

∫ tn+1
µ

tnµ

∥∥E(µ
n+1∑
k=0

ukµ)− E(µ
n∑
k=0

ukµ + (t− nµ)un+1
µ )

∥∥2

V ∗
dt

≤
m−1∑
n=0

∫ tn+1
µ

tnµ

µ2‖E(un+1
µ )‖2V ∗dt

≤ µ2c25µ

m−1∑
n=0

‖un+1
µ )‖2V ≤ µ2C.

(5.9)

Since uµ → u weakly in L2(I;V ), we have Ẽµ(t) = K(uµ)(t) → Ẽ0(t) = K(u)(t)
weakly in V ∗ for all t ∈ I. On the other hand,∫ T

0

‖Ẽµ(t)‖2V ∗dt =
∫ T

0

‖E(K(uµ)(t))‖2V ∗dt ≤ 2c25T
(
‖u0‖2V + ‖uµ‖2L2(I;V )

)
.

Thus, we can apply the dominated convergence result to get Ẽµ → Ẽ0 weakly in
L2(I;V ∗), which, together with (5.3), (5.9), implies η = Ẽ0, i.e., η(t) = E(K(u)(t))
a.e. t ∈ I.

In the sequel, a compact argument with respect to uµ in L2(I;H) is developed
with the aid of compactness conclusion in Simon [33].

Theorem 5.1. Suppose that {uµ}µ>0 is generated by (4.1) under the assumptions
of Theorem 3.3. Then it is relatively compact in L2(I;H).

Proof. First of all, {uµ}µ>0 is bounded in L2(I;V ) from (4.7). Since V ⊂ H
compactly, according to [33, Theorem 3], to prove this theorem it suffices to show
that∫ T−h

0

‖uµ(t+ h)− uµ(t)‖2Hdt→ 0, as h→ 0, uniformly for µ > 0. (5.10)

We first show ∫ T−h

0

〈vµ(t+ h)− vµ(t), uµ(t+ h)− uµ(t)〉dt ≤ Ch1/2. (5.11)

Actually, for all h > 0, we can assume that h = kµ + τ , k ∈ {0, 1, . . . ,m − 1},
0 ≤ τ < µ. We compute∫ T−h

0

〈vµ(t+ h)− vµ(t), uµ(t+ h)− uµ(t)〉 dt

=
m−k−1∑
n=0

∫ (n+1)µ−τ

nµ

〈vµ(t+ h)− vµ(t), uµ(t+ h)− uµ(t)〉 dt

+
m−k−1∑
n=1

∫ nµ

nµ−τ
〈vµ(t+ h)− vµ(t), uµ(t+ h)− uµ(t)〉 dt

= (µ− τ)
m−k−1∑
n=0

〈
vn+k+1
µ − vn+1

µ , un+k+1
µ − un+1

µ

〉
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+ τ

m−k−1∑
n=1

〈
vn+k+1
µ − vnµ , un+k+1

µ − unµ
〉
.

On the other hand, for k ∈ {0, 1, . . . ,m− 1} and n ∈ {0, 1, . . . ,m− k − 1},

‖vn+k+1
µ − vn+1

µ ‖V ∗ ≤ µ
k∑
l=1

‖
vl+n+1
µ − vl+nµ

µ
‖V ∗

= µ

k∑
l=1

‖f l+nµ −Al+nµ (ul+n+1
µ )− E

(
µ

l+n+1∑
j=0

ujµ
)
− gl+n+1

µ ‖V ∗

≤
(
µ

k∑
l=1

12
)1/2 (

‖fµ −Aµ − Eµ − gµ‖L2(I;V ∗)

)
≤ C(kµ)1/2.

Similar computation gives

‖vn+k+1
µ − vnµ‖V ∗ ≤ C

(
kµ
)1/2 ≤ Ch1/2.

Consequently, we deduce that∫ T−h

0

〈vµ(t+ h)− vµ(t), uµ(t+ h)− uµ(t)〉 dt

≤ Ch1/2
(
(µ− τ)

m−k−1∑
n=0

‖un+k+1
µ − un+1

µ ‖V + τ

m−k−1∑
n=1

‖un+k+1
µ − unµ‖V

)
≤ Ch1/2

(
2µ

m−1∑
n=0

‖un+1
µ ‖V

)
.

Thus we obtain (5.11) from (4.7) and Hölder inequality. Recalling that vµ(s) ∈
B(uµ(s)), s ∈ I, we conclude from (5.11) and (B2) that∫ T−h

0

‖uµ(t+ h)− uµ(t)‖2Hdt ≤ Ch
1
2 , ∀µ > 0, ∀h ∈ I,

which implies (5.10). This completes the proof. �

We proceed to prove Theorem 3.3. Taking j = m− 1 in (4.5), and noticing

〈Aµ, uµ〉 =
m−1∑
n=0

∫ tn+1
µ

tnµ

〈Anµ(un+1
µ ), un+1

µ 〉V dt

= µ

m−1∑
n=0

〈Anµ(un+1
µ ), un+1

µ 〉V

=
m−1∑
n=0

∫ tn+1
µ

tnµ

〈A(t, un+1
µ ), un+1

µ 〉V dt

= 〈Auµ, uµ〉,

we have

(Ψ ◦ i)∗(vµ(T )) + 〈Auµ + Eµ + gµ, uµ〉 ≤ 〈fµ, uµ〉+ (Ψ ◦ i)∗(v0).
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In view of (5.1)-(5.5) and fµ → f in Lq(0, T ;V ∗), we further deduce that

lim sup
µ→0

〈Auµ + Eµ + gµ, uµ − u〉

= lim sup
µ→0

(
〈fµ, uµ〉 − (Ψ ◦ i)∗(vµ(T ))− 〈Auµ + Eµ + gµ, u〉

)
+ (Ψ ◦ i)∗(v0)

= 〈f − ξ − η − g, u〉+ (Ψ ◦ i)∗(v0)− lim inf
µ→0

(Ψ ◦ i)∗(vµ(T )).

(5.12)

On the other hand, multiplying by u(t) in (5.8) and integrating over I, we have∫ T

0

〈dv(t)
dt

, u(t)〉dt = 〈f − ξ − η − g, u〉. (5.13)

Since u(t) ∈ ∂(Ψ ◦ i)∗(v(t)), a.e. t ∈ I, we conclude from the chain rule (see e.g.,
[30, Lemma 1] ) that

d

dt
(Ψ ◦ i)∗(v(t)) = 〈dv(t)

dt
, u(t)〉, a.e. t ∈ I.

Integrating over I and using (5.13), we have

(Ψ ◦ i)∗(v(T ))− (Ψ ◦ i)∗(v0) = 〈f − ξ − g, u〉. (5.14)

Observing that vµ(T )→ v(T ) weakly in V ∗, we have

lim inf
µ→0

(Ψ ◦ i)∗(vµ(T )) ≥ (Ψ ◦ i)∗(v(T )). (5.15)

Finally, from (5.12), (5.14) and (5.15), we deduce that

lim sup
µ→0

〈Auµ + Eµ + gµ, uµ − u〉 ≤ 0. (5.16)

On the other hand, we have

〈Eµ, uµ − u〉 = 〈Eµ − Ẽµ, uµ − u〉+ 〈Ẽµ − η, uµ − u〉+ 〈η, uµ − u〉.
Note that

〈Ẽµ − η, uµ − u〉

=
∫ T

0

〈E(K(uµ)(t))− E(K(u)(t)), uµ(t)− u(t)〉dt

≥
∫ T

0

〈E(K(uµ)(t)−K(u)(t)),
d

dt
(K(uµ)(t)−K(u)(t))〉dt

=
1
2

∫ T

0

d

dt
〈E(K(uµ)(t))− E(K(u)(t)),K(uµ)(t)−K(u)(t)〉dt

= 〈E(K(uµ)(T ))− E(K(u)(T )),K(uµ)(T )−K(u)(T )〉 ≥ 0,

So, this inequality, together with (5.9) and uµ → u weakly in L2(I;V ) implies

lim sup
µ→0

〈Eµ, uµ − u〉 ≥ 0. (5.17)

It follows from (5.4) and uµ → u in L2(I;H) that

lim sup
µ→0

〈gµ, uµ − u〉 = lim
µ→0
〈gµ, uµ − u〉L2(I;H) = 0. (5.18)

Hence, we conclude from (5.16), (5.17) and (5.18) that

lim sup
µ→0

〈Auµ, uµ − u〉 ≤ 0. (5.19)
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Recalling that (5.2) and uµ → u in L2(I;H), we have Au = ξ and limµ→0〈Auµ, uµ−
u〉 = 0 by applying Proposition 4.1.

To finish the proof, we still need to show that g(t) ∈ G(K(u)(t), u(t)) a.e. t ∈ I.
Define K̃µ ∈ L2(I;V ) as K̃µ(t) = µ

∑n+1
k=0 u

k
µ, t ∈ (tnµ, t

n+1
µ ]; K̃µ(0) = z0. Then, we

have

‖K̃µ −K(u)‖2L2(I;H) ≤ 2
(
‖K̃µ −K(uµ)‖2L2(I;H) + ‖K(uµ)−K(u)‖2L2(I;H)

)
≤ 2

m−1∑
n=0

∫ tn+1
µ

tnµ

∥∥µ n+1∑
k=0

ukµ −
(
µ

n∑
k=0

ukµ + (t− nµ)un+1
µ

)∥∥2

H
dt

+ 2
∫ T

0

∥∥∫ t

0

(uµ(s)− u(s))ds
∥∥2

H
dt

≤ 2µ
m−1∑
n=0

µ2‖un+1
µ ‖2H + 2T

( ∫ T

0

‖uµ(s)− u(s)‖Hds
)2

≤ 2µ2c20µ

m−1∑
n=0

‖un+1
µ ‖2V + 2T 3

∫ T

0

‖uµ(s)− u(s)‖2Hds

= 2µ2c20‖uµ‖2L2(I;V ) + 2T 3‖uµ − u‖2L2(I;H).

It implies K̃µ → K(u) in L2(I;H). Thus we have K̃µ(t)→ K(u)(t) in H a.e. t ∈ I
by possibly taking a subsequence. Recall that gµ → g weakly in L2(I;H), gµ(t) ∈
G(K̃µ(t), uµ(t)), and uµ(t)→ u(t) in H a.e. t ∈ I by possibly taking a subsequence.
Besides, by (G1)–(G2), it is easy to show thatG is upper semicontinuous fromH×H
to Hw. Consequently, by Lemma 2.4, we have g(t) ∈ G(K(u)(t), u(t)) a.e. t ∈ I.
So, we finally get

d

dt
v(t) +A(t, u(t)) + E(u(t)) + g(t) = f(t) in V ∗ a.e. t ∈ I,

v(0) = v0, v(t) ∈ B(u(t)), g(t) ∈ G(K(u)(t), u(t)) a.e. t ∈ I.
(5.20)

This completes the proof of Theorem 3.3.

Remark 5.2. Suppose that u, v, g are any weak accumulation points of uµ, vµ, gµ
in L2(I;V ), L∞(0, T ;H) and L2(I;H), respectively, then, the triple (u, v, g) is a
solution to (3.1).

6. Hemivariational inequality (EHI)

We turn our attention to the second order nonlinear evolution inclusion (1.2)
and the evolutionary hemivariational inequality problem (EHI).

In view of Theorem 3.3, the nonlinear evolution inclusion (3.1) admits at least one
solution (u, v, g), where u ∈ L2(I;V ), v ∈ L∞(0, T ;H) ∩ H1(I;V ∗), g ∈ L2(I;H)
and (3.2) holds. Since u(t) = z′(t),K(u)(t) = z0+

∫ t
0
u(s)ds, it is easy to deduce that

the triple (z, v, g) satisfies the conditions in definition 3.1 by taking z(t) = K(u)(t)
for every t ∈ I. Therefore, (z, v, g) is a solution to (1.2) which completes the proof
of Theorem 3.2.

Assume that Ω is an open and bounded subset of RN and V = H1
0 (Ω), H =

L2(Ω), V ∗ = H−1(Ω). In the following, the hypotheses on j are given to investigate
the weak solution of the evolutionary hemivariational inequality problems (EHI).

Let j : Ω× R× R→ R be a function such that
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(J1) j(·, ξ, η) is measurable for all ξ, η ∈ R, and j(·, 0, 0) ∈ L1(Ω);
(J2) j(x, ·, ·) is locally Lipschitz continuous on R× R for all x ∈ Ω;
(J3) there exists a constant c7 such that |∂j(x, ξ1, ξ2)|R×R ≤ c7(1 + |ξ1| + |ξ2|)

for all x ∈ Ω.
Note that the function j, in particular, can take the form of j(x, ξ, η) = j1(x, ξ) +
j2(x, η), where both j1, j2 : Ω × R → R are locally Lipschitz continuous functions.
Let us introduce integral function J : H ×H 7→ R, defined by

J(u, v) =
∫

Ω

j(x, u(x), v(x))dx, for u, v ∈ H.

Observing that J is well defined and finite at (0, 0) by (j1) and (j2). Thus, by
conditions (J1)-(J3) and [7, Theorem 2.7.5], one has J is uniformly Lipschitz con-
tinuous on each bounded subset of H × H. The Clarke’s generalized gradient
∂J : H ×H → 2H×H is well defined and satisfies

∂J(u, v) ⊂
∫

Ω

∂j(x, u(x), v(x))dx, for u, v ∈ H.

Moreover, the Clarke’s generalized direction derivative of J satisfies

J◦(u, v; z, w) ≤
∫

Ω

j◦(x, u(x), v(x); z(x), w(x))dx, ∀z, w ∈ H. (6.1)

We define the multivalued operator G : H ×H → 2H as

G(u, v) :=
{
η1 + η2 : (η1, η2) ∈ ∂J(u, v)

}
, ∀u, v ∈ H. (6.2)

Thus, by (J3), (G1) is satisfied with c6 depending on |Ω| and c7.

Theorem 6.1. Under hypotheses (A1)–(A3), (B1)–(B2), (E1)–(E2), (J1)–(J3) and
(H0)–(H1), there exist z ∈ H1(I;V ), v ∈ L∞(I;H) ∩ H1(I;V ∗) with v(0) = v0,
z(0) = z0 such that the inequality (1.1) holds and v(t) ∈ B(z′(t)) for a.e. t ∈ I.

Note that since B is a nonlinear and multi-valued operator, this theorem gener-
alizes existence results in [18].

Proof. Let the multivalued function G be defined as (6.2). We check the assumption
(G1)–(G2). First of all, G takes nonempty, convex and closed values since the
Clarke’s generalized gradient is nonempty convex and closed. Since (G1) has been
proved by (J3), it remains to show (G2). It suffices to show that η ∈ G(u, v)
whenever the sequences un → u, vn → v in H and ηn → η weakly in H as n→∞
with ηn ∈ G(un, vn). In fact, by ηn ∈ G(un, vn), there exist sequences η1n and
η2n with ηn = η1n + η2n and (η1n, η2n) ∈ ∂J(un, vn) for each n. Since (η1n, η2n) is
bounded, up to a subsequence, we may assume η1n → η1, η2n → η2 weakly in H.
Consequently, η1n+η2n → η1 +η2 weakly in H. On the other hand, it follows from
the weak closeness properties of the Clarke’s generalized gradient [7, Proposition
2.1.5 (b)], we have (η1, η2) ∈ ∂J(u, v). Thus, we have η = η1 + η2 ∈ G(u, v), i.e.,
the graph of G is sequentially closed in H ×H ×Hw.

Therefore, by Theorem 3.2, there exists a triple (z, v, g) with z ∈ H1(I;V ),
v ∈ L∞(I;H) ∩H1(I;V ∗) and g ∈ L2(I;H) such that

v′(t) +A(t, z′(t)) + E(z(t)) + g(t) = f(t) in V ∗ a.e. t ∈ I, (6.3)

where g(t) ∈ G(z(t), z′(t)), v(t) ∈ B(z′(t)), a.e. t ∈ I and z(0) = z0, v(0) = v0.
It follows from the definition of G(·, ·), there exist g1, g2 ∈ L2(I;H) with g(t) =
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g1(t) + g2(t) and (g1(t), g2(t)) ∈ ∂J(z(t), z′(t)) for a.e. t ∈ I. Consequently, for all
w ∈ V and a.e. t ∈ I, one has〈

(g1(t), g2(t)), (w,w)
〉
H×H ≤ J

0(z(t), z′(t);w,w)

≤
∫

Ω

j◦(x, z(x, t), z′(x, t);w(x), w(x))dx,
(6.4)

by the definition of Clarke generalized gradient and (6.1). Furthermore, since〈
g(t), w

〉
V

=
〈
g1(t) + g2(t), w

〉
H

=
〈
(g1(t), g2(t)), (w,w)

〉
H×H

we have 〈
g(t), w

〉
V
≤
∫

Ω

j◦(x, z(x, t), z′(x, t);w(x), w(x))dx. (6.5)

Finally, multiplying by w ∈ V on both sides of equation in (6.3), then hemivari-
ational inequality (1.1) follows from (6.5) immediately. We complete the proof of
Theorem 6.1. �
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