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OSCILLATION OF SOLUTIONS TO FOURTH-ORDER
TRINOMIAL DELAY DIFFERENTIAL EQUATIONS

JOZEF DŽURINA, BLANKA BACULÍKOVÁ, IRENA JADLOVSKÁ

Abstract. The objective of this article is to study the oscillation properties

of the solutions to the fourth-order linear trinomial delay differential equation

y(4)(t) + p(t)y′(t) + q(t)y(τ(t)) = 0.

Applying suitable comparison principles, we present new criteria for oscillation.
In contrast with the existing results, we establish oscillation of all solutions,

and essentially simplify the examination process for oscillation. An example
is included to illustrate the importance of results obtained.

1. Introduction

We consider the trinomial fourth-order differential equation with delay argument

y(4)(t) + p(t)y′(t) + q(t)y(τ(t)) = 0, (1.1)

under the assumptions
(H1) p(t), q(t) ∈ C([t0,∞)), p(t), q(t) are positive, τ(t) ∈ C1([t0,∞)), τ ′(t) > 0,

τ(t) ≤ t, limt→∞ τ(t) =∞.
By a solution we mean a function y(t) ∈ C4([Ty,∞)), Ty ≥ t0, which satis-

fies (1.1) on [Ty,∞). We consider only those solutions y(t) of (1.1) which satisfy
sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We assume that (1.1) possesses such a
solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on
[Ty,∞) and otherwise it is called to be nonoscillatory. Equation (1.1) is said to be
oscillatory if all its solutions are oscillatory.

The investigation of linear fourth-order differential equations, firstly originated
with the vibrating rod problem of mathematical physics [5], is generally of great
practical importance. Such equations form part of an immense collection of higher-
order differential equations and are encountered in various fields of science and
engineering as the more basic mathematical models. For instance, it is well known
that the problem of beam deflection in linear theory of elasticity is described by
classical linear fourth order equation

y(4) + q(t)y = 0,
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where y(t) approximates the shape of a beam, deflected from the equilibrium due
to some external forces. Another particularly interesting model of physiological
systems represented by fourth order differential equations with time delay concerns
the oscillatory movements of muscles which can arise due to the interaction of a
muscle with its inertial load [20].

In view of the above, the study on oscillations of the fourth-order differential
equations has received considerable portion of attention and some profound re-
sults have been obtained. By establishing comparison theorems of Sturm’s type,
Leighton and Nehari [18], Howard [10] studied extensively the nature and behavior
of solutions of a self-adjoin linear fourth-order differential equations of the form

(r(t)y′′)′′ ± q(t)y = 0

and their results obtained were fundamental in the next research.
Thereafter, the problem of obtaining sufficient conditions for oscillatory and

non-oscillatory properties of different classes of two-term fourth-order differential
equations, including, for instance, delay and neutral delay dynamic equations on
time scales, partial differential equations and difference equations has been and still
is receiving intensive attention. We refer the reader to [1] - [22] and the references
cited therein.

The problem of the oscillation of trinomial differential equations has been widely
studied by many authors who have provided various techniques especially for lower
order. The motivation for this work was twofold: a continuation of the pioneering
work of Hou and Chengmin [11] and on the other hand, the thought of a missing
analogy with investigation of third order trinomial differential equations taking
advantage of existing results, which will be briefly stated.

A systematic study of asymptotic behavior of solutions of the third-order differ-
ential equation with damping of the form

y′′′(t) + p(t)y′(t) + q(t)y(t) = 0,

has been made by [9], followed by [6, 7, 16, 12], to mention just a few.
The articles [2, 3, 21] deal with the third order delay nonlinear differential equa-

tion of the form

(r2(t)(r1(t)y′(t))′)′ + p(t)y′(t) + q(t)f(y(τ(t))) = 0 (1.2)

Using a generalized Riccati transformation and integral averaging technique, au-
thors establish some sufficient conditions which ensure that any solution of oscil-
lates or converges to zero. The another oscillation criteria have been obtained by
establishing a useful comparison principle with either first or second order delay
differential inequality, given in [1]. The key assumption in the above papers is
the existence of a positive solution of the auxiliary second-order linear differential
equation

(r2(t)v′(t))′ +
p(t)
r1(t)

v(t) = 0. (1.3)

Recently, the present authors have established in [4] new comparison theorems that
reduce examination of the properties of the partial case of equation (1.2); that is,

y′′′(t) + p(t)y′(t) + q(t)y(τ(t)) = 0 (1.4)
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to the study of the properties of associated first order delay differential equations.
This is possible by rewriting equation into the binomial form(

v2(t)
( 1
v(t)

y′(t)
)′)′ + v(t)q(t)y(τ(t)) = 0,

making use of the solution (1.3). It is worth to note that another approaches exist,
for example, in [8] it is generalized Lazer’s result [16] and established new criteria
depending on the sign of particular functional without requirement of an additional
information of related second-order equation. Contrary to most known results, we
stress that the technique used in the paper [4] has established oscillation of all
solutions. The equation (1.4) can be viewed either as the lowest possible prototype
of a higher-order trinomial differential equation

y(n)(t) + p(t)y(n−2)(t) + q(t)y(τ(t)) = 0, (1.5)

or
y(n)(t) + p(t)y′(t) + q(t)y(τ(t)) = 0 (1.6)

While for equations of the first type the same approach holds, there is a few lit-
erature concerning the asymptotic and oscillatory properties of equations of the
second type.

The authors in [11] studied equation (1.1) by means of Riccati transformation
and presented conditions under which every nonoscillatory solution tends to zero
as t → ∞. They also indicated an interesting application in column-beam theory,
where the middle term is incorporated to control the slope of a beam. Their crucial
theorem ensures a constant sign first-derivative y′(t) when an auxiliary third-order
differential equation

z′′′(t) + p(t)z(t) = 0 (1.7)
has increasing solution.

In this article, we are dealing with the oscillation and asymptotic behavior of
the solutions of the fourth-order delay trinomial differential equation (1.1). Es-
tablishing oscillatory criteria for fourth-order trinomial differential equations is far
from easy, because the presence of the middle term p(t)y′(t) causes the structure of
possible nonoscillatory solutions to be unclear. Our technique permits us to rewrite
trinomial equations as binomial differential equations with quasiderivative.

We offer a new approach, which uses a decreasing solution of an auxiliary dif-
ferential equation (1.7) (which always exists) and a positive solution of related
second-order differential equation (we provide condition under which it exists) in
order to obtain its associated binomial form. Furthermore, by comparison with
a couple of first-order delay differential equations, we establish oscillation of all
solutions of (1.1).

2. Preliminary results

Before giving the main results, we will state Lemmas, which permit us to rewrite
the studied trinomial equation (1.1) into the binomial equation.

Consider the operator
Ly = y(4)(t) + p(t)y′(t).

Lemma 2.1. Let z(t) be a positive solution of

z′′′(t) + p(t)z(t) = 0. (2.1)
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Then

Ly =
[ 1
z(t)

(
z2(t)

(y′(t)
z(t)

)′)′]′ + z′′(t)
(y′(t)
z(t)

)′
. (2.2)

Proof. Simple computations show that the right hand side of (2.2) equals

[ 1
z(t)

(
y′′(t)z(t)− y′(t)z′(t)

)′]′ + z′′(t)
(y′(t)
z(t)

)′
=
[
y′′′(t)− y′(t)z′′(t)

z(t)
]′ + z′′(t)

(y′(t)
z(t)

)′
= y(4)(t)− y′(t)z

′′′(t)
z(t)

,

(2.3)

which in view of (2.1) leads to

Ly = y(4)(t) + p(t)y′(t) =
[ 1
z(t)

(
z2(t)

(y′(t)
z(t)

)′)′]′ + z′′(t)
(y′(t)
z(t)

)′
.

The proof is complete. �

Remark 2.2. It follows from Chanturia and Kiguradze’s result [13], that (2.1)
always possesses a positive decreasing solution, so-called Kneser solution.

We recall the another result of Chanturia and Kiguradze [13], that will be useful
in the sequel.

Lemma 2.3. Assume that

lim sup
t→∞

t3p(t) <
2

3
√

3
, (2.4)

then all solutions of (2.1) are non-oscillatory.

It is important to note that the above transformation does not reduce (1.1) into
the binomial form, as desired. However, it permits us to decrement a difference in
the derivative order between the first and the second term of (1.1). In other words,
(1.1), which is exactly a case of (1.6), turns out to be a more general version of the
second higher-order mentioned prototype (1.5).

Now, consider an another operator

My =
1
v(t)

[v2(t)
z(t)

(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′]′

.

Lemma 2.4. Let z(t) be a positive decreasing solution of (2.1) and let the equation

(
1
z(t)

v′(t))′ +
z′′(t)
z2(t)

v(t) = 0 (2.5)

possess a positive solution. Then

Ly =
1
v(t)

[v2(t)
z(t)

(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′]′

. (2.6)
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Proof. We shall show, that operators My and Ly are equivalent. It is easy to see
that:

My =
1
v(t)

[
− v′(t)
z(t)

z2(t)
( 1
z(t)

y′(t)
)′ + v(t)

1
z(t)

(
z2(t)

( 1
z(t)

y′(t)
)′)′]′

=
1
v(t)

[
− (

v′(t)
z(t)

)′z2(t)
( 1
z(t)

y′(t)
)′ − v′(t)

z(t)

(
z2(t)

( 1
z(t)

y′(t)
)′)′

+ v′(t)
1
z(t)

(z2(t)
( 1
z(t)

y′(t)
)′)′ + v(t)

( 1
z(t)

(
z2(t)

( 1
z(t)

y′(t)
)′)′)′]

=
( 1
z(t)

(
z2(t)

( 1
z(t)

y′(t)
)′)′)′ − z2(t)

v(t)
(
v′(t)
z(t)

)′
( 1
z(t)

y′(t)
)′
.

(2.7)

Applying (2.2) from Lemma 2.1, we obtain

My = y(4)(t) + p(t)y′(t)− z′′(t)
( 1
z(t)

y′(t)
)′ − z2(t)

v(t)
(
v′(t)
z(t)

)′
( 1
z(t)

y′(t)
)

= y(4)(t) + p(t)y′(t)−
( 1
z(t)

y′(t)
)′ z2(t)
v(t)

[
(

1
z(t)

v′(t))′ +
z′′(t)
z2(t)

v(t)
]
.

Since v(t) is a solution of (2.5), the previous equality yields

My = y(4)(t) + p(t)y′(t) = Ly.

The proof is complete. �

Lemmas 2.1 and 3.1 permit us to rewrite studied trinomial equation (1.1) in the
binomial equation[v2(t)

z(t)

(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′]′ + v(t)q(t)y(τ(t)) = 0. (2.8)

As already stated, principal theorems in this paper will relate properties of solu-
tions of the fourth order delay differential equation (1.1) to those of solutions of a
couple of auxiliary linear ordinary differential equations of the third and the second
order. We need to explore conditions that guarantee existence of positive solutions
to the auxiliary equation (2.5).

Moreover, for our next purposes, it is desirable to have (2.8) in a canonical form∫ ∞
t0

z(t)
v2(t)

dt =∞, (2.9)∫ ∞
t0

v(t)
z2(t)

dt =∞, (2.10)∫ ∞
t0

z(t) dt =∞, (2.11)

since properties of canonical equations are generally nicely explored.
We will assume throughout the remainder of the paper that (2.11) holds. In the

next result we crack the problem of the existence of positive solution for (2.5).

Lemma 2.5. Assume that all solutions of (2.1) are non-oscillatory, then (2.5)
possesses a positive solution.
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Proof. It is clear that all solutions of (2.5) are either oscillatory or non-oscillatory.
We admit that (2.5) has an oscillatory solution v(t). Then v(t) also satisfies

−z′(t)v′(t) + z(t)v′′(t) + z′′(t)v(t) = 0.

Differentiating the last equality, one can see that

z(t)v′′′(t) + z′′′(t)v(t) = 0.

But (2.1) implies that z′′′(t)/z(t) = −p(t). Therefore, v(t) is the oscillatory solution
of the differential equation

v′′′(t)− p(t)v(t) = 0. (2.12)

On the other hand, Chanturia and Kiguradze [13] have shown that all solutions of
(2.1) are nonoscillatory if and only if all solutions of (2.12) so does. This contradicts
to oscillation of v(t) and we conclude that all solutions of (2.5) are non-oscillatory.

�

Combining Lemma 2.3 and 2.5, we get easily verifiable criterion for (2.5) to be
non-oscillatory.

Corollary 2.6. Assume that (2.4) hold. Then (2.5) possesses a positive solution.

Now, we show that under assumption (2.4), the conditions (2.9) and (2.10) are
always satisfied.

Lemma 2.7. Let (2.4) hold. Then (2.5) always has a solution v(t) such that (2.9)
and (2.10) are satisfied.

Proof. The existence of a positive solution v(t) of (2.5) follows from Corollary 2.6.
Moreover, the monotonicity properties of v(t) and z(t) implies that 0 < z(t) < c1
and v(t) > c2 > 0. Thus (2.10) is satisfied. On the other hand, If v(t) does not
satisfy (2.9); i.e., ∫ ∞ z(s)

v2(s)
ds <∞,

then it is easy to see that v∗(t) given by

v∗(t) = v(t)
∫ ∞
t

z(s)
v2(s)

ds (2.13)

satisfies ( 1
z(t)

v′∗(t)
)′ =

( 1
z(t)

v′(t)
)′ ∫ ∞

t

z(s)
v2(s)

ds

= −z
′′(t)
z2(t)

v(t)
∫ ∞
t

z(s)
v2(s)

ds = −z
′′(t)
z2(t)

v∗(t).

Thus v∗(t) is another positive solution of (2.5). Moreover, v∗(t) meets (2.9) by now.
To see this, let us denote

V(t) =
∫ ∞
t

z(s)
v2(s)

ds,

then limt→∞ V(t) = 0 and∫ ∞
t0

z(t)
v2
∗(t)

dt = −
∫ ∞
t0

V ′(t)
V2(t)

dt = lim
t→∞

(
1
V(t)

− 1
V(t0)

) =∞.

�
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An immediate consequence of the above reasoning is the following result.

Corollary 2.8. Let (2.11) hold. Assume that (2.4) is fulfilled, then the trinomial
equation (1.1) can always be rewritten in its binomial form (2.8) and what is more,
(2.8) is in the canonical form.

3. Oscillation of (1.1)

Now, we are ready to study the properties of (1.1) with the help of (2.8). Without
loss of generality, we can consider only with the positive solutions of (2.8). The
following result is a modification of Kiguradze’s lemma [13].

Lemma 3.1. Let (H2) hold. Assume that y(t) is an eventually positive solution of

(2.8), then
[
v2(t)
z(t)

(
z2(t)
v(t)

(
1
z(t)y

′(t)
)′)′]′

< 0 and, moreover, either

y(t) ∈ N1 ⇐⇒ y′(t) > 0,
( 1
z(t)

y′(t)
)′
< 0,

(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′

> 0

or

y(t) ∈ N3 ⇐⇒ y′(t) > 0,
( 1
z(t)

y′(t)
)′
> 0,

(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′

> 0.

Consequently, assuming (H2), the set N of all positive solutions of (1.1) has the
decomposition

N = N1 ∪N3.

To obtain oscillation of studied equation (1.1), we need to eliminate booth cases of
possible non-oscillatory solutions.

Let us denote

Q1(t) =
( v(t)
z2(t)

∫ τ(t)

t1

z(s) ds
)(∫ ∞

t

z(u)
v2(u)

∫ ∞
u

v(s)q(s) dsdu
)

and

Q2(t) = v(t)q(t)
∫ τ(t)

t1

z(s1)
∫ s1

t1

v(u)
z2(u)

∫ u

t1

z(s)
v2(s)

dsduds1.

Theorem 3.2. Let (H2) hold. Assume that both first-order delay differential equa-
tions

x′(t) +Q1(t)x(τ(t)) = 0 (3.1)
and

x′(t) +Q2(t)x(τ(t)) = 0. (3.2)
are oscillatory. Then (1.1) is oscillatory.

Proof. Assume that y(t) is an eventually positive solution of (1.1). Then y(t) obeys
also (2.8). It follows from Lemma 3.1 that either y(t) ∈ N1 or y(t) ∈ N3. At first,
we admit that y(t) ∈ N1. Noting that 1

z(t)y
′(t) is decreasing, we see that

y(t) ≥
∫ t

t1

z(u)
y′(u)
z(u)

du ≥ y′(t)
z(t)

∫ t

t1

z(u) du. (3.3)

Integrating (2.8) from t to ∞, we have

v2(t)
z(t)

(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′ ≥ ∫ ∞

t

v(s)q(s)y(τ(s)) ds. (3.4)
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Taking into account that y(τ(t)) is increasing, the last inequality yields(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′ ≥ y(τ(t))

z(t)
v2(t)

∫ ∞
t

v(s)q(s) ds. (3.5)

Integrating once more, we are led to

−
( 1
z(t)

y′(t)
)′ ≥ y(τ(t))

v(t)
z2(t)

∫ ∞
t

z(u)
v2(u)

∫ ∞
u

v(s)q(s) dsdu. (3.6)

Combining the last inequality with (2.3), one gets

−
( 1
z(t)

y′(t)
)′ ≥ 1

z(τ(t))
y′(τ(t))Q1(t). (3.7)

Thus, the function x(t) = y′(t)
z(t) is positive a solution of the differential inequality

x′(t) +Q1(t)x(τ(t)) ≤ 0.

Hence, by Philos theorem [19], we conclude that the corresponding differential
equation (3.1) also has a positive solution, which contradicts to assumptions of the
theorem.

Now, we shall assume that y(t) ∈ N3. Since v2(t)
z(t) ( z

2(t)
v(t)

(
1
z(t)y

′(t)
)′)′ is decreasing,

we are led to
z2(t)
v(t)

( 1
z(t)

y′(t)
)′ ≥ ∫ t

t1

z(s)
v2(s)

v2(s)
z(s)

(z2(s)
v(s)

( 1
z(s)

y′(s)
)′)′

du

≥ v2(t)
z(t)

(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′ ∫ t

t1

z(s)
v2(s)

ds.

Integrating the above inequality, one can verify that

y′(t) ≥ z(t)v
2(t)
z(t)

(z2(t)
v(t)

( 1
z(t)

y′(t)
)′)′ ∫ t

t1

v(u)
z2(u)

∫ t

t1

z(s)
v2(s)

dsdu.

Integrating once more, we see that x(t) = v2(t)
z(t)

(
z2(t)
v(t)

(
1
z(t)y

′(t)
)′)′ satisfies

y(t) ≥ x(t)
∫ t

t1

z(s1)
∫ s1

t1

v(u)
z2(u)

∫ t

t1

z(s)
v2(s)

dsduds1.

Setting the last estimate into (2.8), we see that x(t) is a positive solution of the
differential inequality

x′(t) +Q2(t)x(τ(t)) ≤ 0,
which in view of Philos theorem in [19] guarantees that the corresponding differ-
ential equation (3.2) has also a positive solution. This is a contradiction and the
proof is complete now. �

Applying suitable criteria for oscillation of (3.1), (3.2), we obtain immediately
criteria for oscillation of (E). The first one is due to Ladde et al. [15], while the
second one pertains to Kusano and Kitamura [14].

Corollary 3.3. Let (H2) hold. Assume that for i = 1, 2

lim inf
t→∞

∫ t

τ(t)

Qi(s)ds >
1
e

(3.8)

hold. Then (1.1) is oscillatory.
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Corollary 3.4. Let (H2) hold. Assume that for i = 1, 2

lim inf
t→∞

∫ ∞
t

Qi(s)ds =∞ (3.9)

hold. Then (1.1) is oscillatory.

Example 3.5. Let us consider the fourth order delay differential equation

y(4)(t) +
0.231
t3

y′(t) +
a

t4
y(λt) = 0, a > 0, λ ∈ (0, 1), t ≥ 1. (3.10)

For considered equation (3.10), the auxiliary equation (2.1) takes the form

z′′′(t) +
0.231
t3

z(t) = 0

with positive solution z(t) = t−0.1. On the other hand, (2.5) reduces to

(t0.1 v′(t))′ +
0.11
t1.9

v(t) = 0

which possesses the positive solution v(t) = tα, where α = 0.9−
√

0.37
2 . It is easy to

verify that (H2) holds. Moreover, simple computation shows that

Q1(t) =
aλ0.9

0.9(3− α)(2.1 + α)
1
t
− K

t1.9
, K ∈ R.

and

Q2(t) =
aλ3−λ

(3− α)(2.1− α)(0.9− 2α)
1
t
− K1

t1.9−2α
− K2

t3.1−α
− K2

t4−α
, Ki ∈ R

Criteria (3.8) and (3.9) from Corollary 3.4 yield

aλ0.9 ln
1
λ
>

0.9(3− α)(2.1 + α)
e

(3.11)

and

aλ3−α ln
1
λ
>

(3− α)(2.1− α)(0.9− 2α)
e

(3.12)

respectively. By Corollary 3.4, we conclude that (3.10) is oscillatory if (3.11) and
(3.12) hold simultaneously. For e.g. λ = 0.6 it happens provided that a > 10.4991.

We note that criteria from [11], [17] does not provide any information about
oscillation of(1.1).

In this article we have established a new approach for studying the oscillation
of the fourth order trinomial delay differential equation. One of the key elements
in the method is to study the associated binomial representation (2.8) of equation
(1.1). Our technique is based on the existence of positive solutions of a couple
of auxiliary differential equations of the second and third order. Furthermore, we
establish some basic properties of related linear operator to ensure the canonical
form of (2.8).

As consequence, employing some comparison principles, one can easily deduce
oscillation of all solutions of studied equation. The presented technique is new and
essentially simplifies investigation of oscillation of fourth-order trinomial differential
equations.
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