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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO
OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS

ON SOBOLEV SPACES WITH VARIABLE EXPONENTS

PAVEL MATEI

Abstract. The aim of this article is to study the existence and multiplicity of

solutions to operator equations involving duality mappings on Sobolev spaces

with variable exponents. Our main tools are the well known Mountain Pass
Theorem and its Z2-symmetric version.

1. Introduction

Our starting point for this article is the references [13, 12], where the existence
of the weak solution for Dirichlet’s problem with p-Laplacian (when p is a con-
stant 1 < p < ∞) was obtained using (among other methods) the Mountain Pass
Theorem. It is well known that the p-Laplacian is in fact the duality mapping
on W 1,p

0 (Ω) corresponding to the gauge function ϕ(t) = tp−1. In [7] some results
from [12] are generalized considering operator equations with an arbitrary dual-
ity mapping on a real reflexive and smooth Banach space, compactly imbedded in
Lq(Ω), where 1 < q < ∞ and Ω ∈ RN , N ≥ 2, is a bounded domain with smooth
boundary. In [6] the authors consider more general elliptic equations than those
with p-Laplacian and prove the existence of nontrivial weak solutions of mountain
type in an Orlicz-Sobolev space. Later, by using variational and topological meth-
ods, operator equations involving duality mappings on Orlicz-Sobolev spaces are
studied in [16]. In [15] the multiplicity of solutions of operator equations involving
duality mappings on a real reflexive and smooth Banach space, having the Kadeč-
Klee property, compactly imbedded in a real Banach space has studied by using
the Z2-symmetric version of the Mountain Pass Theorem. Equations of this type
in Orlicz-Sobolev spaces are considered as applications.

In recent years there has been a great interest in the field of operator equa-
tions involving various forms of the p(·)-Laplacian. The p(·)-Laplacian is the
operator −∆p(·) : W 1,p(·)

0 (Ω) → (W 1,p(·)
0 (Ω))∗, ∆p(·)u := div(|∇u|p(·)−2∇u) for

u ∈ W 1,p(·)
0 (Ω). Many properties of the classical p-Laplacian may be recuperated

except that of being a duality mapping on W 1,p(·)
0 (Ω). So, in this article, we will use

a natural version of the p(·)-Laplacian which is appropriate from the standpoint of
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duality mappings (see [17] or [21, Section 9.3]): if ϕ is a gauge function, the (ϕ, p(·))-
Laplacian is the operator −∆(ϕ,p(·)) : W 1,p(·)

0 (Ω) → (W 1,p(·)
0 (Ω))∗, −∆(ϕ,p(·))u :=

Jϕu for u ∈W 1,p(·)
0 (Ω), where Jϕ is the duality mapping on W 1,p(·)

0 (Ω), correspond-
ing to the gauge function ϕ.

In particular, if p(x) is constant and ϕ(t) := tp−1, t ≥ 0, then ∆(ϕ,p(·)) coincides
with ∆p (see Remark 4.1 below).

The plan of this article is as follows. The main abstract result obtained in Section
2 is concerned with the existence of critical points of functional (2.1) defined on
a real reflexive and smooth Banach space. The Mountain Pass Theorem and its
Z2-symmetric version (see, e.g. Rabinowitz [23]) are the basic ingredients which
are used.

Section 3 gathers various definitions and basic properties related to Lebesgue and
Sobolev spaces with variable exponents, needed through the paper. The standard
reference for the basic properties of variable exponent spaces is [19]. Additionally,
the reader may also consult [8, 18]. Note that these spaces occur naturally in
connection with various applications such as the modelling of electrorheological
fluids [24].

Let Ω be a domain in RN , i.e. a bounded and connected open subset of RN
whose boundary ∂Ω is Lipschitz-continuous, the set Ω being locally on the same
side of ∂Ω. Consider the space

UΓ0 =
{
u ∈W 1,p(·)(Ω) : u = 0 on Γ0 ⊂ Γ = ∂Ω

}
,

where dΓ −meas Γ0 > 0, with p(·) ∈ C(Ω) and p(x) > 1 for all x ∈ Ω. For details
see [4, Section 2].

The main result of this article given in Section 4 and concerns the existence and
multiplicity results for operator equation

Jϕu = Ngu, (1.1)

where Jϕ is a duality mapping on UΓ0 corresponding to the gauge function ϕ. Ng
is the Nemytskij operator generated by a Carathéodory function g satisfying an
appropriate growth condition ensuring that Ng may be viewed as acting from UΓ0

into its dual. In [10], the author used a topological method to prove the existence
of the weak solution in W 1,p(·)

0 (Ω) for the problem Jϕu = Ngu. In [5], the existence
of suitable solutions in UΓ0 to equation (1.1) is proven by three different methods
based, respectively, on reflexivity and smoothness of the space UΓ0 , the Schauder
fixed point theorem, and the Leray-Schauder degree.

All vector and function spaces considered in this paper are real. Given a normed
vector space X, the notation X∗ denotes its dual space and 〈·, ·〉X,X∗ designates the
associated duality pairing. Often, we shall omit the spaces in duality and, simply
write 〈·, ·〉. Strong and weak convergence are denoted by → and ⇀, respectively.

2. An abstract result

The main result of this article is obtained via the following theorem.

Theorem 2.1. Let X be a real reflexive and smooth Banach space, compactly
imbedded in the real Banach space V with the compact injection X

i
↪→ V . Let

H ∈ C1(X,R) be a functional given by

H(u) := Ψ(u)−G(iu), u ∈ X, (2.1)
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where:
(i) Ψ : X → R satisfies:

(i.1) at any u ∈ X,
Ψ(u) := Φ(‖u‖X), (2.2)

with

Φ(t) :=
∫ t

0

ϕ(τ)dτ for any t ≥ 0, (2.3)

ϕ : R+ → R+ being a gauge function which satisfies

ϕ∗ := sup
t>0

tϕ(t)
Φ(t)

<∞. (2.4)

(i.2) Ψ′ = Jϕ satisfies condition (S)2 (see (2.8));
(ii) G : V → R satisfies:

(ii.0) G(0V ) = 0;
(ii.1) G ∈ C1(V,R);
(ii.2) there is a constant θ > ϕ∗ such that, for any u ∈ V ,

〈G′(u), u〉V,V ∗ − θG(u) ≥ C = const.; (2.5)

(iii) there exists c0 > 0 such that for any u ∈ X, with ‖u‖X < c0, one has

H(u) > c1‖u‖pX − c2‖i(u)‖qV , (2.6)

where i stands for the compact injection of X in V while 0 < p < q and c1 > 0,
c2 > 0;
(iv) for any finite dimensional subspace X1 ⊂ X, there exist real constants d0 > 0,
d1, d2 > 0, d3, s > 0 and r < s (generally depending on X1) such that

H(u) ≤ d1‖u‖rX − d2‖u‖sX + d3, (2.7)

for any u ∈ X1 with ‖u‖X > d0.
Then, the functional H possesses a critical value. Moreover, if the functional H is
even, then H has un unbounded sequence of critical values.

Before proving of Theorem 2.1, we list some of the results to be used.
A function ϕ : R+ → R+ is said to be a gauge function if ϕ is continuous, strictly

increasing, ϕ(0) = 0 and ϕ(t)→∞ as t→∞.
Firstly, we recall that a real Banach space X is said to be smooth if it has the

following property: for any x ∈ X, x 6= 0, there exists a unique u∗(x) ∈ X∗ such
that 〈u∗(x), x〉 = ‖x‖X and ‖u∗(x)‖X∗ = 1. It is well known (see, for instance,
Diestel [9], Zeidler [25]) that the smoothness of X is equivalent to the Gâteaux
differentiability of the norm. Consequently, if (X, ‖ · ‖X) is smooth, then, for any
x ∈ X, x 6= 0, the only element u∗(x) ∈ X∗ with the properties 〈u∗(x), x〉 = ‖x‖X
and ‖u∗(x)‖X∗ = 1 is u∗(x) = ‖ · ‖′X(x) (where ‖ · ‖′X(x) denotes the Gâteaux
gradient of the ‖ · ‖X -norm at x).

Secondly, if X is a real Banach space, the operator T : X → X∗ is said to satisfy
condition (S)2 if

(S)2 : xn ⇀ x, and Txn → Tx imply xn → x as n→∞. (2.8)

An operator T is said to satisfy condition (S)+ if

(S)+ : xn ⇀ x and lim sup
n→∞

〈Txn, xn − x〉 ≤ 0 imply xn → x as n→∞.
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It is known that if T satisfies condition (S)+, then T satisfies condition (S)2 (see
Zeidler [25, p. 583]).

Let X be a real Banach space and let H ∈ C1(X,R) be a functional. We say
that H satisfies the Palais-Smale condition on X ((PS)-condition, for short) if any
sequence (un) ⊂ X with (H(un)) bounded and H ′(un) → 0 as n → ∞, possesses
a convergent subsequence. By (PS)-sequence for H we understand a sequence
(un) ⊂ X which satisfies (H(un)) is bounded and H ′(un)→ 0 as n→∞.

The main tools used in proving Theorem 2.1 are the well known Mountain Pass
Theorem and its Z2-symmetric version.

Theorem 2.2 ([23, Theorem 2.2]). Let X be a real Banach space and let H belong
to C1(X,R) satisfying the (PS)-condition. Suppose that H(0) = 0 and that the
following conditions hold:

(G1) There exist ρ > 0 and r > 0 such that H(u) ≥ r for ‖u‖ = ρ;
(G2) There exists e ∈ X with ‖e‖ > ρ such that H(e) ≤ 0.

Let

Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = e},
c = inf

γ∈Γ
max

0≤t≤1
H(γ(t)). (2.9)

Then, H possesses a critical value c > r.

Theorem 2.3 ([23, Theorem 9.12]). Let X be an infinite dimensional real Banach
space and let H ∈ C1(X,R) be even, satisfying the (PS)-condition, and H(0) = 0.
Assume (G1) and

(G2’) for each finite dimensional subspace X1 of X the set {u ∈ X1 | H(u) ≥ 0}
is bounded.

Then H possesses an unbounded sequence of critical values.

Now, we show that under the assumptions of Theorem 2.1, the functional H has
a mountain pass geometry. More precisely:

Proposition 2.4. Let X be a real Banach space, imbedded in the real Banach space
V , with the injection X

i
↪→ V . Let H ∈ C1(X,R) be given with H(0) = 0. Suppose

that H satisfies the hypotheses (iii) and (iv) in Theorem 2.1. Then, the functional
H satisfies the conditions (G1), (G2), and (G2’) in Theorems 2.2 and 2.3.

Proof. Indeed, let C be such that‖i(u)‖V ≤ C‖u‖X , for any u ∈ X. According to
[15, Theorem 1, p. 422], from (2.6) it follows that (G1) is satisfied with

0 < ρ < min
(
c0,
( c1

2Cqc2

)1/(q−p)) (2.10)

and r = c1ρ
p/2.

Next we show that (G2) is also satisfied. Let X1 be a finite dimensional subspace
of X and let e0 ∈ X1 with ‖e0‖X > d0. Since for any λ > 1, one has ‖λe0‖X > d0,
it follows from (2.7) that,

H(λe0) ≤ d1λ
r‖e0‖rX − d2λ

s‖e0‖sX + d3. (2.11)

Since, in general s > r, from (2.11) we deduce that H(λe0) → −∞ as λ → ∞.
Consequently, there exists a λ0 such that, for λ ≥ λ0, H(λe0) < 0. Let e := λe0

with λ > max(1, λ0, ρ/‖e0‖X), ρ being given by (2.10). Clearly with such a choice
one has ‖e‖X > ρ and H(e) < 0.
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Finally, according to [15, Theorem 1, p. 422], from (2.7) it follows that (G2’) is
fulfilled. The proof is complete. �

To prove that the functional H satisfies the (PS)-condition, the following result
will be useful.

Proposition 2.5 ([14, Corollary 1]). Let X be a real reflexive Banach space, com-
pactly imbedded in the real Banach space V and H ∈ C1(X,R) be such that

H ′(u) = Su−Nu,

where S : X → X∗ is monotone, hemicontinuous, satisfies condition (S)2 and
N : V → V ∗ is demicontinuous. Assume that any Palais-Smale sequence for H is
bounded. Then H satisfies the (PS)-condition.

To apply Proposition 2.5, we recall that, if X is a real smooth Banach space and
ϕ : R+ → R+ is a gauge function, the duality mapping on X corresponding to ϕ is
the mapping Jϕ : X → X∗ defined by

Jϕ0 := 0, Jϕx := ϕ(‖x‖X)‖ · ‖′X(x), if x 6= 0.

The following result is standard in the theory of monotone operators (see, e.g.
Browder [3], Zeidler [25]).

Proposition 2.6. Let X be a real reflexive and smooth Banach space. Then, any
duality mapping Jϕ : X → X∗ is:

(a) monotone (〈Jϕu− Jϕv, u− v〉 ≥ 0, u, v ∈ X);
(b) demicontinuous (xn → x⇒ Jϕxn ⇀ Jϕx).

Since, generally, demicontinuity implies hemicontinuity, it follows that any dual-
ity mapping Jϕ : X → X∗ is hemicontinuous (〈Jϕ(u+λv), w〉 → 〈Jϕu,w〉 as λ↘ 0
for all u, v, w ∈ X). Consequently, from Proposition 2.5, we obtain the following
result.

Corollary 2.7. Let X be a real reflexive Banach space, compactly imbedded in the
real Banach space V and H ∈ C1(X,R) such that

H ′(u) = Jϕu−Nu,

where Jϕ is a duality mapping corresponding to the gauge function ϕ, satisfying
condition (S)2 and N : V → V ∗ is demicontinuous. Assume that any Palais-Smale
sequence for H is bounded. Then H satisfies the (PS)-condition.

Taking into account [14, Corollary 2, p. 897], we obtain

Corollary 2.8. Let X be a real reflexive and smooth Banach space, compactly
imbedded in the real Banach space V with the compact injection X

i
↪→ V . Let

H ∈ C1(X,R) be a functional given by

H(u) = Ψ(u)−G(iu), u ∈ X,

where:
(i.1) at any u ∈ X, Ψ(u) = Φ(‖u‖X) with Φ given by (2.3), where ϕ : R+ → R+

is a gauge function which satisfies (2.4);
(i.2) Ψ′ satisfies condition (S)2;
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(ii) G : V → R is C1 on V and satisfies: there is a constant θ > ϕ∗ such that,
at any u ∈ V ,

〈G′(u), u〉V,V ∗ − θG(u) ≥ C = const.;

Then, the functional H satisfies the (PS)-condition.

Proof. The hypotheses of Corollary 2.7 are fulfilled with N = G′. Indeed, by
Asplund’s Theorem [2], Ψ′ = Jϕ and, by hypothesis (i.2) Jϕ satisfies condition
(S)2. The demicontinuity of G′ is assumed by (ii.2). According to [14, Corollary 2,
p. 897] we obtain that any (PS) sequence for H is bounded. �

Proof of Theorem 2.1. The assumptions of Theorem 2.1 entail the fulfillment of
those of Corollary 2.8, therefore the functional H satisfies the (PS)-condition. Ac-
cording to Proposition 2.4, the functional H satisfies the conditions (G1), (G2),
and (G2’) from Theorems 2.2 and 2.3. Applying these theorems, the conclusions of
Theorem 2.1 follow. �

3. Lebesgue and Sobolev spaces with variable exponent

The Lebesgue measure in RN is denoted dx. No distinction will be made between
dx-measurable functions and their equivalence classes modulo the relation of dx-
almost everywhere equality. The notation D(Ω) denotes the space of functions that
are infinitely differentiable in Ω and whose support is a compact subset of Ω.

The usual Lebesgue and Sobolev spaces, i.e., with constant exponent p ≥ 1, are
denoted Lp(Ω) and W 1,p(Ω).

Given a function p(·) ∈ L∞(Ω) that satisfies

1 ≤ p− := ess infx∈Ω p(x) ≤ p+ := ess supx∈Ω p(x),

the Lebesgue space Lp(·)(Ω) with variable exponent p(·) is defined as

Lp(·)(Ω) := {v : Ω→ R; v is dx-measurable and ρ0,p(·)(v) :=
∫

Ω

|v(x)|p(x)dx <∞},

where ρ0,p(·)(v) is called the convex modular of v.

Theorem 3.1. Let Ω be a domain in RN .
(a) Let p(·) ∈ L∞(Ω) be such that p− ≥ 1. Equipped with the norm

v ∈ Lp(·)(Ω)→ ‖v‖0,p(·) := inf{λ > 0;
∫

Ω

|v(x)
λ
|p(x)dx ≤ 1},

the space Lp(·)(Ω) is a separable Banach space. If p− > 1, the space Lp(·)(Ω) is
uniformly convex, hence reflexive.
(b) Let p1(·) ∈ L∞(Ω) and p2(·) ∈ L∞(Ω) be such that p−1 ≥ 1 and p−2 ≥ 1. Then

Lp2(·)(Ω) ↪→ Lp1(·)(Ω)

if and only if
p1(x) ≤ p2(x) for almost all x ∈ Ω.

(c) For any u ∈ Lp(·)(Ω) with p(·) ∈ L∞(Ω) satisfying p− > 1 and v ∈ Lp′(·)(Ω),∫
Ω

|u(x)v(x)|dx ≤
( 1
p−

+
1

(p′)−
)
‖u‖0,p(·)‖v‖0,p′(·) . (3.1)

Remark 3.2 ([18, p. 430]). If p(x) is constant, then the space Lp(·)(Ω) coincides
with the classical Lebesgue space Lp(Ω) and the norms on these spaces are equal.
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The next theorem sums up the relations between the norm ‖ · ‖0,p(·) and the
convex modular ρ0,p(·). Its proof can be found in [18].

Theorem 3.3. Let p(·) ∈ L∞(Ω) be such that p− ≥ 1 and let u ∈ Lp(·)(Ω). The
following properties hold:

(a) If u 6= 0, then ‖u‖0,p(·) = a if and only if ρ0,p(·)(a−1u) = 1.
(b) ‖u‖0,p(·) < 1 (resp. = 1 or > 1) if and only if ρ0,p(·)(u) < 1 (resp. = 1, or

> 1).
(c) ‖u‖0,p(·) > 1 implies ‖u‖p

−

0,p(·) ≤ ρ0,p(·)(u) ≤ ‖u‖P+

0,p(·).

(d) ‖u‖0,p(·) < 1 implies ‖u‖p
+

0,p(·) ≤ ρ0,p(·)(u) ≤ ‖u‖p
−

0,p(·).

The Sobolev space W 1,p(·)(Ω) with variable exponent p(·) is defined as

W 1,p(·)(Ω) := {v ∈ Lp(·)(Ω) : ∂iv ∈ Lp(·)(Ω), 1 ≤ i ≤ N},
where, for each 1 ≤ i ≤ N , ∂i denotes the distributional derivative operator with
respect to the i-th variable.

Theorem 3.4. Let Ω be a domain in RN .
(a) Let p(·) ∈ L∞(Ω) be such that p− ≥ 1. Equipped with the norm

v ∈W 1,p(·)(Ω)→ ‖v‖1,p(·) := ‖v‖0,p(·) +
∑N
i=1‖∂iv‖0,p(·),

the space W 1,p(·)(Ω) is a separable Banach space. If p− > 1, the space W 1,p(·)(Ω)
is reflexive.
(b) Let p1(·) ∈ L∞(Ω) with p−1 ≥ 1 and p2(·) ∈ L∞(Ω) with p−2 ≥ 1 be such that

p1(x) ≤ p2(x) for almost all x ∈ Ω.

Then
W 1,p2(·)(Ω) ↪→W 1,p1(·)(Ω).

(c) Let p(·) ∈ C(Ω) be such that p− ≥ 1. Given any x ∈ Ω, let

p∗(x) :=
Np(x)
N − p(x)

if p(x) < N, and p∗(x) :=∞ if p(x) ≥ N, (3.2)

and let q(·) ∈ C(Ω) be a function that satisfies

1 ≤ q(x) < p∗(x) for each x ∈ Ω. (3.3)

Then the following compact injection holds:

W 1,p(·)(Ω) b Lq(·)(Ω),

so that, in particular, W 1,p(·)(Ω) b Lp(·)(Ω).
(d) The function defined by

v ∈W 1,p(·)(Ω)→ ‖v‖1,p(·),∇ := ‖v‖0,p(·) + ‖|∇v|‖0,p(·),

is a norm on W 1,p(·)(Ω), equivalent with the norm ‖ · ‖1,p(·).

The following theorem concerns the definition of the space UΓ0 ([4, Theorem 6]).

Theorem 3.5. Let Ω be a domain in RN , N ≥ 2, let Γ0 be a dΓ-measurable subset
of Γ = ∂Ω that satisfies dΓ − meas Γ0 > 0, let p(·) ∈ C(Ω) be such that p(x) > 1
for all x ∈ Ω and let

UΓ0 := {u ∈ (W 1,p(·)(Ω), ‖ · ‖1,p(·),∇) : tru = 0 on Γ0}.
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Then:
(a) The space UΓ0 is closed in (W 1,p(·)(Ω), ‖ · ‖1,p(·),∇); hence (UΓ0 , ‖ · ‖1,p(·),∇) is
a separable reflexive Banach space.
(b) The map

u ∈ UΓ0 → ‖u‖0,p(·),∇ := ‖|∇u|‖0,p(·) (3.4)

is a norm on UΓ0 equivalent with the norm ‖ · ‖1,p(·),∇.
(c) The norm ‖u‖0,p(·),∇ is Fréchet-differentiable at any nonzero u ∈ UΓ0 and the
Fréchet-differential of this norm at any nonzero u ∈ UΓ0 is given for any h ∈ UΓ0

by

〈‖ · ‖′0,p(·),∇(u), h〉 =

∫
Ω\Ω0,u

p(x) |∇u(x)|p(x)−2 〈∇u(x),∇h(x)〉
‖u‖p(x)−1

0,p(·),∇
dx∫

Ω
p(x) |∇u(x)|p(x)

‖u‖p(x)
0,p(·),∇

dx
,

where Ω0,u := {x ∈ Ω; |∇u(x)| = 0}.

By Theorem 3.4 (c) and Theorem 3.5 (a)–(b) we derive the following result.

Lemma 3.6. Let p(·) ∈ C(Ω) be such that p− ≥ 1. Given any x ∈ Ω, let p∗ be given
by (3.2) and let q(·) ∈ C(Ω) be a function that satisfies (3.3). Then the following
compact inclusion holds:(

UΓ0 , ‖ · ‖1,p(·),∇
)
b
(
Lq(·)(Ω), ‖ · ‖0,q(·)

)
.

Remark 3.7. If ϕ∗ < q−, then Lq(·)(Ω) ↪→ Lϕ
∗
(Ω), therefore UΓ0 is compactly

imbedded in Lϕ
∗
(Ω).

The above remark will be useful in the upcoming section.

Proposition 3.8 ([11, Proposition 4]). Let X be a real reflexive Banach space,
compactly embedded in the real Banach space Z. Denote by i the compact injection
of X into Z and, for any r ∈ [1,∞), define

λ1,r = inf{ ‖u‖
r
X

‖i(u)‖rZ
| u ∈ X\{0X}}.

Then, λ1,r is attained and λ−1/r
1,r is the best constant cZ in the writing of the imbed-

ding of X into Z:
‖i(u)‖Z ≤ cZ‖u‖X , for all u ∈ X.

Taking into account Remark 3.7, we obtain the following result.

Corollary 3.9. Let Ω be a domain in RN (N ≥ 2), let p ∈ C(Ω) and q ∈ C(Ω) be
two functions such that p− > 1, q− > 1 and (3.3) holds. For ϕ∗ < q− define

λ1,ϕ∗ := inf
{‖u‖ϕ∗0,p(·),∇

‖u‖ϕ∗
Lϕ∗ (Ω)

: u ∈ UΓ0\{0}
}
, (3.5)

where i is the compact injection i : UΓ0 → Lϕ
∗
(Ω). Then λ1,ϕ∗ is attained and

λ
−1/ϕ∗

1,ϕ∗ is the best constant c in the imbedding of UΓ0 in Lϕ
∗
(Ω), namely,

‖i(u)‖Lϕ∗ (Ω) ≤ c‖u‖0,p(·),∇ for all u ∈ UΓ0 .
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4. Main result

In this section we study the existence and multiplicity of weak solutions for the
boundary value problem

Jϕu = g(x, u) in Ω, (4.1)

u = 0 on Γ0 ⊂ ∂Ω, (4.2)

in the following framework:
• Jϕ :

(
UΓ0 , ‖ · ‖0,p(·),∇

)
→
(
UΓ0 , ‖ · ‖0,p(·),∇

)∗ is the duality mapping on
(UΓ0 , ‖ · ‖0,p(·),∇) subordinated to the gauge function ϕ: such that Jϕ0 = 0, and

〈Jϕu, h〉 = ϕ(‖u‖0,p(·),∇)

∫
Ω\Ω0,u

p(x) |∇u(x)|p(x)−2〈∇u(x),∇h(x)〉
‖u‖p(x)−1

0,p(·),∇
dx∫

Ω
p(x) |∇u(x)|p(x)

‖u‖p(x)
0,p(·),∇

dx
,

at any nonzero u ∈ UΓ0 , for any h ∈ UΓ0 (here Ω0,u := {x ∈ Ω : |∇u(x)| = 0}).
• g : Ω× R→ R is a Carathéodory function.

Remark 4.1. By Remark 3.2, if p(x) is constant on Ω, then ‖u‖0,p(·) = ‖u‖Lp(Ω),
and ∫

Ω

p(x)
|∇u(x)|p(x)

‖u‖p(x)
0,p(·),∇

dx = p;

therefore,

〈Jϕu, h〉 = ϕ(‖u‖0,p(·),∇)

∫
Ω\Ω0,u

|∇u(x)|p−2 〈∇u(x),∇h(x)〉dx

‖u‖p−1
Lp(Ω)

.

Moreover, if ϕ(t) = tp−1, t ≥ 0, we obtain that

〈Jϕu, h〉 =
∫

Ω\Ω0,u

|∇u(x)|p−2〈∇u(x),∇h(x)〉dx;

that is,
〈Jϕu, h〉 = 〈−∆pu, h〉.

Consequently, in this case equation (4.1) can be rewritten as

−∆pu = g(x, u) in Ω.

By a (weak) solution to the problem (4.1), (4.2) we understand a solution to the
equation

Jϕu = Ngu, (4.3)
Ng being the Nemytskij operator generated by g.

Our goal is to prove the main result of this paper.

Theorem 4.2. Let Ω be a domain in RN (N ≥ 2), let p ∈ C(Ω) be a function such
that p− > 1, and let p∗(·) be given by (3.2). Let ϕ : R+ → R+ be a gauge function
which satisfies (2.4), where Φ is given by (2.3). Let there be given a Carathéodory
function g : Ω× R→ R satisfying the hypotheses:

(H1) there exists a function q(·) ∈ C(Ω) that satisfies (3.3) such that

|g(x, s)| ≤ C1|s|q(x)/q′(x) + a(x) for almost all x ∈ Ω and all s ∈ R, (4.4)

where 1
q(x) + 1

q′(x) = 1, a is a bounded function, a(x) ≥ 0 for almost all
x ∈ Ω, and C1 is a constant, C1 > 0;
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(H2) there exist s0 > 0 and θ > ϕ∗ := supt>0
tϕ(t)
Φ(t) such that

0 < θG(x, s) ≤ sg(x, s), (4.5)

for almost every x ∈ Ω and all s with |s| ≥ s0, where

G(x, s) :=
∫ s

0
g(x, τ)dτ. (4.6)

Also assume that
(H3)

lim sup
s→0

g(x, s)
|s|ϕ∗−2s

<
ϕ∗Φ(1)

2
λ1,ϕ∗ (4.7)

uniformly with respect to almost all x ∈ Ω, where λ1,ϕ∗ is given by (3.5).
(H4) ϕ∗ < q−.

Let Ng : Lq(·)(Ω) → Lq
′(·)(Ω), with (Ngu)(x) = g(x, u(x)) for almost all x ∈ Ω,

denote the Nemytskij operator generated by g.
Then under these assumptions, problem (4.1), (4.2) has a weak non-trivial solu-

tion in the space UΓ0 (endowed with the norm (3.4)). Moreover, if g is odd in the
second argument: g(x,−s) = −g(x, s), s ∈ R, then the problem (4.1), (4.2) has a
sequence of weak solutions.

To prove this theorem, we apply Theorem 2.1 to the functional H : UΓ0 → R,

H(u) := Φ(‖u‖0,p(·),∇)− G(u), (4.8)

where

G(u) :=
∫

Ω

G(x, u(x))dx. (4.9)

Proposition 4.3. Under the hypotheses of Theorem 4.2, the functional H given
by (4.8), is well-defined and C1 on UΓ0 , with

H ′(u) = Jϕ(u)− g(x, u)

Proof. The well-definedness of functional H is reduced to proving that for any
u ∈ UΓ0 ,

∫
Ω
G(x, u(x))dx makes sense. Indeed, by using (4.4) it follows that

|G(x, s)| ≤ C1

q−
|s|q(x) + a(x)|s|. (4.10)

Thus ∫
Ω

G(x, u(x))dx ≤ C1

q−

∫
Ω

|u(x)|q(x)dx+
∫

Ω

a(x)|u(x)|dx.

Since, for any u ∈ UΓ0 , we have u ∈ Lq(·)(Ω) and a ∈ Lq
′(·)(Ω), it follows that∫

Ω
a(x)|u(x)|dx makes sense. Consequently

∫
Ω
G(x, u(x))dx <∞.

Now, we show that H ∈ C1 over UΓ0 . First, we will prove that Ψ : UΓ0 → R,
Ψ(u) := Φ(‖u‖1,p(·),∇), is C1 over UΓ0 . Indeed, according to [4, Theorem 6], Ψ is
continuously Fréchet differentiable at any nonzero u ∈ UΓ0 and, for any h ∈ UΓ0

one has

〈Ψ′(u), h〉 = ϕ(‖u‖0,p(·),∇)

∫
Ω\Ω0,u

p(x) |∇u(x)|p(x)−2〈∇u(x),∇h(x)〉
‖u‖p(x)−1

0,p(·),∇
dx∫

Ω
p(x) |∇u(x)|p(x)

‖u‖p(x)
0,p(·),∇

dx
,

where Ω0,u := {x ∈ Ω; |∇u(x)| = 0}.
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If u = 0, then a direct calculus shows that Ψ is Gâteaux differentiable at zero
and

〈Ψ′(0), h〉 = lim
t→0

t−1Φ(|t|‖h‖0,p(·),∇) = lim
t→0

ϕ(|t|‖h‖0,p(·),∇)sgn t‖h‖0,p(·),∇ = 0.

Moreover, u → Ψ′(u) is continuous at zero. Indeed, from Theorem 3.3 (b), we
obtain ∫

Ω

p(x)
|∇u(x)|p(x)

‖u‖p(x)
0,p(·),∇

dx ≥ p−ρp(·)
( |∇u|
‖u‖0,p(·),∇

)
= p−. (4.11)

On the other hand, by using Schwarz’s inequality for nonnegative bilinear symmetric
forms and inequality (3.1), it follows that∣∣ ∫

Ω\Ω0,u

p(x)
|∇u(x)|p(x)−2〈∇u(x),∇h(x)〉

‖u‖p(x)−1
0,p(·),∇

dx
∣∣

≤ p+

∫
Ω

( |∇u(x)|
‖u‖0,p(·),∇

)p(x)−1

|∇h(x)|dx

≤M‖|∇h|‖0,p(·)
∥∥( |∇u|
‖u‖0,p(·),∇

)p(·)−1∥∥
0,p′(·)

= M‖h‖0,p(·),∇
∥∥( |∇u|
‖u‖0,p(·),∇

)p(·)−1∥∥
0,p′(·),

(4.12)

where M = p+ · ( 1
p− + 1

p′− ). Since

ρp′(·)

(( |∇u|
‖u‖0,p(·),∇

)p(·)−1)
= ρp(·)

( |∇u|
‖u‖0,p(·),∇

)
= 1,

by Theorem 3.3 (b) we have∥∥( |∇u|
‖u‖0,p(·),∇

)p(·)−1∥∥
0,p′(·) = 1 ,

therefore, from (4.12) we obtain∣∣ ∫
Ω\Ω0,u

p(x)
|∇u(x)|p(x)−2 ∇u(x) · ∇h(x)

‖u‖p(x)−1
0,p(·),∇

dx
∣∣ ≤M‖h‖0,p(·),∇ .

From (4.11) and (4.12) we infer that

|〈Ψ′(u), h〉| ≤ M

p−
· ϕ(‖u‖0,p(·),∇) · ‖h‖0,p(·),∇ ,

for any nonzero u ∈ UΓ0 and for any h ∈ UΓ0 . Thus

‖Ψ′(u)‖ ≤ M

p−
ϕ(‖u‖0,p(·),∇)→ 0 as ‖u‖0,p(·),∇ → 0 ;

therefore Ψ is C1. To conclude that H is C1, the C1-property of the functional G
given by (4.9), has to be proven.

As far as the C1-regularity of G is concerned, for a later use, we shall prove more:
G is C1 on Lq(·)(Ω) and

〈G′(u), h〉 =
∫

Ω
g(x, u(x))h(x)dx, u, h ∈ Lq(·)(Ω). (4.13)
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Indeed, let u, h ∈ Lq(·)(Ω). According to [20, p. 178] and by using Hölder’s type
inequality (3.1),

|G(u+ h)− G(u)− 〈G′(u), h〉|

=
∣∣ ∫

Ω

[g(x, u(x) + θ(x)h(x))h(x)− g(x, u(x))h(x)]dx
∣∣

≤M‖g(x, u(x) + θ(x)h(x))− g(x, u(x))‖0,q′(·)‖h‖0,q(·),

where 0 ≤ θ(x) ≤ 1. Consequently,

|G(u+ h)− G(u)− 〈G′(u), h〉|
‖h‖0,q(·)

≤M‖g(x, u(x) + θ(x)h(x))− g(x, u(x))‖0,q′(·).

Suppose ‖h‖0,q(·) → 0. Taking into account the continuity of Nemytskij operators
[18, Theorem 1.16], it follows that G is Fréchet differentiable on Lq(·)(Ω) and G′ is
given by (4.13).

Moreover, the operator G′ : Lq(·)(Ω)→ (Lq(·)(Ω))∗ given by (4.13) is continuous
[18, Theorem 1.16].

Now, since UΓ0 is continuously imbedded in Lq(·)(Ω) and G is C1 on Lq(·)(Ω), it
follows that G is C1 on UΓ0 . �

Proposition 4.4. Let q ∈ C+(Ω) and g : Ω × R → R be a Carathéodory function
which satisfies the growth condition (4.4) and the hypothesis (H2) modified as fol-
lows: there exist s0 > 0 and θ > 0 such that (4.5) holds for almost all x ∈ Ω and all
s with |s| ≥ s0, where G is given by (4.9). Then, the functional G : Lq(·)(Ω) → R
given by (4.9) satisfies the inequality (2.5).

Proof. One has

〈G′(u), u〉 − θG(u) =
∫

Ω

[g(x, u(x))u(x)− θG(x, u(x))]dx.

Now, we shall give an estimation for the right term of this equality. Define
Ω = {x ∈ Ω : |u(x)| > s0}. Taking into account (4.5), one has∫

Ω

[g(x, u(x))u(x)− θG(x, u(x))]dx ≥ 0. (4.14)

Also, considering (4.10), one has∣∣∫
Ω\Ω

G(x, u(x))dx
∣∣ ≤ ∫

Ω\Ω
[c|u(x)|q(x) + |u(x)|a(x)]dx

≤ csq
+

0 vol(Ω) + s0

∫
Ω

a(x)dx = K,

where c := C1/q
−.

On the other hand, from (4.4), it follows that∣∣∫
Ω\Ω

g(x, u(x))u(x)dx
∣∣ ≤ ∫

Ω\Ω
[c|u(x)|q(x) + |u(x)|a(x)]dx

≤ csq
+

0 vol(Ω) + s0

∫
Ω

a(x)dx = K.

Thus ∣∣∫
Ω\Ω

[g(x, u(x))u(x)− θG(x, u(x))]dx
∣∣ ≤ C, (4.15)
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with C := K(1 + θ). From (4.14) and (4.15), we infer that∫
Ω

[g(x, u(x))u(x)− θG(x, u(x))]dx ≥ −C,

that is (2.5). �

Using the same arguments as in [16, Remark 7.2, p. 26], we obtain the following
result.

Lemma 4.5. Let ϕ : R+ → R+ be a gauge function which satisfies (2.4), where Φ
is given by (2.3). Then, for all u ∈ UΓ0 with ‖u‖0,p(·),∇ < 1 one has

Φ(‖u‖0,p(·),∇) ≥ Φ(1)‖u‖ϕ
∗

0,p(·),∇ . (4.16)

Also for all u ∈ UΓ0 with ‖u‖0,p(·),∇ > 1 one has

Φ(‖u‖0,p(·),∇) ≤ Φ(1)‖u‖ϕ
∗

0,p(·),∇ .

Proof of Theorem 4.2. We use Theorem 2.1 with X = UΓ0 and V = Lq(·)(Ω).
Indeed, X is reflexive (Theorem 3.5, (a)) and smooth (Theorem 3.5 (c)). Also, by
Theorem 3.5 (a) and Theorem 3.4, (c) (UΓ0 , ‖ · ‖0,p(·),∇) is compactly embedded in
(Lq(·)(Ω), ‖ · ‖0,q(·)). According to [5, Theorem 4.6 a)], Ψ′ satisfies condition (S)2.

Obviously G(0) = 0 and taking into account Propositions 4.3 and 4.4, it follows
that G is C1 and that the hypothesis (ii) of Theorem 2.1 is fulfilled.

Let us prove that hypothesis (iii) of Theorem 2.1 is fulfilled. For the first term
in (4.8), we have (4.16) for all u ∈ UΓ0 with ‖u‖0,p(·),∇ < 1.

Arguing as in [12, p. 239], from (H3) we deduce that there exists

0 < µ < (ϕ∗Φ(1)/2)λ1,ϕ∗ (4.17)

and s > 0 such that

G(x, s) < (µ/ϕ∗)|s|ϕ
∗
, for x ∈ Ω, 0 < |s| < s. (4.18)

Now, let us consider |s| ∈ [s,∞). The function |s|q(x)−1 being increasing as
function of |s|, we have

|s| ≤ 1
sq(x)−1

|s|q(x).

Since the function a in (4.4) is assumed to be bounded, it follows from (4.10) that

|G(x, s)| ≤ c3 · sq(x), for |s| ≥ s ,

where c3 := C1/q
− + ‖a‖∞/sq

−−1.
Now, we denote Ω = {x ∈ Ω : |u(x)| ≥ s}. Then, for every u ∈ Lq(·)(Ω), we have∫

Ω

G(x, u(x))dx ≤ c3
∫

Ω

|u(x)|q(x)dx. (4.19)

But UΓ0 is continuously imbedded in Lq(·)(Ω) (Lemma 3.6), therefore there exists
a positive constant c such that

‖u‖0,q(·) ≤ c‖u‖0,p(·),∇ for all u ∈ UΓ0 .

Consequently, for all u ∈ UΓ0 with ‖u‖0,p(·),∇ < 1/c it follows that ‖u‖0,q(·) < 1.
Therefore, taking into account (4.19) and Theorem 3.3 (d), we obtain∫

Ω

G(x, u(x))dx ≤ c3‖u‖q
−

0,q(·), (4.20)
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for all u ∈ UΓ0 with ‖u‖0,p(·),∇ < 1/c.
On the other hand, from (4.18), for u ∈ UΓ0 , we deduce∫

Ω\Ω
G(x, u(x))dx ≤ µ

ϕ∗

∫
Ω

|u(x)|ϕ
∗
dx =

µ

ϕ∗
‖u‖ϕ

∗

Lϕ∗ (Ω)
. (4.21)

Since ϕ∗ < q−, then UΓ0 is compactly imbedded in Lϕ
∗
(Ω) (Remark 3.7). Taking

into account (4.21), (4.17), and the definition (3.5) of λ1,ϕ∗ , for u ∈ UΓ0 , we obtain∫
Ω\Ω

G(x, u(x))dx ≤ µ

ϕ∗λ1,ϕ∗
‖u‖ϕ

∗

0,p(·),∇ ≤
Φ(1)

2
‖u‖ϕ

∗

0,p(·),∇ . (4.22)

Then, from Lemma 4.5, (4.22), (4.20), we obtain

H(u) > Φ(1)‖u‖ϕ
∗

0,p(·),∇ −
Φ(1)

2
‖u‖ϕ

∗

0,p(·),∇ − c3‖u‖
q−

0,q(·)

=
Φ(1)

2
‖u‖ϕ

∗

0,p(·),∇ − c3‖u‖
q−

0,q(·) ,

for all u ∈ UΓ0 with ‖u‖0,p(·),∇ < min(1, 1/c). Therefore, the hypothesis (iii) of
Theorem 2.1 is fulfilled.

Now, we shall verify the hypothesis (iv) of Theorem 2.1. Let θ and s0 be as in
(H2). We shall deduce that one has

G(x, s) ≥ γ(x)|s|θ, for almost all x ∈ Ω and |s| ≥ s0, (4.23)

where the function γ will be specified below. Indeed, it follows from [12, p. 236]
that

G(x, s) ≥ (G(x, s0)/sθ0)sθ, for almost all x ∈ Ω and s ≥ s0. (4.24)

On the other hand, for almost all x ∈ Ω and τ ≤ −s0, from (4.5), we have G(x, s) >
0 for almost all x ∈ Ω and |s| ≥ s0, and

θ

τ
≥ g(x, τ)
G(x, τ)

.

By integrating from s ≤ −s0 to −s0, it follows that

sθ0
|s|θ
≥ G(x,−s0)

G(x, s)
,

which implies

G(x, s) ≥ (G(x,−s0)/sθ0)|s|θ, for almost all x ∈ Ω and s ≤ −s0. (4.25)

Setting

γ(x) =

{
(G(x, s0)/sθ0), if s ≥ s0

(G(x,−s0)/sθ0), if s ≤ −s0,

from (4.24) and (4.25), we obtain (4.23).
For v ∈ UΓ0 , we define

Ω≥ := {x ∈ Ω : |v(x)| ≥ s0},Ω< := Ω\Ω≥.
From (4.23) it follows that∫

Ω

G(x, v(x))dx ≥
∫

Ω≥

γ(x)|v(x)|θdx+
∫

Ω<

G(x, v(x))dx

=
∫

Ω

γ(x)|v(x)|θdx+
∫

Ω<

G(x, v(x))dx−
∫

Ω<
γ(x)|v(x)|θdx
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Since ∫
Ω<

γ(x)|v(x)|θdx ≤ ‖γ‖∞sθ0 vol(Ω),

we have ∫
Ω

G(x, v(x))dx ≥
∫

Ω

γ(x)|v(x)|θdx+
∫

Ω<

G(x, v(x))dx− k,

where k := ‖γ‖∞sθ0 vol(Ω). On the other hand, it follows from (4.10) that∫
Ω<

G(x, v(x))dx ≤ ‖a‖∞s0 + c4 max(sq
+

0 , sq
−

0 ) vol(Ω),

where c4 = c1/q
−. Therefore∫

Ω

G(x, v(x))dx ≥
∫

Ω

γ(x)|v(x)|θdx−K,

where K := k + ‖a‖∞s0 + c4 max(sq
+

0 , sq
−

0 ) vol(Ω). Consequently,

H(v) ≤ Φ(‖v‖0,p(·),∇)−
∫

Ω

γ(x)|v(x)|θdx+K,

where K is a positive constant and θ is given by (H)2. Taking into account Lemma
4.5, for ‖v‖0,p(·),∇ > 1 we have

H(v) ≤ Φ(1)‖v‖ϕ
∗

0,p(·),∇ −
∫

Ω

γ(x)|v(x)|θdx+K. (4.26)

Now, the functional ‖ · ‖γ : UΓ0 → R defined by

‖v‖γ =
(∫

Ω

γ(x)|v(x)|θdx
)1/θ

is a norm on UΓ0 . Let X1 be a finite dimensional subspace of UΓ0 . Since the tow
norms ‖ · ‖0,p(·),∇ and ‖ · ‖γ are equivalent on the finite dimensional subspace X1,
there is a constant δ = δ(X1) > 0 such that

‖v‖0,p(·),∇ ≤ δ‖v‖γ .
Therefore, from (4.26) it follows that

H(v) ≤ Φ(1)‖v‖ϕ
∗

0,p(·),∇ −
1
δθ
‖v‖θ0,p(·),∇ +K,

if v ∈ X1, ‖v‖0,p(·),∇ > 1, that is the hypothesis (iv) is fulfilled.
Taking into account Theorem 2.1, it follows that the functional F possesses a

sequence of critical positive values. By Proposition 4.3, equation

Jϕu = g(x, u)

has a sequence of solutions in UΓ0 or, equivalently, the problem (4.1), (4.2) possesses
a sequence of weak solutions in UΓ0 . �

Taking into account Remark 4.1, if p(x) = p =const. and ϕ(t) = tr−1, r > 1,
from Theorem 4.2 it follows:

Corollary 4.6. Let Ω be a domain in RN (N ≥ 2), p ∈ (1,∞), and let p∗ be given
by

p∗ :=
Np

N − p
if p < N and p∗ :=∞ if p ≥ N,

Let there be given a Carathéodory function g : Ω×R→ R satisfying the hypotheses:
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(1) there exists a function q(·) ∈ C(Ω) that satisfies

1 ≤ q(x) < p∗ for each x ∈ Ω

such that

|g(x, s)| ≤ C1|s|q(x)/q′(x) + a(x), for almost all x ∈ Ω and all s ∈ R,

where 1
q(x) + 1

q′(x) = 1, a is a bounded function, a(x) ≥ 0 for almost all
x ∈ Ω, and C1 is a constant, C1 > 0;

(2) there exist s0 > 0 and θ > r such that (4.5) holds for almost every x ∈ Ω
and all s with |s| ≥ s0, where G is given by (4.6).

Also assume that
(3)

lim sup
s→0

g(x, s)
|s|r−2s

<
λ1,r

2
uniformly with respect to almost all x ∈ Ω, where λ1,r is given by (3.5).

(4) r < q−.

Let Ng : Lq(·)(Ω) → Lq
′(·)(Ω), with (Ngu)(x) = g(x, u(x)) for almost all x ∈

Ω, denote the Nemytskij operator generated by g. Under these assumptions, the
problem

−div
(
‖|∇u|‖r−pLp(Ω)|∇u|

p−2∇u
)

= g(x, u) in Ω, (4.27)

u = 0 on Γ0 ⊂ ∂Ω, (4.28)

has a weak non-trivial solution in the space UΓ0 . Moreover, if g is odd in the second
argument: g(x,−s) = −g(x, s), s ∈ R, then problem (4.27), (4.28) has a sequence
of weak solutions.

In particular, if r = p and q(x) = q =const., we obtain a result similar to [12,
Theorem 18, p. 370]:

Corollary 4.7. Let Ω be a domain in RN (N ≥ 2), let p ∈ R be such that p > 1,
and let p∗ be given by

p∗ :=
Np

N − p
if p < N, and p∗ :=∞ if p ≥ N,

Let there be given a Carathéodory function g : Ω×R→ R satisfying the hypotheses:
(1) there exists q ∈ (1, p∗) such that

|g(x, s)| ≤ C1|s|q−1 + a(x), for almost all x ∈ Ω and all s ∈ R,

where 1
q + 1

q′ = 1, a is a bounded function, a(x) ≥ 0 for almost all x ∈ Ω,
and C1 is a constant, C1 > 0;

(2) there exist s0 > 0 and θ > p such that (4.5) holds for almost every x ∈ Ω
and all s with |s| ≥ s0, where G is given by (4.6).

Also assume that
(3)

lim sup
s→0

g(x, s)
|s|p−2s

<
λ1,p

2
uniformly with respect to almost all x ∈ Ω, where λ1,p is given by (3.5).

(4) p < q.
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Let Ng : Lq(Ω)→ Lq
′
(Ω), with (Ngu)(x) = g(x, u(x)) for almost all x ∈ Ω, denote

the Nemytskij operator generated by g. Under these assumptions, the problem

−div(|∇u|p−2∇u) = g(x, u) in Ω, (4.29)

u = 0 on Γ0 ⊂ ∂Ω, (4.30)

has a weak non-trivial solution in the space UΓ0 . Moreover, if g is odd in the second
argument, then problem (4.29), (4.30) has a sequence of weak solutions.

Now, let us consider the gauge function ϕ : R+ → R+, ϕ(t) = tr−1ln(1 + t),
r > 1. From (2.3) we have

Φ(t) =
tr

r
ln(1 + t)− 1

r

∫ t

0

τ r

1 + τ
dτ, t > 0.

According to [6, p. 54], ϕ∗ = r + 1. We shall apply Theorem 4.2 with ϕ∗ = r + 1.
From definition of ϕ∗ it follows that

ϕ∗Φ(1) ≥ ϕ(1) = ln 2 .

From Theorem 4.2 we have the following result.

Theorem 4.8. Let Ω be a domain in RN (N ≥ 2), let p ∈ C(Ω) be a function such
that p− > 1, and let p∗(·) be given by (3.2). Let us consider the function

ϕ : R+ → R+, ϕ(t) = tr−1 ln(1 + t), r > 1. (4.31)

Let there be given a Carathéodory function g : Ω×R→ R satisfying the hypotheses:
(1) there exists a function q(·) ∈ C(Ω) that satisfies (3.3) such that

|g(x, s)| ≤ C1|s|q(x)/q′(x) + a(x), for almost all x ∈ Ω and all s ∈ R,

where 1
q(x) + 1

q′(x) = 1, a is a bounded function, a(x) ≥ 0 for almost all
x ∈ Ω, and C1 is a constant, C1 > 0;

(2) there exist s0 > 0 and θ > r + 1 such that

0 < θG(x, s) ≤ sg(x, s),

for almost every x ∈ Ω and all s with |s| ≥ s0, where

G(x, s) :=
∫ s

0
g(x, τ)dτ.

Also assume that
(3)

lim sup
s→0

g(x, s)
|s|r−1s

<
ln 2
2
λ1,r+1

uniformly with respect to almost all x ∈ Ω, where λ1,r+1 is given by (4.21).
(4) r + 1 < q−.

Let Ng : Lq(·)(Ω) → Lq
′(·)(Ω), with (Ngu)(x) = g(x, u(x)) for almost all x ∈ Ω,

denote the Nemytskij operator generated by g. Under these assumptions, problem
(4.1), (4.2), where ϕ is given by (4.31), has a weak non-trivial solution in the space
UΓ0 (endowed with the norm (3.4). Moreover, if g is odd in the second argument,
then problem (4.1), (4.2) has a sequence of weak solutions.
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