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MULTIPLE POSITIVE SOLUTIONS FOR ELLIPTIC PROBLEM
WITH CONCAVE AND CONVEX NONLINEARITIES

JIAYIN LIU, LIN ZHAO, PEIHAO ZHAO

Abstract. In this article, we consider the existence of multiple solutions to

the elliptic problem

−∆u = λuq + us + µup in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊆ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω,

0 < q < 1 < s < 2∗ − 1 ≤ p, 2∗ := 2N
N−2

, λ and µ are nonnegative parameters.

By using variational methods, truncation and Moser iteration techniques, we

show that if the parameters λ and µ are small enough, then the problem has
at least two positive solutions.

1. Introduction and main results

In this article we study the existence of nontrivial solutions for the elliptic prob-
lem

−∆u = λuq + us + µup in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain, λ and µ are nonnegative
parameters, 0 < q < 1, 1 < s < 2∗ − 1, p ≥ 2∗ − 1, 2∗ = 2N

N−2 , i.e. the nonlinearity
is a combination of a sublinear term, a subcritical term and a critical or supercritical
term. From the perspective of the concavity and convexity of a function, problem
(1.1) has one concave term, two convex terms.

We want to remark that if the subcritical term us(1 < s < 2∗ − 1) does not
appear in our problem (1.1), i.e.

−∆u = λuq + µup in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.2)
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by the linear transformation v = µ
1
p−1u, problem (1.2) is equivalent to

−∆v = λ̃vq + vp in Ω,
v > 0 in Ω,
v = 0 on ∂Ω

(1.3)

with λ̃ = λµ
1−q
p−1 . This concave-convex problem was first considered by Ambrosetti,

Brezis and Cerami [2], they discover that there exists Λ > 0 such that for 0 < λ̃ < Λ,
problem (1.3) has a solution if p > 1, and has a second solution if 1 < p ≤
(N +2)/(N−2). For supercritical case, i.e. p > (N +2)/(N−2), the authors poses
an open problem: When Ω is a ball in RN , does problem (1.3) have two solutions
for λ̃ > 0 small enough? After this seminal work, many works have been devoted
to problems with concave-convex nonlinearities, see for example [1, 4, 7, 11, 12, 14].
Especially in the literature [14], using a concept of radial singular solution, Zhao
and Zhong prove that if λ̃ > 0 is small enough and p > 2∗ − 1, then problem (1.3)
has exactly one solution. In particular, this means that problem (1.2) cannot have
a second solution if p > (N + 2)/(N − 2), and gives a negative answer to that open
problem. In other words, (1.2) has exactly one solution for λ and µ small enough.
Now, we are interested in what will happen with adding a subcritical term us in
(1.2). In this paper, we show that the appearance of the subcritical term us in (1.2)
destroys the uniqueness result. More precisely, we prove the following main results.

Theorem 1.1. Let Ω ⊂ RN be a bounded smooth domain. Assume 0 < q < 1 < s <
2∗ − 1 ≤ p, then (1.1) has at least two positive solutions if λ and µ are sufficiently
small.

Our approach is variational, based on the critical point theory and we use trun-
cation methods and Moser iteration technique to deal with the critical case and
supercritical case in a unified approach.

Before we proceed, we recall that to use the Mountain Pass Theorem [3, 9, 10]
the Palais-Smale (PS) condition is needed. A C1 functional J on a Banach space
X is said to satisfy the (PS) condition at c ∈ R if every sequence un ⊂ X satisfying

J(un)→ c and ‖J ′(un)‖X′ → 0 as n→∞

admits a strongly convergent subsequence. We say that J satisfies the (PS) condi-
tion if J satisfies the (PS) condition at any c ∈ R. This compactness type condition,
which compensates for the lack of local compactness in the underlying space X be-
ing in general infinite dimensional, leads to the following well known Mountain Pass
Theorem.

Lemma 1.2. Let X be a Banach space and J ∈ C1(X,R) satisfying the (PS)
condition. Suppose J(0) = 0 and

(J1) there are constants ρ, α > 0 such that J |∂Bρ ≥ α, and
(J2) there is an e ∈ X \Bρ such that J(e) ≤ 0.

Then J possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

J(u),

where Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = e}.
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In this article, the norm in Lr(Ω) (1 < r < ∞) is ‖u‖r =
( ∫

Ω
|u|rdx

)1/r, and

the norm in H1
0 (Ω) is ‖u‖ =

( ∫
Ω
|∇u|2dx

)1/2. Here X ′ denotes the dual space of
X. S is the best Sobolev embedding constant

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx( ∫

Ω
|u|2∗dx

)2/2∗ . (1.4)

This article is organized as follows. In section 2, we consider a truncated problem
(2.1) and obtain two solutions by using variational methods. In section 3, we finish
the proof of Theorem 1.1 by demonstrating that solutions of (2.1) are actually
solutions of the original problem (1.1), this reduces to an L∞ estimate.

2. Truncated problem

One of the main difficulty to prove the existence solutions of problem (1.1) by
using variational methods is that J(u) does not satisfying the (PS) condition for
large energy level for p = N+2

N−2 and J(u) is not well defined on H1
0 (Ω) for p > N+2

N−2 .
Following the idea in [6, 8, 9, 13], we first investigate the truncated problem

−∆u = λuq + us + µgK(u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(2.1)

where K > 0 is a real number, whose value will be fixed later, gK(u) is given by

gK(u) =

{
up, |u| ≤ K,
Kp−r+1ur−1, |u| ≥ K,

(2.2)

where p ≥ 2∗ − 1, 2 < r := s+ 1 < 2∗, then

GK(u) :=
∫ u

0

gK(t)dt =

{
1
p+1u

p+1, |u| ≤ K,(
1
p+1 −

1
r

)
Kp+1 + 1

rK
p−r+1ur, |u| ≥ K,

(2.3)

and

|gK(u)| ≤ Kp−r+1ur−1, |GK(u)| ≤ 1
r
Kp−r+1ur. (2.4)

The associated functional in H1
0 (Ω) is

JK(u) =
1
2

∫
Ω

|∇u|2dx

− λ

q + 1

∫
Ω

uq+1dx− 1
s+ 1

∫
Ω

us+1dx− µ
∫

Ω

GK(u)dx.
(2.5)

Remark 2.1. The original problem (1.1) is critical and supercritical, after trun-
cation, it becomes subcritical and the functional JK(u) ∈ C1 is well defined, this
fact allows us to use the usual minimax methods.

We have the following multiplicity theorem for problem (2.1).

Theorem 2.2. There exist two positive constants λ0 and µ0 such that for all λ, µ
with 0 < λ < λ0 and 0 < µ < µ0, problem (2.1) has at least two positive solutions.
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Proof. Let e denote the solution of

−∆e = 1 in Ω,
e = 0 on ∂Ω,

then e ∈ C∞0 (Ω) is nonnegative, and ‖e‖∞ ≤ C for some positive constant C > 0.
Since 0 < q < 1 < s < 2∗ − 1, and 2 < r = s + 1 < 2∗, we can find λ0 > 0 and
µ0 > 0 such that for all 0 < λ < λ0 and 0 < µ < µ0, there exits M = M(λ, µ) > 0
satisfying

M ≥ λMq‖e‖q∞ +Ms‖e‖s∞ + µKp−r+1Mr−1‖e‖r−1
∞ .

As a consequence, the function Me satisfies

−∆(Me) = (−∆e)M = M ≥ λMq‖e‖q∞ +Ms‖e‖s∞ + µKp−r+1Mr−1‖e‖r−1
∞

≥ λ(Me)q + (Me)s + µgK(Me),

and hence it is a supersolution of (2.1). Moreover, any εϕ1 is a subsolution of (2.1),
provided

−∆(εϕ1) = λ1εϕ1 ≤ λ(εϕ1)q + (εϕ1)s + µgK(εϕ1),
which is satisfied for all ε > 0 small enough and all λ > 0, µ > 0. Taking ε possibly
smaller, we also have

εϕ1 < Me

If follows that (2.1) has a solution εϕ1 ≤ u1 ≤ Me whenever λ ≤ λ0 and µ ≤ µ0.
Actually, u1 is a local minimum of JK in the C1-topology, hence a local minimum
for JK in the H1

0 (Ω)-topology, see [2] for details.
Next, we look for a second solution of (2.1) by Mountain Pass Theorem, since

u1 is a local minimum in the H1
0 (Ω)-topology, we only need to show that the (PS)

condition is satisfied and JK(tu)→ −∞, as t→ +∞.
Claim 1. The functional JK(u) satisfies (PS)c for any c ∈ R. To see this, take
c ∈ R and assume that {un} is a Palais-Smale sequence at level c, namely such that

JK(un)→ c and J ′K(un)→ 0(in H1
0 (Ω)′),

Consequently we obtain, by Sobolev embedding theorem, together with (2.2) and
(2.3),

c(1 + ‖un‖) ≥ JK(un)− 1
s+ 1

J ′K(un)un

=
(1

2
− 1
s+ 1

)∫
Ω

|∇un|2dx−
( λ

q + 1
− λ

s+ 1

)∫
Ω

uq+1
n dx

+ µ

∫
Ω

[ 1
s+ 1

gK(un)un −GK(un)
]
dx

≥
(1

2
− 1
s+ 1

)∫
Ω

|∇un|2dx−
( λ

q + 1
− λ

s+ 1

)∫
Ω

uq+1
n dx

≥
(1

2
− 1
s+ 1

)
‖un‖2 −

( λ

q + 1
− λ

s+ 1

)
Sq+1
b ‖un‖q+1,

(2.6)

where Sb is the Sobolev constant, and we have also used the fact that (2.2) and (2.3)
imply gK(t)t ≥ (s+1)GK(t) for all t ∈ R. It follows from (2.6) (note 1 < q+1 < 2),
{un} is bounded in H1

0 (Ω). Then we can assume that, up to a subsequence, there
exists u ∈ H1

0 (Ω) such that

un ⇀ u in H1
0 (Ω),
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un(x)→ u(x) for almost every x ∈ Ω,

un → u in Ls(Ω).

As a consequence,∫
Ω

(uqn − uq)(un − u)dx→ 0,
∫

Ω

(usn − us) (un − u)dx→ 0,∫
Ω

[gK(un)− gK(u)] (un − u)dx→ 0 as n→∞.

We conclude by computing

o(1) = (J ′K(un)− J ′K(u)) (un − u)

=
∫

Ω

|∇(un − u)|2dx− λ
∫

Ω

(uqn − uq)(un − u)dx

−
∫

Ω

(usn − us) (un − u)dx− µ
∫

Ω

[gK(un)− gK(u)] (un − u)dx

= ‖un − u‖2 + o(1),

which shows that un → u in H1
0 (Ω). This proves Claim 1.

Claim 2. JK(tu) → −∞, as t → +∞. For every u ∈ H1
0 (Ω) \ {0} and t > 0 we

have

JK(tu) =
t2

2
‖u‖2 − λtq+1

q + 1

∫
Ω

uq+1dx− ts+1

s+ 1

∫
Ω

us+1dx− µ
∫

Ω

GK(tu)dx

=
t2

2
‖u‖2 − λtq+1

q + 1

∫
Ω

uq+1dx− ts+1

s+ 1

∫
Ω

us+1dx

− µtp+1

p+ 1

∫
{|tu|≤K}

up+1dx− µtrKp−r+1

r

∫
{|tu|≥K}

urdx.

Since ∫
{|tu|≤K}

up+1dx→ 0 as t→ +∞,

and 1 < q + 1 < 2 < s+ 1 = r < 2∗, it follows that J(tu)→ −∞ as t→ +∞. This
proves Claim 2.

Since Claims 1 and 2 hold, by the mountain pass theorem there exists a u2 ∈
H1

0 (Ω) such that JK(u2) = cM , where

cM = inf
ω∈W

max
t∈[0,1]

JK(ω(t)) and W = {ω ∈ C([0, 1]) : ω(0) = u1, JK(ω(1)) < 0}.

We may assume that u2 is positive. Indeed, we can extend the nonlinearity to zero
if u < 0, with this extension, the maximum principle implies that every nontrivial
solutions of (2.1) is positive. �

Lemma 2.3. The solutions for problem (2.1) obtained by Theorem 2.2 are bounded
in H1

0 (Ω), i.e.
‖ui‖ ≤ γ, i = 1, 2.

where γ > 0 is independent of µ.

Proof. Let cM be the mountain pass level for JK obtained in previous section,

cM ≥ JK(ui) = JK(ui)−
1

s+ 1
J ′K(ui)ui
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=
(1

2
− 1
s+ 1

)∫
Ω

|∇ui|2dx−
( λ

q + 1
− λ

s+ 1

)∫
Ω

uq+1
i dx

+ µ

∫
Ω

[ 1
s+ 1

gK(ui)ui −GK(ui)
]
dx

≥
(1

2
− 1
s+ 1

)∫
Ω

|∇un|2dx−
( λ

q + 1
− λ

s+ 1

)∫
Ω

uq+1
i dx

≥
(1

2
− 1
s+ 1

)
‖ui‖2 −

( λ

q + 1
− λ

s+ 1

)
Sq+1
b ‖ui‖q+1.

Since 1 < q + 1 < 2, we infer that ‖ui‖ ≤ γ which is independent of µ. �

Remark 2.4. Actually, u1 and u2 also solve problem (1.1), to show this, we only
need to prove ‖ui‖L∞(Ω) ≤ K, i = 1, 2. One should note that cM is decreasing with
respect to K, so, γ is also decreasing with respect to K, this fact is important in
the following L∞(Ω) estimate (see inequality (3.14) in next section).

3. Proof of main result

To prove Theorem 1.1, we only need to show that solutions of (2.1) are actually
bounded by someK. Our approach is a variant of Moser iteration technique inspired
by [5, 6, 8, 13].

Proof of Theorem 1.1. For convenience, set u := ui, i = 1, 2. Let u be a weak
solution of (2.1). Hence, for any ϕ ∈ H1

0 (Ω),∫
Ω

∇u∇ϕdx = λ

∫
Ω

uqϕdx+
∫

Ω

usϕdx+ µ

∫
Ω

gK(u)ϕdx. (3.1)

For each L > 0, let us define the following functions

uL(x) =

{
u(x), if u(x) ≤ L,
L, if u(x) > L,

zL = u
2(β−1)
L u and wL = uβ−1

L u, where β > 1 will be fixed later. Taking zL as a
test function in (3.1), we obtain∫

Ω

∇u∇zLdx = λ

∫
Ω

uqzLdx+
∫

Ω

uszLdx+ µ

∫
Ω

gK(u)zLdx. (3.2)

The left hand side of the above equality is∫
Ω

∇u∇zLdx =
∫

Ω

∇u∇(u2(β−1)
L u)dx

=
∫

Ω

|∇u|2u2(β−1)
L dx+ 2(β − 1)

∫
Ω

uu
2(β−1)−1
L ∇u∇uLdx

=
∫

Ω

|∇u|2u2(β−1)
L dx+ 2(β − 1)

∫
{0≤u≤L}

|∇u|2u2(β−1)
L dx
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Since 2(β − 1)
∫
{0≤u≤L} |∇u|

2u
2(β−1)
L dx ≥ 0, it follows that∫

Ω

|∇u|2u2(β−1)
L dx

≤
∫

Ω

∇u∇zLdx

= λ

∫
Ω

uqzLdx+
∫

Ω

uszLdx+ µ

∫
Ω

gK(u)zLdx

= λ

∫
Ω

uqu
2(β−1)
L udx+

∫
Ω

usu
2(β−1)
L udx+ µ

∫
Ω

gK(u)u2(β−1)
L udx

≤ λ
∫

Ω

uq+1u
2(β−1)
L dx+

∫
Ω

us+1u
2(β−1)
L dx+ µKp−r+1

∫
Ω

uru
2(β−1)
L dx

(3.3)

where we have used (2.4), (3.1) and (3.2). By (1.4), we obtain(∫
Ω

|wL|2
∗
)2/2∗

dx

≤ S−1

∫
Ω

|∇wL|2dx = S−1

∫
Ω

|∇(uβ−1
L u)|2dx

= S−1

∫
Ω

|(β − 1)uuβ−2
L ∇uL + uβ−1

L ∇u|2dx

≤ 2S−1

∫
Ω

|(β − 1)uuβ−2
L ∇uL|2dx+

∫
Ω

|uβ−1
L ∇u|2dx

= 2S−1

∫
{0≤u≤L}

(β − 1)2u
2(β−1)
L |∇u|2dx+

∫
Ω

u
2(β−1)
L |∇u|2dx

≤ 2S−1[(β − 1)2 + 1]
∫

Ω

u
2(β−1)
L |∇u|2dx

= 2S−1β2
[(β − 1

β

)2 +
1
β2

] ∫
Ω

u
2(β−1)
L |∇u|2dx

≤ 4S−1β2

∫
Ω

u
2(β−1)
L |∇u|2dx.

(3.4)

Since uL ≤ u, 0 < q < 1, we can use (3.3) and (3.4) to obtain(∫
Ω

|wL|2
∗
)2/2∗

dx ≤ 4S−1β2
[
λ

∫
Ω

uq+1u
2(β−1)
L dx+

∫
Ω

us+1u
2(β−1)
L dx

+ µKp−r+1

∫
Ω

uru
2(β−1)
L dx

]
≤ 4S−1β2

[
λ|Ω|+ λ

∫
Ω

u2u
2(β−1)
L dx+

∫
Ω

us+1u
2(β−1)
L dx

+ µKp−r+1

∫
Ω

uru
2(β−1)
L dx

]
(3.5)

Considering the Sobolev embedding H1
0 (Ω)) ↪→ L2∗(Ω), and ‖u‖ ≤ γ (see Lemma

2.3), we have

S1/2
(∫

Ω

|u|2
∗
dx
)1/2∗

≤
(∫

Ω

|∇u|2dx
)1/2

≤ γ,

then
‖u‖2∗ ≤ γS−1/2. (3.6)
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Let α∗ = 2∗·2
2∗−r+2 . Since

uru
2(β−1)
L = ur−2w2

L, u
s+1u

2(β−1)
L = us−1w2

L

and u2u
2(β−1)
L = w2

L, we now use the Hölder inequality, (3.4), (3.5) and (3.6) to
conclude that, whenever wL ∈ Lα

∗
(Ω), it holds

‖wL‖22∗ ≤ 4S−1β2
[
λ|Ω|+ λ

∫
Ω

w2
Ldx+

∫
Ω

us−1w2
Ldx

+ µKp−r+1

∫
Ω

ur−2w2
Ldx

]
≤ 4S−1β2

[
λ|Ω|+ λ|Ω|

α∗−2
α∗ ‖wL‖2α∗ + ‖u‖s−1

2∗ ‖wL‖2α∗

+ µKp−r+1‖u‖2
∗(1− 2

α∗ )
2∗ ‖wL‖2α∗

]
≤ 4S−1β2

[
λ|Ω|+

(
λ|Ω|

α∗−2
α∗ + (γS−1/2)s−1

+ µKp−r+1(γS−1/2)2∗(1− 2
α∗ )
)
‖wL‖2α∗

]
≤ 4S−1β2

[
2λ(1 + |Ω|) + γs−1S−

s−1
2

+ µKp−r+1(γS−1/2 + 1)2∗
]

max{1, ‖wL‖2α∗}

(3.7)

Set β := 2∗/α∗, then wL ∈ Lα
∗
(Ω). From (3.7) we have

‖wL‖22∗ ≤ β2Cλ,µ,K max{1, ‖wL‖2α∗} (3.8)

where Cλ,µ,K = 4S−1
[
2λ(1 + |Ω|) + γs−1S−

s−1
2 + µKp−r+1(γS−1/2 + 1)2∗

]
, which

is independent of u, β, α∗ and L. From (3.8) and the definition of wL, we obtain(∫
Ω

u
(β−1)2∗

L u2∗dx
)2/2∗

≤ β2Cλ,µ,K max
{

1,
(∫

Ω

u
(β−1)α∗

L uα
∗
dx
)2/α∗}

≤ β2Cλ,µ,K max
{

1,
(∫

Ω

uβα
∗
dx
)2/α∗}

By Fatou’s Lemma,(∫
Ω

uβ2∗dx
)2/2∗

≤ β2Cλ,µ,K max
{

1,
(∫

Ω

uβα
∗
dx
)2/α∗}

,

which is equivalent to

‖u‖β2∗ ≤ β1/βC
1
2β
λ,µ,K max{1, ‖u‖βα∗} (3.9)

Since β = 2∗

α∗ > 1 and u ∈ L2∗(Ω), the inequality (3.9) holds for this choice of β.
Now, let us choose a sequence of positive numbers {βm}m in the following way:

β0 = β, βm = βm. (3.10)

Noting that β2α∗ = β2∗, we have

βm+1α
∗ = βm+1α∗ = βm−1

(
β2α∗

)
= βm−1 · β2∗ = βm2∗ = βm2∗. (3.11)

In view of (3.10) and (3.11), we can restate (3.9) as

‖u‖βmα∗ ≤ β
1

βm−1
m−1 C

1
2βm−1
λ,µ,K max{1, ‖u‖βm−1α∗}.



EJDE-2015/78 MULTIPLE POSITIVE SOLUTIONS 9

Define bm = max{1, ‖u‖βmα∗}, then

log bm ≤
1

βm−1
log βm−1 +

1
2βm−1

logCλ,µ,K + log bm−1

≤
m−1∑
i=1

log βi
βi

+
logCλ,µ,K

2

m−1∑
i=1

1
βi

+ log b0

=
m−1∑
i=1

log βi

βi
+

logCλ,µ,K
2

m−1∑
i=1

1
βi

+ log max{1, ‖u‖2∗}.

(3.12)

Notice that
m−1∑
i=1

log βi

βi
+

logCλ,µ,K
2

m−1∑
i=1

1
βi
→ Cβ + C ′β logCλ,µ,K := C0

as m→∞, with

Cβ =
∞∑
i=1

log βi

βi
, 2C ′β =

∞∑
i=1

1
βi
, β > 1.

Taking the limit as m→∞ in (3.12), and using (3.6), we deduce that

‖u‖∞ ≤ eC0 max{1, ‖u‖2∗} ≤ eC0 max{1, γS−1/2}.

We should pay attention that C0 depends on λ, µ,K, |Ω|, S, γ and control the de-
pendence of C0 on |Ω|, S and γ. Now, to prove our theorem, we need choose suitable
value of λ, µ,K carefully, such that

eC0 max
{

1, γS−1/2
}

= eCβ+C′β logCλ,µ,K max{1, γS−1/2} ≤ K. (3.13)

this is equivalent to

C
C′β
λ,µ,Ke

Cβ max{1, γS−1/2} ≤ K.
That is, [

4S−1(1 + |Ω|)(2λ+ γs−1S−
s−1
2 )

+ µKp−r+1(γS−1/2 + 1)2∗
]C′β

eCβ max{1, γS−1/2} ≤ K.

Choose K > 0 to satisfy the inequality (note that λ ≤ λ0)( K

eCβ max{1, γS−1/2}

)1/C′β
− 4S−1(1 + |Ω|)(2λ+ γs−1S−

s−1
2 ) > 0, (3.14)

and then fix µK such that

µK :=
1

Kp−r+1(γS−1/2 + 1)2∗

[( K

eCβ max{1, γS−1/2}

)1/C′β

− 4S−1(1 + |Ω|)(2λ+ γs−1S−
s−1
2 )
]
.

Let µ∗ := min{µ0, µK}, we obtain (3.13) for µ ∈ [0, µ∗] and some K satisfying
(3.14). This completes the proof. �

Since ui ∈ L∞(Ω), i = 1, 2, using bootstrap technique, we obtain ui ∈ C2,α(Ω),
i = 1, 2 for some constant 0 < α < 1.



10 J. LIU, L. ZHAO, P. ZHAO EJDE-2015/78

Corollary 3.1. The solutions obtained in Theorem 2.2 are smooth; i.e., ui belongs
to C2,α(Ω), i = 1, 2 for some constant 0 < α < 1.

Remark 3.2. Our method could be generalized to obtain analogous results for
equations with more general perturbation h(x, u), i.e.

−∆u = λuq + us + µh(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(3.15)

where 0 < q < 1 < s < 2∗ − 1, h(x, t) ≥ 0 for t ≥ 0 and satisfies the growth
condition |h(x, t)| ≤ C0

(
1 + |t|p−1

)
, p ≥ 2∗ and C0 > 0 is a constant.

We have the following result similar to Theorem 1.1.

Theorem 3.3. Problem (3.15) has at least two positive solutions for λ and µ small
enough.

Proof. In fact, the truncation of h(x, t) can be given by

hK(x, t) =

{
h(x, t), |t| ≤ K,
min{h(x, t), C0(1 +Kp−rtr−1)}, |t| > K,

(3.16)

where r ∈ (2, 2∗). Then hK satisfies

|hK(x, t)| ≤ C0(1 +Kp−r|t|r−1). (3.17)

The truncated problem associated to problem (3.15) becomes

−∆u = λuq + us + µhK(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(3.18)

By (3.16)–(3.18) and a technique similar to the one in Theorem 1.1, we can prove
that the two solutions (one is a local minimum, the other is of Mountain Pass type)
for truncated problem (3.18) satisfy ‖ui‖ ≤ K, i = 1, 2. In view of the definition of
hK , we know that u1 and u2 are also solutions of the original problem (3.15). �
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