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EXISTENCE OF SOLUTIONS TO HEMIVARIATIONAL
INEQUALITIES INVOLVING THE p(x)-BIHARMONIC

OPERATOR

MOHSEN ALIMOHAMMADY, FARIBA FATTAHI

Abstract. This article concerns the existence of solutions to boundary-value

problems involving the p(x)-biharmonic operator. Our technical approach is
the variational-hemivariational inequality on bounded domains by using the

mountain pass theorem and the critical point theory for Motreanu-Panagiotopoulos

type functionals.

1. Introduction

It is well known that the mathematical modeling of equations in different fields
of researches, such as mechanical engineering, Micro Electro-Mechanical systems,
economics, computer science, electro-rheological fluids (cf. [24]) and many others,
leads naturally to the consideration of nonlinear differential problems. It also ap-
pears in nonlinear elasticity petroleum extraction and in the theory of quasi-regular
and quasi-conformal mappings. Analysis of solutions of specific problems is of con-
siderable importance in the theory of partial differential equations. In recent years
there has been an increased interest in differential problems governed by higher
order operators, like the polyharmonic operator, like the p(x)-Laplacian. The p(x)-
Laplace operator ∆p(x)u = div(|∇u|p(x)−2∇u) is a natural generalization of the
p−Laplacian operator ∆pu = div(|∇u|p−2∇u) where p > 1 is a real constant. The
main difference between them is that p−Laplacian operator is (p− 1)-homogenous,
but the p(x)-Laplacian operator, when p(x) is not constant, is not homogeneous.
For p(x)-Laplacian operator, we refer the readers to [11,14,15,17,20] and references
cited therein.

Many authors consider the existence of nontrivial solutions for some fourth order
problems such as [9, 10]. This is a generalization of the classical p-biharmonic op-
erator ∆(|∆u|p−2∆u) obtained in the case that p is a positive constant. Recently,
many researchers pay their attention to impulsive differential equations by varia-
tional method and critical point theory, and we refer the readers to [2,25,26]. The
study of differential equations and variational problems with p(x)-growth condi-
tions was an interesting topic, which arises from nonlinear elastic mechanics. Some
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of these problems come from different areas of applied mathematics and physics
such as Micro Electro-Mechanical systems, surface diffusion on solids. The p(x)-
biharmonic operator possesses more complicated nonlinearities than p−biharmonic.
Recently, Ayoujil and El Amrouss. [3] studied the spectrum of a fourth order ellip-
tic equation with variable exponent. Ge-Xue [16] and Qian-Shen [23], considered
some differential inclusions involving p(x)-Laplacian and Clarke subdifferential with
Dirichlet boundary condition.

The purpose of this article is to study the nonlinear, nonsmooth, boundary value
problem involving the p(x)-biharmonic operator

−∆2
p(x) − a(x)|u|p(x)−2u ∈ −∂F (x, u) in Ω

u ≥ 0 in Ω
u = ∆u = 0 on ∂Ω

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1 and
∆2
p(x) = ∆(|∆u|p(x)−2∆u) is the p(x)-biharmonic operator of fourth order, with

p ∈ C+(Ω) = {p ∈ C(Ω) : p(x) > 1}, a ∈ L∞(Ω) such that infx∈Ω a(x) = a− > 0,
supx∈Ω a(x) = a+ > 0.

To formulate our problem, we shall consider a Carathéodory function F : Ω×R→
R which is locally Lipschitz in the second variable and satisfies some conditions
(F1)–(F5), presented in section 3. By ∂F (x, u) we denote the subdifferential with
respect to the u variable in the sense of Clarke [4].

For the p(x)-operators the natural setting is described by the variable exponent
Sobolev spaces WL,p(·)(Ω). We will study a class of problem for hemivariational
inequalities on some domains of the type Z which is a nonempty, closed, convex
cone of W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω). In fact, our purpose is to study the following
variational-hemivariational inequality problem: Find u ∈ Z as a weak solution of
problem (1.1) such that∫

Ω

|∆u|p(x)−2∆u∆(v − u)dx+
∫

Ω

a(x)|u|p(x)−2u(v − u)dx

+
∫

Ω

F 0(x, u(x),−v(x) + u(x))dx ≥ 0,
(1.2)

for all v ∈ Z.
Our method is more direct and is based on the critical point theory for non-

smooth Lipschitz functionals developed by Motreanu and Panagiotopoulos [21]. To
investigate the existence of solution of (1.2), we shall construct a functional I(u)
associated to (1.2). For the convenience of the reader, in the next section we briefly
present the basic notion and facts from the theory, which will be used in the study
of problem (1.2).

The article is organized as follows. First, we introduce the basic definitions
and properties in the framework of the generalized Lebesgue and Sobolev spaces
Lp(·)(Ω),WL,p(·)(Ω), and refer the reader to [5, 7, 8, 12, 13] more details. Then
we show basic notions about generalized directional derivative, hypotheses on F ,
and facts about the mountain pass theorem. Finally, whose an existence results
for a p(x)-biharmonic problem under Dirichlet boundary conditions, by using the
symmetric mountain pass theorem by Motreanu and Panagiotopoulos. This means
we will show that u ∈ W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) is a critical point of I(u) in the
sense of Motreanu-Panagiotopoulos is a solution of (1.2).
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2. Preliminaries

To discuss problem (1.2), we need to state some properties of the spaces Lp(·)(Ω)
and WL,p(·)(Ω) which we call the generalized Lebesgue-Sobolev spaces. For p ∈
C+(Ω̄), denote by 1 < p− = minx∈Ω̄ p(x) ≤ p+ = maxx∈Ω̄ p(x) < +∞, the following
result holds. The variable exponent Lebesgue space Lp(·)(Ω) is defined by

{u : Ω→ R :
∫

Ω

|u(x)|p(x)dx <∞}.

The space Lp(x)(Ω) is endowed by the Luxemburg norm

‖u‖p(·) = inf{λ > 0 :
∫

Ω

|u(x)
λ
|p(x)dx} ≤ 1}.

Note that, when p is constant the Luxemburg norm ‖ · ‖p(·) coincide with the
standard norm ‖ · ‖p of the Lebesgue space Lp(Ω). Then (Lp(x)(Ω), ‖ · ‖p(·)) is a
Banach space [18].

Let p′ be the function obtained by conjugating the exponent p pointwise, that
is 1

p(x) + 1
p′(x) = 1 for all x ∈ Ω̄, then p′ belongs to C+(Ω̄).

Proposition 2.1 ( [18]). The space Lp(·)(Ω) is separable, reflexive, and Banach;
Lp′(·)(Ω) is its dual space.

Proposition 2.2 ( [12]). (i) For any u ∈ Lp(x)(Ω) and v ∈ Lp
′(x)(Ω), the

following Hölder type inequality valid,∫
Ω

|u(x)v(x)|dx ≤
( 1
p−

+
1
p′−
)
‖u‖p(x)‖v‖p′(x).

(ii) If p, q ∈ C(Ω̄) and 1 ≤ p ≤ q in Ω, then the embedding Lq(·) ↪→ Lp(·) is
continuous.

Proposition 2.3 ( [12]). Let p ∈ C+(Ω), and let ϕp(·)(u) =
∫

Ω
|u(x)|p(x)dx. If

u, (un)n are in Lp(·)(Ω), when 1 ≤ p− ≤ p+ ≤ ∞, then the following relations hold:
(i) ‖u‖p(·) ≥ 1⇒ ‖u‖p−p(·) ≤ ϕp(·) ≤ ‖u‖

p+
p(·),

(ii) ‖u‖p(·) ≤ 1⇒ ‖u‖p+p(·) ≤ ϕp(·) ≤ ‖u‖
p−
p(·).

The generalized Lebesgue-Sobolev space WL,p(x)(Ω) for L = 1, 2, . . . is defined
as

WL,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ L},

where Dαu = ∂|α|

∂α1x1...∂αnxn
for α = (α1, α2, . . . , αN ) which is a multi-index and

|α| = ΣNi=1αi. The space WL,p(x)(Ω) with the norm

‖u‖WL,p(·)(Ω) =
∑
|α|≤L

‖Dαu‖p(·),

is a separable and reflexive Banach space.
The space WL,p(x)

0 (Ω) is the closure in WL,p(·)(Ω) of the set of all WL,p(·)(Ω)
functions with compact support.

Proposition 2.4 ( [6]). WL,p(·)
0 (Ω) is a separable, uniformly convex and reflexive

Banach space.
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For every u ∈ WL,p(·)
0 (Ω) the Poincaré inequality holds, i.e., there exists a posi-

tive constant Cp in which

‖u‖Lp(·)(Ω) ≤ Cp‖∇u‖Lp(·)(Ω).

(see [14]). Hence, an equivalent norm for the space WL,p(·)
0 (Ω) is

‖u‖
W
L,p(·)
0 (Ω)

=
∑
|α|=L

‖Dαu‖p(·).

Let p∗L denote the critical variable exponent related to p, defined on Ω̄ by

p∗L(x) =

{
Np(x)

N−Lp(x) Lp(x) < N,

+∞ Lp(x) ≥ N.
(2.1)

Proposition 2.5 ( [12, 18]). For p, q ∈ C+(Ω) in which q(x) ≤ p∗L(x) for each
x ∈ Ω, there is a continuous embedding

WL,p(x)(Ω) ↪→ Lq(x)(Ω).

This embedding is compact if q(x) < p∗L(x) for each x ∈ Ω̄.

Remark 2.6. (i) (W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω), ‖ · ‖) is a separable and reflexive Ba-

nach space. By proposition (2.5) there is a continuous and compact embedding of
W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) into Lq(x), where q(x) < p∗2(x) for x ∈ Ω.
(ii) Define

‖u‖ = inf{λ > 0 :
∫

Ω

[|∆u
λ
|p(x) + a(x)|u

λ
|p(x)]dx ≤ 1},

for all u ∈W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω), then ‖u‖ is a norm on W 2,p(x)(Ω)∩W 1,p(x)

0 (Ω).
According to [27], the norm ‖·‖2,p(x) is equivalent to the norm |∆ · |p(x) in the space
X. Consequently, the norms ‖ · ‖2,p(x), ‖ · ‖ and |∆ · |p(x) are equivalent.

In this article, we denote X = W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) and X? its dual space.

Proposition 2.7. Define Φ(u) =
∫

Ω
[|4u|p(x) + a(x)|u(x)|p(x)dx]. For u, un ∈ X,

(i) ‖u‖ < (=;>)1⇔ Φ(u) < (=;>)1,
(ii) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ Φ(u) ≤ ‖u‖p− ,

(iii) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ Φ(u) ≤ ‖u‖p+ ,
(iv) ‖un‖ → 0⇔ Φ(un)→ 0,
(v) ‖un‖ → ∞⇔ Φ(un)→∞.

The proof of the above proposition is similar to the proof in [12]; we omit it.

Proposition 2.8 ( [1, 6]). Let h be of class C(Ω̄). If p+ < N/L and 1 ≤ h(x) ≤
p∗L(x) for each x ∈ Ω, then there exists Ch+ = Ch+(N, p, L,Ω) > 0 such that

‖u‖h(·) ≤ Ch+‖u‖
(W 2,p(x)(Ω)∩W 1,p(x)

0 (Ω))
, ∀u ∈ (W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω)). (2.2)

Proposition 2.9. Let u ∈ Lp(x)(Ω). Then

(i) |u|p(x)−1 ∈ Lp′(x), where p′(x) = p(x)
p(x)−1 ,

(ii) ‖|u|p(x)−1‖p′(x) ≤ 1 + ‖u‖p
+

p(x).
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Proof. (a) is clear. To show (b), if ‖ |u|p(x)−1‖p′(x) ≤ 1, then the inequality in (b)
is obvious. So, we presume that ‖ |u|p(x)−1‖p′(x) > 1.
If ‖ |u|‖p(x) > 1, using Proposition 2.3(i)

‖ |u|p(x)−1‖p
′−

p′(x) ≤
∫

Ω

|u|(p(x)−1)p′(x) =
∫

Ω

|u|p(x) ≤ ‖u‖p
+

p(x).

Hence, ‖|u|p(x)−1‖p′(x) ≤ 1 + ‖u‖p
+

p(x). In a similar way, if ‖|u|‖p(x) < 1, then

‖ |u|p(x)−1‖p′(x) ≤ 1 + ‖u‖p
+

p(x). �

Now, we review some definitions and basic properties of the theory of generalized
differentiation for locally Lipschitz functions. Let X be a Banach space and X? its
topological dual. By ‖ · ‖ we will denote the norm in X and by 〈·, ·〉 the duality
brackets for the pair (X,X?). A function h : X → R is said to be locally Lipschitz,
if for every x ∈ X there exists a neighbourhood U of x and a constant K > 0
depending on U such that |h(y)− h(z)| ≤ K‖y − z‖ for all y, z ∈ U . For a locally
Lipschitz function h : X → R we define the generalized directional derivative of h
at u ∈ X in the direction γ ∈ X by

h0(u; γ) = lim sup
w→u,t→0+

h(w + tγ)− h(w)
t

.

The generalized gradient of h at u ∈ X is defined by

∂h(u) = {x? ∈ X? : 〈x?, γ〉X ≤ h0(u; γ), ∀γ ∈ X},
which is a nonempty, convex and w?-compact subset of X?, where 〈·, ·〉X is the
duality pairing between X? and X.

Proposition 2.10 ( [4]). Let h, g : X → R be locally Lipschitz functions. Then
(i) h0(u; ·) is subadditive, positively homogeneous.

(ii) (−h)0(u; v) = h0(u;−v) for all u, v ∈ X.
(iii) h0(u; v) = max{〈ξ, v〉 : ξ ∈ ∂h(u)} for all u, v ∈ X.
(iv) (h+ g)0(u; v) ≤ h0(u; v) + g0(u; v) for all u, v ∈ X.

Definition 2.11 ( [22]). Let X be a Banach space. I : X → (−∞,+∞] is a
Motreanu-Panagiotopoulos-type functional, where I = h + χ in which h : X → R
is locally Lipschitz and χ : X → (−∞,+∞] is convex, proper and lower semicon-
tinuous.

Definition 2.12 ( [21]). An element u ∈ X is said to be a critical point of I = h+χ
if

h0(u; v − u) + χ(v)− χ(u) ≥ 0, ∀v ∈ X.

Let h : X → R be a locally Lipschitz functional, and assume the functional
χ : X → R ∪ {+∞} is convex, lower semicontinuous and proper, whose restriction
to dom(χ) = {x ∈ X : χ(u) < ∞} is continuous. Then h + χ is a Motreanu-
Panagiotopoulos functional.

Definition 2.13. Let h : X → R be locally Lipschitz and Z be a nonempty, closed,
convex subset of X. The indicator of Z is the function χZ : X → R∪{+∞} defined
by putting for every u ∈ X,

χZ =

{
0 u ∈ Z
+∞ u /∈ Z .

(2.3)
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It is easily seen that χZ is proper, convex and lower semicontinuous, while its
restriction to dom(χZ) = Z is the constant 0. Clearly u ∈ X is a critical point
for the Motreanu-Panagiotopoulos functional h + χZ if and only if u ∈ Z and the
following condition holds

h0(u; v − u) ≥ 0, ∀v ∈ Z.

Definition 2.14 ( [21]). Let X be a Banach space and I : X → (−∞,+∞],
I = h + χ Motreanu-Panagiotopoulos type functional. It is said to satisfy the
Palais-Smale condition at level c ∈ R (for short (PS)c), if every sequence {un} in
X satisfying I(un)→ c and

h0(u; v − un) + χ(v)− χ(un) ≥ −εn‖v − un‖, ∀v ∈ X,

for a sequence εn in [0,∞) tends to zero, contains a convergent subsequence.

The next theorem is due to Motreanu and Panagiotopoulos [21] and extends to
a nonsmooth setting the well known “mountain pass theorem”.

Theorem 2.15 ( [21]). Assume that the functional I : X → (−∞,+∞] defined by
I = h+ χ, satisfies (PS), I(0) = 0, and

(i) there exist constants a > 0 and ρ > 0, such that I(u) ≥ a for all ‖u‖ = ρ;
(ii) there exists e ∈ X, with ‖e‖ > ρ and I(e) ≤ 0. Then

c = inf
f∈Γ

sup
t∈[0,1]

I(f(t)),

is a critical value of I for c ≥ a, where

Γ = {f ∈ C([0, 1], X) : f(0) = 0, f(1) = e}.

Definition 2.16. The functional I : X → X? satisfies the condition (S+) if for
any sequence {un}n ⊂ X which converges weakly to u in X and

lim sup
n→∞

〈I(un), un − u〉 ≤ 0,

then {un}n converges strongly to u in X.

As it is customary for solving of (1.2), we consider a functional I(u) = φ(u) +
S(u)− F(u) + χ(u) associated to (1.2) which is defined by I(u) : WL,p(·)

0 (Ω)→ R
such that

φ(u) =
∫

Ω

1
p(x)
|∆u|p(x)dx, ∀u ∈WL,p(x)

0 (Ω),

S(u) =
∫

Ω

1
p(x)

[a(x)|u|p(x)]dx, ∀u ∈WL,p(x)
0 (Ω),

F(u) =
∫

Ω

F (x, u(x))dx, ∀u ∈WL,p(x)
0 (Ω),

where χ(u) is the indicator function of Z. Functionals φ,S,F are locally Lipschitz.
In conclusion, I = φ+ S − F + χ is a Motreanu-Panagiotopoulos type functional.

Proposition 2.17 ( [9]). Suppose that

φ(u) =
∫

Ω

1
p(x)
|∆u|p(x)dx, ∀u ∈ X.
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Then the operator φ′(u) : X → X? defined as

〈φ′(u), v〉 =
∫

Ω

|∆u|P (x)−2∆u∆vdx, ∀u, v ∈ X.

satisfies the following properties:
(i) φ′ is continuous, bounded and strictly monotone.

(ii) φ′ is of (S+) type.
(iii) φ′ is a homeomorphism.

Definition 2.18. Consider the function

S(u) =
∫

Ω

1
p(x)

a(x)|u|p(x)dx, ∀u ∈ X.

Then the operator S ′ is the derivative operator of S in the weak sense, where
S ′(u) : X → X?, is defined by

〈S ′(u), v〉 =
∫

Ω

a(x)|u|p(x)−2uvdx, ∀u, v ∈ X.

3. Main result

We assume that F : Ω × R → R is a Carathéodory function, which is locally
Lipschitz in the second variable and satisfying the following properties:

(F1) F (x, 0) = 0, a.e. x ∈ Ω and p, q ∈ C+(Ω), there exists a constant c1 > 0
such that |ξ| ≤ c1(|s|p(x)−1 + |s|q(x)−1), whenever ξ ∈ ∂F (x, s) with (x, s) ∈
Ω× R.

(F2) There exists a constant ν ∈]p, p∗L[ such that

νF (x, s) + F 0(x, s;−s) ≤ 0, ∀(x, s) ∈ Ω× R.

(F3) lims→0 max{|ξ| : ξ ∈ ∂F (x, s)}/sp(x)−1 = 0 uniformly for every x ∈ Ω.
(F4) There exists a constant R > 0 such that

cR =: inf{F (x, s) : (x, |s|) ∈ Ω× [R,+∞)} > 0.

(F5) There exists u ∈ X\{0} such that

C‖u‖p
+
≤
∫

Ω

F (x, u(x))dx, if ‖u‖ ≥ 1,

or
C‖u‖p

−
≤
∫

Ω

F (x, u(x))dx, if ‖u‖ ≤ 1,

where C > 1/p−.
Here, we denote by ∂F (x, s) and F 0(x, s; ·) the generalized gradient and the gen-
eralized directional derivative of F (x, ·) at the point s ∈ R, respectively.

Proposition 3.1 ( [19]). If F : Ω×R→ R satisfies (F1)–(F2), and p, q ∈ C+(Ω),
with p+ < q− ≤ q+ < (p∗L)−, then for every ε > 0 there exists c(ε) > 0 such that

(i) |ξ| ≤ ε|s|p(x)−1 + c(ε)|s|q(x)−1 for all ξ ∈ ∂F (x, s) with (x, s) ∈ Ω× R;
(ii) |F (x, s)| ≤ ε|s|p+ + c(ε)|s|q(x) for all (x, s) ∈ Ω× R.

Define F : WL,p(x)
0 (Ω)→ R dy

F(u) =
∫

Ω

F (x, u(x))dx, ∀u ∈WL,p(x)
0 (Ω).
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Proposition 3.2 ( [19]). Let F : Ω× R→ R be a locally Lipschitz function which
satisfies (F1). Then F is well-defined and it is locally Lipschitz. Moreover,

F0(u; v) ≤
∫

Ω

F 0(x, u(x); v(x))dx, ∀u, v ∈WL,p(x)
0 (Ω).

The next lemma points out the relationship between the critical points of I(u)
and the solutions of problem (1.2).

Lemma 3.3. Every critical point of I is a solution of problem (1.2).

Proof. Let u ∈ X be a critical point of I(u) = φ(u) + S(u) − F(u) + χ(u). Then
u ∈ Z and by definition (2.13)

〈φ′u, v − u〉+ 〈S ′u, v − u〉 − F0(u; v − u) ≥ 0, ∀v ∈ X.

Using Proposition (3.2) and the property (ii) from Proposition (2.10), we obtain
the desired inequality. �

Lemma 3.4. Assume that F : Ω × R → R satisfies (F1)–(F3). Then I satisfies
the (PS)c condition for each c ∈ R.

Proof. Fix c ∈ R and let {un} be a sequence in X in which

I(un) = φ(un) + S(un)−F(un) + χ(un)→ c, (3.1)

〈φ′un, v − un〉+ 〈S ′un, v − un〉 − F0(un; v − un) + χ(v)− χ(un)

≥ −εn‖v − un‖p(·), ∀v ∈ X,
(3.2)

where εn is a sequence in [0,+∞) converges to zero. According to (3.1), one con-
cludes that the sequence {un} belongs entirely to Z. Setting v = 2un in (3.2),∫

Ω

|4un|p(x)dx+
∫

Ω

a(x)|un|p(x)dx+
∫

Ω

F 0(x, un;−un)dx ≥ −εn‖un‖p(·). (3.3)

We infer from (3.1) that for enough large n ∈ N,

c+ 1 ≥ φ(un) + S(un)−F(un). (3.4)

Multiplying (3.3) by ν−1, adding this one to (3.4) and using the condition (F2), for
enough large n ∈ N,

εn
ν
‖un‖p(·) + c+ 1 ≥

( 1
p(x)

− 1
ν

) ∫
Ω

|4un|p(x)dx+ (
1

p(x)
− 1
ν

)
∫

Ω

a(x)|un|p(x)dx

−
∫

Ω

[F (x, un(x)) +
1
ν
F 0(x, un(x);−un(x)]dx

≥ (
1

p(x)
− 1
ν

)
[ ∫

Ω

|4un|p(x)dx+
∫

Ω

a(x)|un|p(x)dx
]

≥ (
1
p+
− 1
ν

)‖u‖X

This estimate ensures that the sequence {un} is bounded in Z. Since X is a reflexive
Banach space, it follows that there exists an element u ∈ Z in which {un} has a
weakly convergent subsequence (denoted also by {un} ) to u in X. X is compactly
embedded in Lq(x)(Ω), so un → u in Lq(x)(Ω); i.e.,

‖un − u‖q(x) → 0, as n→∞. (3.5)
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Setting v = u in (3.2),

〈φ′un, u− un〉+
∫

Ω

a(x)|un|p(x)−2un(u− un)dx+
∫

Ω

F 0(x, un(x); (un − u)(x)dx

≥ −εn‖u− un‖p(x).

(3.6)
Using (3.6), the Proposition (3.1)(i), for any ε > 0,

〈φ′un, un − u〉 ≤
∫

Ω

a(x)|un|p(x)−2un(u− un)dx+
∫

Ω

F 0(x, un; (un − u)dx

+ εn‖u− un‖p(x)

≤ a+

∫
Ω

|un|p(x)−1(u− un)dx+
∫

Ω

ε|un|p(x)−1(un − u)dx

+
∫

Ω

c(ε)|un|q(x)−1(un − u)dx+ εn‖u− un‖p(x)

≤ (a+ − ε)
∫

Ω

|un|p(x)−1(u− un)dx

+
∫

Ω

c(ε)|un|q(x)−1(un − u)dx+ εn‖u− un‖p(x).

Since {un} ⊆ Lp(x), by the compactly embedded X into Lq(x) for the second part
of above estimate and by using Hölder’s inequality,

〈φ′un, un − u〉 ≤ (a+ − ε)( 1
p−

+
1
p′−

)‖|un|p(x)−1‖p′(x)‖u− un‖p(x)

+ c(ε)(
1
q−

+
1
q′−

)‖|un|q(x)−1‖q′(x)‖un − u‖q(x) + εn‖u− un‖p(x).

From the condition 1 ≤ p ≤ q, it follows that the embedding Lq(·) ↪→ Lp(·) is
continuous.

By compact embedding X into Lq(x), in view of proposition (2.9) and by the
fact that

‖|un|q(x)−1‖q′(x) ≤ max{‖un‖q
−−1
q(x) , ‖un‖q

+−1
q(x) }

for all n, it results that for the arbitrariness of ε > 0 and εn → 0, then

lim sup
n→∞

< φ′un, un − u >≤ 0.

Taking into account that the operator φ′ has the (S+) property, so {un} converges
strongly to u in X. This completes the proof. �

Now we state the main result of this paper for obtaining nontrivial solution of
(1.2).

Theorem 3.5. Assume that the function F : Ω×R→ R satisfies (F1)–(F5). Then
Problem (1.2) has a nontrivial solution.

Proof. According to Lemma (3.3), it is sufficient to prove the existence of a critical
point of functional I. For this, we check that I satisfies in the conditions of the
Mountain Pass Theorem.

Lemma (3.4), guarantees that I satisfies the (PS)c condition for every c ∈ R. By
Proposition (3.1) (ii), let ε ∈ (0, 1

Cp
+

p+
p+

) be fixed, where Cp+ is the Sobolev constant
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given in (2.2) and h+ = p+. Put kε = ( 1
p+ − εC

p+

p+ ) > 0, and Cε = max{Cq
+

q(·), C
q−

q(·)},
where Cq+ is the Sobolev constant given in (2.2) for h+ = q+. Take r ∈ (0, 1] be so
small that rp

+−q− > Cε
kε

. Then, for each u ∈ X, in which ‖u‖ = r,

I(u) =
∫

Ω

[
|4u|p(x)

p(x)
+
a(x)|u(x)|p(x)

p(x)
− F (x, u(x))]dx

≥ 1
p+

Φ(u)− ε‖u‖p
+

p+ − c(ε)ϕq(·)(u)

≥ 1
p+

Φ(u)− ε‖u‖p
+

p+ − c(ε) max{‖u‖q
+

q(·), ‖u‖
q−

q(·)}

≥ 1
p+
rp

+
− εrp

+
Cp

+

p+ − c(ε) max{Cq
+

q+ , C
q−

q+ }r
q−

≥ rq
−

[(
1
p+
− εCp

+

p+ )rp
+−q− − Cε]

≥ rq
−

(kεrp
+−q− − Cε)

Therefore, I(u) ≥ a, where a = rq
−

(kεrp
+−q− − Cε) > 0 for each u ∈ X, ‖u‖ = r.

To use the Mountain-Pass Theorem it remains to show that there exists an e ∈ X
with ‖e‖ > ρ and I(e) ≤ 0. Let us fix u ∈ Z with ‖u‖ ≥ 1. Using proposition (2.7)
(iii) and hypothesis (F5), it follows that

I(u) =
∫

Ω

(
[
|4u|p(x)

p(x)
+
a(x)|u|p(x)

p(x)
]− F (x, u(x))

)
dx

≤ 1
p−

∫
Ω

(|4u|p(x) + a(x)|u|p(x))−
∫

Ω

F (x, u(x))dx

≤ 1
p−

Φ(u)−
∫

Ω

F (x, u(x))dx

≤ (
1
p−
− C)‖u‖p

+
,

(3.7)

where C > 1/p−. Thus, I(u) ≤ 0. Fix arbitrary u0 ∈ Z\{0}, consider u = tu0

(t > 0) in (3.7), then I(tu0) ≤ 0. Put e = tu0, so ‖e‖ > ρ and I(e) ≤ 0. This
completes the proof. �

Conclusion. Lemma (3.4) ensures that the functional I satisfies (PS)c and I(0) =
0. By Theorem (3.5), it follows that there are constants a, ρ > 0 and e ∈ X
such that I fulfills the properties (i) and (ii) from Theorem (2.15). Hence, the
number c = inff∈Γ supt∈[0,1] I(f(t)), is a critical value of I with c ≥ a > 0, where
Γ = {f ∈ C([0, 1], X) : f(0) = 0, f(1) = e}. It is obvious that the critical point
u ∈ X which is correspond to c cannot be trivial since I(u) = c > 0 = I(0).
According to the Lemma (3.3) which concludes that u is an element of Z and it is
a solution of (1.2).
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[24] M. Růžička; Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in

Mathematics, Vol. 1748, Springer, Berlin, 2000.
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