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SOLVABILITY OF FRACTIONAL ANALOGUES OF THE
NEUMANN PROBLEM FOR A NONHOMOGENEOUS

BIHARMONIC EQUATION

BATIRKHAN KH. TURMETOV

Abstract. In this article we study the solvability of some boundary value
problems for inhomogenous biharmobic equations. As a boundary operator

we consider the differentiation operator of fractional order in the Miller-Ross

sense. This problem is a generalization of the well known Neumann problems.

1. Introduction

Biharmonic equations appear in the study of mathematical models in several
real-life processes as, among others, radar imaging [3] or incompressible flows [11].
Omitting a huge amount of works devoted to the study of this kind of equations,
we refer some of them regarding to their used methods. Difference schemes and
variational methods were used in the works [2, 10]. By using numerical and itera-
tive methods, Dirichlet and Neumann boundary problems for biharmonic equations
were studied in the papers [7, 8]. There are some works, for example [12], where
a computational method, based on the use of Haar wavelets was used for solving
2D and 3D Poisson and biharmonic equations. We also point out the work made
in [9], where regularity of solutions for nonlinear biharmonic equations was inves-
tigated. In [4] and the dissertation [13] various problems for complex biharmonic
and polyharmonic equations were investigated.

In this article we refer to the domain Ω = {x ∈ Rn : |x| < 1}, as the unit ball.
The dimension of the space is n ≥ 3, and it is denoted ∂Ω = {x ∈ Rn : |x| = 1} as
the unit sphere. The usual Euclidean norm is written as |x|2 = x2

1 + x2
2 + · · ·+ x2

n.
Now, for any u : Ω → R smooth enough function and a given α > 0, denoting
by r = |x| and θ = x/|x|, the appropriate integral operator of order α in the
Riemann-Liouville sense can be defined, in a sense to ([20], p.69), by the following
expression

Jα[u](x) =
1

Γ(α)

∫ r

0

(r − τ)α−1u(τθ)dτ.
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In what follows, we assume that J0[u](x) = u(x) for all x ∈ Ω. Let m− 1 < α ≤
m, m = 1, 2, . . . . The following expressions

RLD
α[u](x) =

dm

drm
Jm−α[u](x), CD

α[u](x) = Jm−α[
dmu

drm
](x),

are called, respectively, derivatives of α order in Riemann-Liouville and Caputo
sense [20]. Here d

dr is a differentiation operator of the form

d

dr
=

n∑
i=1

xi
r

∂

∂xi
,

dk

drk
=

d

dr
(
dk−1

drk−1
), k = 2, 3, . . . .

Let the parameter j take one of the values, j = 0, 1, . . . ,m and consider the set of
operators

Dα
j [u](x) =

dm−j

drm−j
Jm−α

dj

drj
u(x).

If j ≥ 1 and D = d
dr , then

Dα
j = D ·D · · · · ·D︸ ︷︷ ︸

m−j

·CDα−j .

This operator is called derivative of α order in Miller-Ross sense [24]. Denote

Bαj u(x) = rαDα
j u(x),

B−αu(x) =
1

Γ(α)

∫ 1

0

(1− s)α−1s−αu(sx)ds.

Let 0 < α ≤ 2. Consider the following problems in the domain Ω.

Problem 1.1. Let 0 < α < 2. Find a function u(x) ∈ C4(Ω) ∩ C(Ω̄) such that
Bα+k

1 [u](x) ∈ C(Ω̄), k = 0, 1 satisfying the equation

∆2u(x) = g(x), x ∈ Ω, (1.1)

and the boundary value conditions:

Dα
1 [u](x) = f1(x), x ∈ ∂Ω, (1.2)

Dα+1
1 [u](x) = f2(x), x ∈ ∂Ω. (1.3)

Problem 1.2. Let 1 < α ≤ 2. Find a function u(x) ∈ C4(Ω) ∩ C(Ω̄) such that
Bα+k

2 [u](x) ∈ C(Ω̄), k = 0, 1 satisfying equation (1.1) and the boundary value
condition:

Dα
2 [u](x) = f1(x), x ∈ ∂Ω, (1.4)

Dα+1
2 [u](x) = f2(x), x ∈ ∂Ω. (1.5)

Note that the boundary value problems with boundary operators of fractional
order for elliptic equations of the second order have been studied in [5, 17, 21, 22,
25, 26, 27, 28, 29, 32, 33]. Moreover, in [6] for the equation (1.1) the boundary-value
problem with the conditions

Dα
0 [u](x) = f1(x), Dα+1

0 [u](x) = f2(x), x ∈ ∂Ω,

0 < α ≤ 1 has been studied.
Note that for all x ∈ ∂Ω we have the equality r dudr = du

dr = du
dν , where ν is

a vector of outward normal to ∂Ω. It is well known (see e.g. [15]) that for all
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x ∈ ∂Ω the operator r ddr (r ddr − 1) . . . (r ddr − k + 1) coincides with the operator dk

dνk ,
k = 1, 2, . . . . Then in the case of α = 1 for all x ∈ ∂Ω we obtain

D1
1u(x) =

du(x)
dr

=
du

dν
, r2D2

ju(x) = r2 d
2u(x)
dr2

= r
d

dr

(
r
d

dr
− 1
)
u(x).

Consequently, for values α = 1 or α = 2, problems 1.1 and 1.2 are analogues of
the Neumann problem for the equation (1.1). The considered problems in the case
of α = 1 have been studied in [16], and in the case of α = 2 in [30]. It is proved
that in the case of α = 1 for solvability of the problem the following conditions are
necessary and sufficient:

1
2

∫
Ω

(1− |x|2)g(x)dx =
∫
∂Ω

[f2(x)− f1(x)]dsx, (1.6)

and in the case of α = 2,
1
2

∫
Ω

(1− |x|2)Γ3[g(x)]dx =
∫
∂Ω

f2(x)dSx, (1.7)

1
2

∫
Ω

xk(1− |x|2)Γ4[g](x)dx =
∫
∂Ω

xk[f2(x)− f1(x)]dSx, k = 1, 2, . . . , n, (1.8)

where Γc[u](x) = (r ∂∂r + c)u(x), c > 0.
Note that the Neumann problem in the case of polyharmonic equation was stud-

ied in [18, 19, 31].

2. Properties of the operators Bαj and B−α

We assume that the function u(x) is smooth enough in the domain Ω. The
following proposition can be proved by direct calculation.

Lemma 2.1. Let v1(x) = r du(x)
dr , v2(x) = r ddr (r ddr − 1)u(x). Then the following

equalities hold:

v1(0) = v2(0) = 0, (2.1)
∂v2

∂xk
(0) = 0, k = 1, 2, . . . , n. (2.2)

Similar propositions hold for the function Bαj [u](x), j = 0, 1.

Lemma 2.2. Let 0 < α ≤ 2. Then the following equalities hold:

Bα1 [u](0) = 0, (2.3)

Bα2 [u](0) = 0,
∂Bα2 [u](0)

∂xi
= 0, i = 1, 2, . . . , n. (2.4)

Proof. Let 0 < α < 1. Then by the definition of the operator Bα1 for the function
Bα1 [u](x) we have

Bα1 [u](x)

=
rα

Γ(1− α)

∫ r

0

(r − τ)−α
du

dτ
(τθ)dτ =

rα

Γ(2− α)
d

dr

∫ r

0

(r − τ)1−α du

dτ
(τθ)dτ

=
rα

Γ(1− α)
d

dr

[ (r − τ)1−α

1− α
u(τθ)

∣∣∣τ=r

τ=0
+
∫ r

0

(r − τ)−αu(τθ)dτ
]

=
rα

Γ(1− α)
d

dr

[
− r

1−α

1− α
u(0) + r1−α

∫ 1

0

(1− ξ)−αu(ξx)dξ
]
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= − u(0)
Γ(1− α)

+ (1− α)u1(x) + r
du1(x)
dr

,

where

u1(x) =
1

Γ(1− α)

∫ 1

0

(1− ξ)−αu(ξx)dξ.

Therefore,

Bα1 [u](x) = − u(0)
Γ(1− α)

+ (1− α)u1(x) + r
du1(x)
dr

, x ∈ Ω. (2.5)

Hence, by equality (2.1) we obtain

lim
x→0

Bα1 [u](x) = − u(0)
Γ(1− α)

+ (1− α) lim
x→0

u1(x) + lim
x→0

r
du1(x)
dr

= − u(0)
Γ(1− α)

+
(1− α)u(0)

Γ(1− α)

∫ 1

0

(1− ξ)−αdξ

= − u(0)
Γ(1− α)

+
(1− α)u(0)

Γ(2− α)
= 0.

Equality (2.3) is proved for the case 0 < α < 1.
No let 1 < α < 2 and j = 1. Then by definition of Bα1 we have

Bα1 [u](x) =
rα

Γ(2− α)
d

dr

∫ r

0

(r − τ)1−α du

dτ
(τθ)dτ

=
rα

Γ(1− α)
d2

dr2

∫ r

0

(r − τ)2−α

(2− α)
du

dτ
(τθ)dτ

=
rα

Γ(2− α)
d2

dr2

[ (r − τ)2−α

2− α
u(τθ)

∣∣∣τ=r

τ=0
+
∫ r

0

(r − τ)1−αu(τθ)dτ
]

=
rα

Γ(2− α)
d2

dr2

[
− r

2−α

2− α
u(0) + r2−α

∫ 1

0

(1− ξ)1−αu(ξx)dξ
]

= − (1− α)u(0)
Γ(2− α)

+ (1− α)(2− α)u2(x) + 2(2− α)r
du2(x)
dr

+ r2 d
2

dr2
u2(x),

where

u2(x) =
1

Γ(2− α)

∫ 1

0

(1− ξ)1−αu(ξx)dξ.

Therefore,

Bα1 [u](x) = − (1− α)
Γ(2− α)

u(0) + (1− α)(2− α)u2(x)

+ 2(2− α)r
du2(x)
dr

+ r
d

dr
(r
d

dr
− 1)u2(x), x ∈ Ω.

(2.6)

Then, taking into account the equalities (2.1) and (2.2), we obtain

lim
x→0

Bα1 [u](x) = − (1− α)
Γ(2− α)

u(0) + (1− α)(2− α) lim
x→0

u2(x)

= − (1− α)u(0)
Γ(2− α)

+
(1− α)(2− α)u(0)

Γ(2− α)

∫ 1

0

(1− ξ)1−αdξ

= − (1− α)u(0)
Γ(2− α)

+
(1− α)(2− α)u(0)

Γ(3− α)
= 0.
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Equality (2.3) is proved for the case 1 < α < 2, j = 1.
Now we turn to the proof of the first equality of (2.4). By definition of Bα2 we

have

Bα2 [u](x) =
rα

Γ(2− α)

∫ r

0

(r − τ)1−α d
2u

dτ2
(τθ)dτ

=
rα

Γ(1− α)
d2

dr2

∫ r

0

(r − τ)3−α

(2− α)(3− α)
d2u

dτ2
(τθ)dτ

= − (1− α)u(0)
Γ(2− α)

− r

Γ(2− α)
du(0)
dr

+ (1− α)(2− α)u2(x)

+ 2(2− α)r
du2(x)
dr

+ r2 d
2u2(x)
dr2

.

Thus,

Bα2 [u](x) = − (1− α)u(0)
Γ(2− α)

− r

Γ(2− α)
du(0)
dr

+ (1− α)(2− α)u2(x)

+ 2(2− α)r
du2(x)
dr

+ r
d

dr

(
r
d

dr
− 1
)
u2(x), x ∈ Ω.

(2.7)

Equalities (2.1) imply

r
du2(x)
dr

∣∣∣
x=0

= 0, r
d

dr

(
r
d

dr
− 1
)
u2(x)

∣∣∣
x=0

= 0.

Then from representation (2.1) we obtain

lim
x→0

Bα2 [u](x) = − (1− α)u(0)
Γ(2− α)

+
(1− α)(2− α)u(0)

Γ(2− α)
Γ(2− α)Γ(1)

Γ(3− α)
= 0.

Further, we denote yi = τθi, i = 1, 2, . . . , n. Then

du(τθ)
dτ

=
n∑
i=1

∂u(τθ)
∂yi

dyi
dτ

=
n∑
i=1

θi
∂u(τθ)
∂yi

.

Since θ = x/r, θi = xi/r, it follows that

r

Γ(2− α)
du(0)
dτ

=
r

Γ(2− α)

n∑
i=1

xi
r

∂u(τθ)
∂yi

∣∣∣
τ=0

=
1

Γ(2− α)

n∑
i=1

xi
∂u(0)
∂yi

.

Thus, for any k = 1, 2, . . . , n,

∂

∂xk

[
− r

Γ(2− α)
du(0)
dτ

]
= − 1

Γ(2− α)
∂u(0)
∂yk

.

It is obvious that
∂

∂xk

[
− 1− α

Γ(2− α)
u(0)

]
= 0.

Further, for any k = 1, 2, . . . , n, the equality ∂
∂xk

u(ξx) = ∂u
∂yk

∂yk

∂xk
= ξ ∂u∂yk

holds.
Hence,

∂

∂xk
u(ξx)

∣∣
x=0

= ξ
∂u(0)
∂yk

.

Consequently,

∂

∂xk
u2(x)

∣∣
x=0

=
1

(3− α)(2− α)Γ(2− α)
∂u(0)
∂yk

.
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Further, by the definition of r ddr we have r du2(x)
dr =

∑n
i=1 xi

∂u2(x)
∂xi

. Thus,

∂

∂xk

[
r
du2(x)
dr

]
=

n∑
i=1

xi
∂2u2(x)
∂xk∂xi

+
∂u2(x)
∂xk

.

Therefore,

∂

∂xk

[
2(2− α)r

du2(x)
dr

]∣∣
x=0

= 2(2− α)[
n∑
i=1

xi
∂2u2(x)
∂xk∂xi

+
∂u2(x)
∂xk

]∣∣
x=0

=
2

(3− α)Γ(2− α)
∂u(0)
∂yk

.

Further, by (2.2), it follows that
∂

∂xi

[
r
d

dr
(r
d

dr
− 1)u2(x)

]∣∣
x=0

= 0.

By using all these calculations, from the representation of the function Bα2 [u](x),
we obtain

∂Bα2 [u](0)
∂xk

=
1

Γ(2− α)
[
− ∂u(0)

∂yk
+

1− α
(3− α)

∂u(0)
∂yk

+
2

(3− α)
∂u(0)
∂yk

]
= 0.

If α = 1 or α = 2, then B1
1u(x) = r du(x)

dr , B2
1u(x) = r ddr (r ddr − 1)u(x), and for these

functions the statement of the lemma follows from the lemma 2.1. �

The following proposition was proved in [27].

Lemma 2.3. Let 0 < α ≤ 1. Then for any x ∈ Ω the following equalities hold:

B−α[Bα1 [u]](x) = u(x)− u(0), (2.8)

and if u(0) = 0, then
Bα1 [B−α[u]](x) = u(x). (2.9)

A similar statement is true in the case of 1 < α < 2.

Lemma 2.4. Let 1 < α < 2, j = 1. Then equalities (2.8) and (2.9) hold.

Proof. Let us prove equality (2.8). Let x ∈ Ω and t ∈ (0, 1]. Consider the function

=t[u](x) =
1

Γ(α)

∫ t

0

(t− τ)α−1τ−αBα1 [u](τx)dτ.

By using the definition of Bα1 , we have

=t[u](x) =
1

Γ(α)

∫ t

0

(t− τ)α−1 d

dτ
J2−α[

d

dτ
u](τx)dτ.

Integrating the above integral by parts, we obtain

=t[u](x) =
α− 1
Γ(α)

∫ t

0

(t− τ)α−2J2−α[
d

dτ
u](τx)dτ

=
1

Γ(α− 1)

∫ t

0

(t− τ)α−2J2−α[
d

dτ
u](τx)dτ =u(tx)− u(0).

If we put t = 1, then

u(x) = u(0) +
1

Γ(α)

∫ 1

0

(1− τ)α−1τ−αBα1 [u](τx)dτ = u(0) +B−α[Bα1 [u]](x).
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Equality (2.8) is proved.
We turn to the proof of (2.9). Since u(0) = 0, then the operator B−α is deter-

mined for these functions, and, therefore, applying the operator Bα1 to the function
B−α[u](x), we have

Bα1 [B−α[u]](x) = rα
d

dr
J2−α d

dr
B−α[u](x)

=
rα

Γ(2− α)
d2

dr2

∫ r

0

(r − τ)2−α

2− α
d

dτ
B−α[u](τθ)dτ.

After the change of variables τs = ξ, the function

B−α[u](τθ) =
1

Γ(α)

∫ 1

0

(1− s)α−1s−αu(τsθ)ds

will be represented as

B−α[u](τθ) =
1

Γ(α)

∫ τ

0

(τ − ξ)α−1ξ−αu(ξθ)dξ = Jα[ξ−αu].

Then integrating by parts, we obtain

Bα1 [B−α[u]](x) = rα
d2

dr2
[J2−α[Jα[ξ−αu]]](x) = rα

d2

dr2
[J2[ξ−αu]](x) = u(x).

�

Lemma 2.5. Let 1 < α ≤ 2. Then for any x ∈ Ω the following equalities hold:

B−α[Bα2 [u]](x) = u(x)− u(0)−
n∑
i=1

xi
∂u(0)
∂xi

, (2.10)

and if u(0) = 0 and ∂u(0)
∂xi

= 0 for i = 1, 2, . . . , n, then

Bα2 [B−α[u]](x) = u(x). (2.11)

Proof. Let us prove equality (2.10). As in the proof of (2.8) we consider the function

=t[u](x) =
1

Γ(α)

∫ t

0

(t− τ)α−1τ−αBα2 [u](τx)dτ, t ∈ (0, 1].

By using the definition of Bα2 , we have

=t[u](x) =
1

Γ(α)

∫ t

0

(t− τ)α−1J2−α[
d2

dτ2
u](τx)dτ.

But this function by the definition of the fractional order integral has the form

=t[u](x) =
α− 1
Γ(α)

∫ t

0

(t− τ)α−2J2−α[
d

dτ
u](τx)dτ = Jα

[
J2−α[

d2

dτ2
u]
]
(x).

Since JαJ2−α = Jα+2−α = J2,

=t[u](x) = J2[
d2

dτ2
u] =

∫ t

0

(t− τ)
d2

dτ2
u(τx)dτ = −t d

dτ
u(0) + u(tx)− u(0).

Further, since
d

dτ
u(τx) =

n∑
i=1

∂u(τx)
∂yi

dyi
dτ

=
n∑
i=1

xi
∂u(τx)
∂yi

,
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it follows that
d

dτ
u(0) =

n∑
i=1

xi
∂u(0)
∂yi

≡
n∑
i=1

xi
∂u(0)
∂xi

.

If in the integral =t[u](x) we set t = 1, then

u(x)−u(0)−
n∑
i=1

xi
∂u(0)
∂xi

=
1

Γ(α)

∫ 1

0

(1− τ)α−1τ−αBα2 [u](τx)dτ ≡ B−α[Bα2 [u]](x).

Equality (2.10) is proved.
If u(0) = 0 and ∂u(0)

∂xi
= 0, i = 1, 2, . . . , n, then the operator B−α is defined on

these functions. Applying Bα2 we obtain

Bα2 [B−α[u]](x) =
rα

Γ(2− α)

∫ r

0

(r − τ)1−α d2

dτ2
B−α[u](τθ)dτ.

We represent the function B−α[u](τθ) as

B−α[u](τθ) =
1

Γ(α)

∫ 1

0

(1− s)α−1s−αu(sτθ)ds =
1

Γ(α)

∫ τ

0

(τ − ξ)α−1ξ−αu(ξθ)dξ .

Since α− 1 > 0, the following equality holds

d

dτ
B−α[u](τθ) =

α− 1
Γ(α)

∫ τ

0

(τ − ξ)α−2ξ−αu(ξθ)dξ ≡ Jα−1[ξ−αu](τθ).

It is easy to check the following equalities:

Bα2 [B−α[u]](x) =
rα

Γ(2− α)
d

dr

∫ r

0

(r − τ)2−α

2− α
d

dτ
Jα−1[ξ−αu](τθ)dτ

= rα
d

dr
J [ξ−αu](x) = rα

d

dr

∫ r

0

ξ−αu(ξθ)dξ

= rαr−αu(x) = u(x).

�

Let 0 < α ≤ 2, and consider the functions:

g1,α(x) = rα−5J1−α[r4g](x)

≡ rα−5

Γ(1− α)

∫ r

0

(r − τ)−ατ4g(τθ)dτ, 0 < α ≤ 1.
(2.12)

g2,α(x) = rα−6J2−α[r4g](x)

≡ rα−6

Γ(2− α)

∫ r

0

(r − τ)1−ατ4g(τθ)dτ, 1 < α ≤ 2.
(2.13)

Since J0[r4g](x) = r4g(x), it follows that g1,1(x) = g2,2(x) = g(x).

Lemma 2.6. Let 0 < α ≤ 2, and ∆2u(x) = g(x) for x ∈ Ω. Then for any x ∈ Ω
and j = 1, 2 the following statements hold:

(1) if 0 < α ≤ 1, then

∆2Bα1 [u](x) = (1− α)g1,α(x) + Γ4[g1,α](x); (2.14)

(2) if 1 < α ≤ 2, j = 1, 2, then

∆2Bαj [u](x) = (1−α)(2−α)g2,α(x) + 2(2−α)Γ4[g2,α](x) + Γ4[Γ3[g2,α]](x). (2.15)
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Proof. Note that for u(x) the following equality holds:

∆2[r
d

dr
u(x)] = r

d

dr
∆2u(x) + 4∆2u(x) = (r

d

dr
+ 4)∆2u(x) ≡ Γ4[∆2u](x).

Then when α = 1 we obtain

∆2B1
1 [u](x) = Γ4[g1,1](x) = Γ4[g](x);

and when α = 2 we have

∆2B2
2 [u](x) = Γ3[Γ4[g1,2]](x) = Γ4[Γ3[g]](x).

Consequently, in these two values of α the equalities (2.14) and (2.15) are proved.
Let 0 < α < 1. Using the representation of the function Bα1 [u](x) in (2.5), we

obtain
∆2Bα1 [u](x) = (1− α)∆2u1(x) + Γ4[∆2u1](x).

Since ∆2u(x) = g(x),

∆2u1(x) =
1

Γ(1− α)

∫ 1

0

(1− ξ)−αξ4g(ξx)dξ =
rα−5

Γ(1− α)

∫ r

0

(r − τ)−ατ4g(τθ)dτ ;

i.e. ∆2u1(x) = g1,α(x). Thus, for the functions Bα1 [u](x) we obtain the equality
(2.14).

Let 1 < α < 2, j = 1. Then the representation (2.6) implies:

∆2Bα1 [u](x) = (1−α)(2−α)∆2u2(x) + 2(2−α)Γ4[∆2u2](x) + Γ4[Γ3[∆2u2]](x)(x),

Further, taking into account ∆2u(x) = g(x) for ∆2u2(x), we obtain

∆2u2(x) =
1

Γ(2− α)

∫ 1

0

(1− ξ)1−αξ4g(ξx)dξ

=
rα−6

Γ(2− α)

∫ r

0

(r − τ)1−ατ4g(τθ)dτ = g2,α(x),

i.e. for the functions ∆2Bα1 [u](x) the representation (2.15) holds.
Analogously, to the case 1 < α < 2 for j = 2, the representation (2.7), by the

equality

r

Γ(2− α)
du(0)
dτ

=
r

Γ(2− α)

n∑
i=1

xi
r

∂u(τθ)
∂yi

∣∣
τ=0

=
1

Γ(2− α)

n∑
i=1

xi
∂u(0)
∂yi

,

yields the equality (2.15). �

Lemma 2.7. Let 0 < α ≤ 2 and the functions g1,α(y), g2,α(y) be defined by the
equalities (2.12) and (2.13), respectively. Then for any x ∈ Ω and j = 1, 2 the
following equalities hold:

(1) if 0 < α ≤ 1, then

∆2Bα1 [u](x) = |x|−4Bα1 [|x|4g](x); (2.16)

(2) if 1 < α ≤ 2, then, for j = 1, 2,

∆2Bαj [u](x) = |x|−4Bαj [|x|4g](x). (2.17)



10 B. KH. TURMETOV EJDE-2015/82

Proof. Since r ddr [|x|4g] = |x|4Γ4[g](x), then we have the equality

|x|−4r
d

dr
[|x|4g] = Γ4[g](x) = Γ4[∆2u](x) = ∆2Γ0[u](x) ≡ ∆2B1

1 [u](x).

Further, if we denote r ddr [|x|4g](x) = f(x), then

∆2B2
2 [u] = ∆2(r2 d

2

dr2
[u](x)) = ∆2(r

d

dr
(r
d

dr
− 1)[u](x))

= Γ4[Γ3[∆2u]](x) = Γ3[Γ4[g]](x) = (r
d

dr
+ 3)(|x|−4f)

= r
d

dr
(|x|−4f) + 3(|x|−4f) = |x|−4(r

d

dr
− 1)f.

Thus

∆2B2
2 [u] = |x|−4(r

d

dr
− 1)(r

d

dr
[|x|4g])(x) = |x|−4r2 d

2

dr2
[|x|4g] = |x|−4B2

2 [|x|4g].

Therefore, equalities (2.16) and (2.17) in the case of integer values of α is proved.
In the case of fractional values of α we use the equalities (2.14) and (2.15). To do it
we transform the functions gj,α(x), j = 1, 2. After changing the variable ξ = r−1τ
the integral, representing the function g1,α(x), can be rewritten in the following
form

g1,α(x) =
rα−5

Γ(1− α)

∫ r

0

(r − τ)−ατ4g(τθ)dτ.

Then

(1− α)g1,α(x) + Γ4[g1,α](x) =
1− α

Γ(1− α)
rα−5

∫ r

0

(r − τ)−ατ4g(τθ)dτ

= r−4 rα

Γ(1− α)
d

dr

∫ r

0

(r − τ)−ατ4g(τθ)dτ.

We transform the above integral as follows:

rα

Γ(1− α)
d

dr

∫ r

0

(r − τ)−ατ4g(τθ)dτ

=
rα

Γ(1− α)
d

dr

∫ r

0

τ4g(τθ)
d(r − τ)1−α

−(1− α)

=
rα

Γ(1− α)
d

dr

{∫ r

0

(r − τ)1−α

(1− α)
d

dτ
[τ4g(τθ)]dτ

}
+

rα

Γ(1− α)

∫ r

0

(r − τ)−α
d

dτ
[τ4g(τθ)]dτ ≡ Bα1 [|x|4g](x).

Thus,
∆2Bα1 [u](x) = |x|−4Bα1 [|x|4g](x), x ∈ Ω.

Let 1 < α < 2 and j = 1. Then after changing variables ξ = r−1τ , for the function
g2,α(x) we obtain

g2,α(x) =
rα−6

Γ(2− α)

∫ r

0

(r − τ)1−ατ4g(τθ)dτ.

Further, if f(x) is a smooth function then

r
d

dr
[rα−6f ] = rα−6

(
r
d

dr
+ α− 6

)
f(x).
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Thus,

(1− α)(2− α)g2,α(x) + 2(2− α)Γ4[g2,α](x) + Γ4[Γ3[g2,α]](x)

= (r
d

dr
+ 4)

[
rα−6(r

d

dr
+ 3 + 2(2− α) + α− 6)J2−α[τ4g]

]
(x)

+ rα−4 d
2

dr2

[ 1
Γ(2− α)

∫ r

0

(r − τ)1−ατ4g(τθ)dτ
]
.

We transform the above integral as follows:

1
Γ(2− α)

∫ r

0

(r − τ)1−ατ4g(τθ)dτ

=
1

Γ(2− α)

∫ r

0

τ4g(τθ)
d(r − τ)2−α

−(2− α)

= −τ4g(τθ)
(r − τ)2−α

(2− α)Γ(2− α)

∣∣∣τ=r

τ=0
+

1
Γ(2− α)

∫ r

0

(r − τ)1−α d

dτ
[τ4g(τθ)]dτ

≡ Dα
1 [τ4g(τθ)].

Hence,
∆2Bα1 [u](x) = |x|−4Bα1 [|x|4g].

Similarly, we consider the case 1 < α < 2, j = 2. �

3. Some properties of the solution of the Dirichlet problem

Consider the Dirichlet problem

∆2v(x) = g1(x), x ∈ Ω

v(x) = ϕ1(x),
dv(x)
dν

= ϕ2(x), x ∈ ∂Ω.
(3.1)

It is known that (see e.g. [1]), if g1(x), ϕ1(x) and ϕ2(x) are smooth functions, then
the solution of (3.1) exists and is unique. The solution of (3.1) is represented as:

v(x) =
∫

Ω

G2,n(x, y)g1(y)dy + w(x), (3.2)

where G2,n(x, y) is the Green function of (3.1), and w(x) is a solution of (3.1) when
g1(x) = 0; i.e.,

∆2w(x) = 0, x ∈ Ω,

w(x) = ϕ1(x),
dw(x)
dν

= ϕ2(x), x ∈ ∂Ω.

Denote

v1(x) =
∫

Ω

G2,n(x, y)g1(y)dy.

The explicit form of the Green’s function for the Dirichlet problem is obtained
for the cases n ≥ 2 in [14]. For example, in the case when n is odd or n is even and
n > 4, the Green’s function of the problem (3.1) follows from the expression

G2,n(x, y) = d2,n

[
|x− y|4−n −

∣∣x|y| − y

|y|
∣∣4−n

(2− n

2
)
∣∣x|y| − y

|y|
∣∣2−n(1− |x|2)(1− |y|2)

]
,
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where d2,n = 1
ωn

1
2(n−4)(n−2) and ωn = 2πn/2

Γ(n/2)− is area of the unit sphere.
Furthermore, for convenience, we consider only the case when n-odd or n-even

and n > 4. The following proposition was proved in [25].

Lemma 3.1. Let ϕ1(x), ϕ2(x) be smooth functions. Then the following equalities
hold:

w(0) =
1

2ωn

∫
∂Ω

[2ϕ1(y)− ϕ2(y)]dSy, (3.3)

∂w(0)
∂xk

=
n

2ωn

∫
∂Ω

yk[3ϕ1(y)− ϕ2(y)]dSy, k = 1, 2, . . . , n. (3.4)

Lemma 3.2. Let g2(x) be a smooth function. Then
(1) if g1(x) = Γ4[g2](x), then

v1(0) =
1

4ωn

∫
Ω

(1− |y|2)g2(y)dy; (3.5)

(2) if g1(x) = Γ3[Γ4[g2]](x) then

∂v1(0)
∂xk

=
n

4ωn

∫
Ω

yk(1− |y|2)Γ4[g](y)dy, k = 1, 2, . . . , n. (3.6)

Now we study the values of v1(0) and ∂v1(0)
∂xk

, k = 1, 2, . . . , n, when

g1(x) = (1− α)g1,α(x) + Γ4[g1,α](x), and (3.7)

g1(x) = (1− α)(2− α)g2,α(x) + 2(2− α)Γ4[g2,α](x) + Γ4[Γ3[g2,α]](x). (3.8)

Lemma 3.3. Let 0 < α ≤ 2, j = 1, 2, g(x) be a smooth function, and gj,α(x) be
defined by (2.12) or (2.13). Then

(1) if 0 < α ≤ 1 and g1(x) is defined by (3.7), then

v1(0) =
1

2ωn

∫
Ω

1− |y|2

2
g1,α(y)dy +

1− α
ωn2(n− 2)(n− 4)

∫
Ω

[
|y|4−n − 1

+ (2− n

2
)(1− |y|2)

]
g1,α(y)dy;

(3.9)

(2) if 1 < α < 2, j = 1 and the function g1(x) is defined by (3.8), then

v1(0) =
1

2ωn

∫
Ω

1− |y|2

2
Γ3[g2,α](y)dy +

2(2− α)
2ωn

∫
Ω

1− |y|2

2
g2,α(y)dy

+
(1− α)(2− α)

ωn2(n− 2)(n− 4)

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g2,α(y)dy;

(3.10)

(3) if 1 < α ≤ 2, j = 2 and g1(x) is defined by (3.8), then for v1(0) we have the
equality (3.10), moreover

∂v1(0)
∂xk

=
n

4ωn

∫
Ω

yk(1− |y|2)Γ4[g2,α](y)dy

+
1

2ωn
2(2− α)
(n− 2)

∫
Ω

yk
[
|y|2−n − 1 +

2− n
2

(1− |y|2)
]
Γ4[g2,α](y)dy

+
(1− α)(2− α)

2ωn(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]g2,α(y)dy,

(3.11)

k = 1, . . . , n.
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Proof. When α is an integer, equalities (3.9) and (3.11) follows from Lemma 3.3.
Let 0 < α < 1, j = 1 and g1(x) be represented in the form (3.7). Then

v1(x) =
∫

Ω

G2,n(x, y)g1(y)dy

= (1− α)
∫

Ω

G2,n(x, y)g1,α(y)dy +
∫

Ω

G2,n(x, y)Γ4[g1,α](y)dy.

From the first statement of Lemma 3.2, for the second integral of the above equality
we obtain ∫

Ω

G2,n(0, y)Γ4[g1,α](y)dy =
1

2ωn

∫
Ω

1− |y|2

2
g1,α(y)dy.

For the first integral, using the representation of the functions G2,n(x, y), we have∫
Ω

G2,n(0, y)g1,α(y)dy = d2,n

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g1,α(y)dy.

Thus, for v1(0) we obtain the equality (3.9). Let 1 < α < 2, j = 1. Then, using the
equality (3.8), we obtain

v1(x) =
∫

Ω

G2,n(x, y)g1(y)dy

= (1− α)(2− α)
∫

Ω

G2,n(x, y)g2,α(y)dy

+ 2(2− α)
∫

Ω

G2,n(x, y)Γ4[g2,α](y) +
∫

Ω

G2,n(x, y)Γ4[Γ3[g2,α]](y)dy

By (3.5), for the second and third integrals of the last equality we obtain∫
Ω

G2,n(0, y)Γ4[g2,α](y)dy =
1

2ωn

∫
Ω

1− |y|2

2
g2,α(y)dy,∫

Ω

G2,n(0, y)Γ4[Γ3[g2,α]](y)dy =
1

2ωn

∫
Ω

1− |y|2

2
Γ3[g2,α](y)dy.

For the first integral we have∫
Ω

G2,n(0, y)g1,α(y)dy = d2,n

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g2,α(y)dy.

Therefore, for v1(0) we obtain the equality (3.10).
No let 1 < α < 2, j = 2. Since in this case g1(x) has the form (3.8), for v1(0)

again we obtain (3.10). Further, we obtain

v1,1(x) = (1− α)(2− α)
∫

Ω

G2,n(x, y)g2,α(y)dy,

v1,2(x) = 2(2− α)
∫

Ω

G2,n(x, y)Γ4[g2,α](y)dy,

v1,3(x) =
∫

Ω

G2,n(x, y)Γ4[Γ3[g2,α]](y)dy.

Using (3.6), for the function v1,3(x) we obtain

∂v1,3(0)
∂xk

=
n

4ωn

∫
Ω

yk(1− |y|2)Γ4[g2,α](y)dy, k = 1, 2, . . . , n.
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Since
∂

∂xk
|x− y|4−n =

4− n
2
|x− y|2−n2(xk − yk)

∣∣
x=0

= −(4− n)|y|2−nyk,

∂

∂xk

∣∣x|y| − y

|y|
∣∣4−n =

4− n
2
|x|y| − y

|y|
|2−n2(xk|y| −

yk
|y|

)|y|
∣∣∣
x=0

= −(4− n)yk,
∂

∂xk

[
|x|y| − y

|y|
|2−n(1− |x|2)

]
=

2− n
2

∣∣x|y| − y

|y|
∣∣−n2(xk|y| −

yk
|y|

)|y|(1− |x|2) +
∣∣x|y| − y

|y|
∣∣2−n(−2xk)

∣∣
x=0

= −(2− n)yk,

it follows that for
∂G2,n(x, y)

∂xk

∣∣∣
x=0

,

we obtain
∂G2,n(x, y)

∂xk

∣∣
x=0

=
1

2ωn
1

(n− 2)
[
yk|y|2−n − yk +

2− n
2

yk(1− |y|2)
]

Then
∂v1,1(0)
∂xk

=
1

2ωn
(1− α)(2− α)

(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]g2,α(y)dy,

∂v1,2(0)
∂xk

=
1

2ωn
2(2− α)
(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]Γ4[g2,α](y)dy.

Hence, for ∂v1(0)
∂xk

we obtain (3.11). �

4. Main results

Let g1,α(x) and g2,α(x), x ∈ Rn be defined by (2.12) and (2.13), and let n be
odd, or n be even with n > 4.

Theorem 4.1. Let 0 < α < 2, g(x), f1(x) and f2(x) be smooth functions.
(1) If 0 < α ≤ 1 and j = 1, then problem 1.1 is solvable if and only if∫

∂Ω

[f2(y) + (α− 2)f1(y)]dSy

=
∫

Ω

1− |y|2

2
g1,α(y)dy

+
1− α

(n− 2)(n− 4)

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g1,α(y)dy

(4.1)

(2) If 1 < α < 2 and j = 1, then problem 1.1 is solvable if and only if∫
∂Ω

[f2(y) + (α− 2)f1(y)]dSy

=
∫

Ω

1− |y|2

2
Γ3[g2,α](y)dy + 2(2− α)

∫
Ω

1− |y|2

2
g2,α(y)dy

+
(1− α)(2− α)
(n− 2)(n− 4)

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g2,α(y)dy .

(4.2)
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(3) If the solution of the problem 1.1 exists then it is unique up to a constant
term and can be represented as

u(x) = C +B−α[v](x), (4.3)

where v(x) is a solution of (3.1), satisfying the condition v(0) = 0, with the func-
tions

ϕ1(x) = f1(x), ϕ2(x) = f2(x) + αf1(x) (4.4)

g1(x) = |x|−4Bαj [|x|4g](x). (4.5)

Proof. Let u(x) be a solution of problem 1.1. Apply the operator Bα1 to the function
u(x), and denote v(x) = Bα1 [u](x). Then in the case 0 < α ≤ 1, using (2.16) from
lemma 2.7, we obtain

∆2v(x) = ∆2Bα1 [u](x) = |x|−4Bα1 [|x|4g](x) ≡ g1(x), 0 < α ≤ 1.

and if 1 < α < 2, then by (2.17), we have

∆2v(x) = ∆2Bα1 [u](x) = |x|−4Bα1 [|x|4g](x) ≡ g1(x), 1 < α < 2.

Then by assumption, Bα1 [u](x) ∈ C(Ω̄). Therefore, v(x) ∈ C(Ω̄) and

v(x)
∣∣
∂Ω

= f1(x) ≡ ϕ1(x).

Further, if 0 < α ≤ 1, then by the definition of Bα+1
1 ,

Bα+1
1 [u](x) = rα+1 d

dr
J2−(α+1)[

d

dr
u](x) = rα+1 d

dr
J1−α[

d

dr
u](x)

= rα+1 d

dr
[r−α ·Bα1 [u]](x) = r

d

dr
Bα1 [u](x)− αBα1 [u](x).

Therefore, the boundary condition (2.3) of the problem 1.1 implies the condition
∂v(x)
∂ν

∣∣
∂Ω

= f2(x) + αf1(x) ≡ ϕ2(x).

Similarly, in the case 1 < α < 2, j = 1 from definition of Bα+1
1 , we have

Bα+1
1 [u](x) = rα+1 d

2

dr2
J3−(α+1)[

d

dr
u](x) = rα+1 d

dr
[
d

dr
J2−α[

d

dr
u]](x)

= rα+1 d

dr
[r−αBα1 [u]](x) = r

d

dr
Bα1 [u](x)− αBα1 [u](x).

Consequently, in this case,
∂v(x)
∂ν

∣∣
∂Ω

= f2(x) + αf1(x) ≡ ϕ2(x).

Thus, if u(x) is a solution of problem 1.1, then for the function v(x) = Bα1 [u](x) we
obtain the problem (3.1) with the functions (4.4) and (4.5).

By (2.3), the additional condition v(0) = 0 holds. For smooth enough functions
g1(x), ϕ1(x) and ϕ2(x) the solution of (3.1) exists, is unique and can be represented
as in (3.2).

Let 0 < α ≤ 1. Then, using the representation of the function g1(x) as (2.14),
and from (3.3) and (3.9), we obtain

v(0) =
1

2ωn

∫
∂Ω

[2ϕ1(y)− ϕ2(y)]dSy +
1

2ωn

∫
Ω

1− |y|2

2
g1,α(y)dy

+
1− α

ωn2(n− 2)(n− 4)

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g1,α(y)dy.



16 B. KH. TURMETOV EJDE-2015/82

Hence, the condition v(0) = 0 holds if

−
∫
∂Ω

[2ϕ1(y)− ϕ2(y)]dSy

=
∫

Ω

1− |y|2

2
g1,α(y)dy

+
1− α

(n− 2)(n− 4)

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g1,α(y)dy.

Since

2ϕ1(y)− ϕ2(y) = 2f1(y)− f2(y)− αf1(y) = −[f2(y) + (α− 2)f1(y)],

this condition can be rewritten as (4.1). Therefore, necessity of condition (4.1) is
proved.

Applying the equality v(x) = Bα1 [u](x), the operator B−α, by (2.8), yields

B−α[v](x) = B−α[Bα1 [u]](x) = u(x)− u(0),

i.e. if the solution of problem 1.1 exists, and can be represented as in (4.2). Now we
show that condition (4.1) is also sufficient for the existence of solutions of problem
1.1. Indeed, if condition (4.1) holds, then for solutions of problem (3.1) with func-
tions (4.4) and (4.5), condition v(0) = 0 holds. Then for such functions the operator
B−α is defined and we can consider the function u(x) = C+B−α[v](x). This func-
tion satisfies all conditions of the problem 1.1. Indeed, since ∆2v(x) = g1(x) and
g1(x) = (1− α)g1,α(x) + Γ4[g1,α](x), then, using (2.16) we can write the equalities

∆2u(x) = ∆2[C +B−α[v](x)]

=
1

Γ(α)

∫ 1

0

(t− τ)α−1τ−α∆2v(τx)dτ

=
1

Γ(α)

∫ 1

0

(t− τ)α−1τ4−α[|τx|−4Bα1 [τ4g]](τx)dτ

=
|x|−4

Γ(α)

∫ 1

0

(t− τ)α−1τ−αBα1 [τ4g](τx)dτ

= |x|−4B−α[Bα1 [|x|4g]](x) = |x|−4|x|4g(x) = g(x).

Using (2.9), we obtain

Dα
1 [u](x)

∣∣
∂Ω

= Bα1 [u](x)
∣∣
∂Ω

= Bα1 [C +B−α[v]](x)
∣∣
∂Ω

= v(x)
∣∣
∂Ω

= ϕ1(x) = f1(x),

Dα+1
1 [u](x)

∣∣
∂Ω

= Bα+1
1 [u](x)

∣∣
∂Ω

= r
∂

∂r
Bα1 [u](x)− αBα1 [u](x)

∣∣
∂Ω

= r
∂

∂r
v(x)− αv(x)

∣∣
∂Ω

= ϕ2(x)− αϕ1(x)

= f2(x) + αf1(x)− αf1(x) = f2(x).

Consequently, the function u(x) = C + B−α[v](x) satisfies all conditions of the
problem 1.1.

Let 1 < α < 2, j = 1. In this case v(x) = Bα1 [u](x) will be a solution of problem
(3.1) with functions ϕ1(x) = f1(x), ϕ2(x) = f2(x) + αf1(x) and

g1(x) = |x|−4Bα1 [|x|4g](x)
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≡ (1− α)(2− α)g2,α(x) + 2(2− α)Γ4[g2,α](x) + Γ4[Γ3[g2,α]](x).

By (2.6), the condition v(0) = 0, holds additionally. Then, using (3.3) and (3.10),
we have

v(0) =
1

2ωn

∫
∂Ω

[2ϕ1(y)− ϕ2(y)]dSy +
2(2− α)

2ωn

∫
Ω

1− |y|2

2
g1,α(y)dy

+
1

2ωn

∫
Ω

1− |y|2

2
Γ3[g2,α](y)dy

+
(1− α)(2− α)

ωn2(n− 2)(n− 4)

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g2,α(y)dy.

Thus, for the condition v(0) = 0, the following equality is necessary

−
∫
∂Ω

[2ϕ1(y)− ϕ2(y)]dSy

= 2(2− α)
∫

Ω

1− |y|2

2
g2,α(y)dy +

∫
Ω

1− |y|2

2
Γ3[g2,α](y)dy

+
(1− α)(2− α)
(n− 2)(n− 4)

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g2,α(y)dy.

Since 2ϕ1(y)− ϕ2(y) = −[f2(y) + (α− 2)f1(y)], this condition can be rewritten as
(4.3). Therefore, necessity of the condition (4.3) is proved. Further, by repetition
of the argument in the case 0 < α < 1, one can show the rest of the theorem. �

Theorem 4.2. Let 1 < α ≤ 2, j = 2, g(x), f1(x) and f2(x) be smooth functions.
Then problem 1.2 is solvable if and only if:∫

∂Ω

[f2(y) + (α− 2)f1(y)]dSy

= 2(2− α)
∫

Ω

1− |y|2

2
g2,α(y)dy +

∫
Ω

1− |y|2

2
Γ3[g2,α](y)dy

+
(1− α)(2− α)
(n− 2)(n− 4)

∫
Ω

[|y|4−n − 1 + (2− n

2
)(1− |y|2)]g2,α(y)dy,

(4.6)

and ∫
∂Ω

yk[f2(y) + (α− 3)f1(y)]dSy

=
1
2

∫
Ω

yk(1− |y|2)Γ4[g2,α](y)dy

+
2(2− α)
n(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]Γ4[g2,α](y)dy

+
(1− α)(2− α)
n(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]g2,α(y)dy,

(4.7)

for k = 1, . . . , n.
If a solution of the problem 1.2 exists, then it is unique up to a first order

polynomial and can be represented as

u(x) = c0 +
n∑
i=1

cixi+B−α[v](x), (4.8)
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where ci, i = 0, 1, . . . , n are arbitrary constants, and v(x) is a solution of the problem
(3.1) with functions g1(x) = |x|−4Bα2 [|x|4g](x), ϕ1(x) = f1(x) and ϕ2(x) = f2(x) +
αf1(x), and which satisfies conditions v(0) = 0, ∂v(0)

∂xi
= 0, i = 1, 2, . . . , n.

Proof. Let u(x) be a solution of problem 1.2. Apply to the function u(x) the
operator Bα2 , and denote it by v(x) = Bα2 [u](x). Then (2.12) and

Bα+1
2 [u](x) = rα+1 d

dr
J3−(α+1)[

d2

dr2
u](x) = rα+1 d

dr
J2−α[

d2

dr2
u](x)

= rα+1 d

dr
[r−α ·Bα2 [u]](x) = r

d

dr
Bα2 [u](x)− αBα2 [u](x).

imply that the function v(x) is a solution of the problem (3.1) with functions
g1(x) = |x|−4Bα2 [|x|4g](x), ϕ1(x) = f1(x), ϕ2(x) = f2(x) + αf1(x).

Moreover, by lemma 2.2, the function v(x) = Bα2 [u](x) should satisfy conditions
v(0) = 0, ∂v(0)

∂xk
= 0, k = 1, 2, . . . , n.

For enough smooth functions g1(x), ϕ1(x) and ϕ2(x) the solution of problem
(3.1) exists, is unique and can be represented as (3.2).

Further, using the representation of the function g1(x) in the form (2.15), by
similar arguments, as in the case 1 < α < 2, j = 1, one can show that the equality
v(0) = 0 holds if the condition (4.4) holds.

Now we check that the equalities ∂v(0)
∂xk

= 0, k = 1, 2, . . . , n hold if condition (4.5)
holds. To do it we use the representation of the function v(x) in the form (3.2) and
the lemma 3.3. Since the function g1(x) = |x|−4Bα2 [|x|4g](x) can be represented as
(3.8), then by (3.4) and (3.11), we obtain

∂v(0)
∂xk

=
n

2ωn

∫
∂Ω

yk[3ϕ1(y)− ϕ2(y)]dSy +
n

4ωn

∫
Ω

yk(1− |y|2)Γ4[g2,α](y)dy

+
1

2ωn
2(2− α)
(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]Γ4[g2,α](y)dy

+
1

2ωn
(1− α)(2− α)

(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]g2,α(y)dy,

for k = 1, . . . , n. Consequently, equalities ∂v(0)
∂xk

= 0, k = 1, 2, . . . , n hold if∫
∂Ω

yk[ϕ2(y)− 3ϕ1(y)]dSy

=
1
2

∫
Ω

yk(1− |y|2)Γ4[g2,α](y)dy

+
2(2− α)
n(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]Γ4[g2,α](y)dy

+
(1− α)(2− α)
n(n− 2)

∫
Ω

yk[|y|2−n − 1 +
2− n

2
(1− |y|2)]g2,α(y)dy,

for k = 1, . . . , n.
Since ϕ2(y)−3ϕ1(y) = f2(x)+αf1(x)−3f1(x) = f2(x)+(α−3)f1(x), the above

condition can be rewritten as (4.7).
Applying the operator B−α to the equality v(x) = Bα1 [u](x), by (2.10), we obtain

B−α[v](x) = B−α[Bα1 [u]](x) = u(x)− u(0)−
n∑
i=1

xi
∂u(0)
∂xi

.



EJDE-2015/82 SOLVABILITY OF FRACTIONAL ANALOGUES 19

Denoting

c0 = u(0), ci =
∂u(0)
∂xi

, i = 1, 2, . . . , n,

we obtain the representation (4.8). Therefore, if solution of the problem 1.2 exists,
then it can be represented as (4.6).

Now we show that conditions (4.6) and (4.7) are also sufficient for existence of
a solution of the problem 1.2. Indeed, if conditions (4.6) and (4.7) hold, then for a
solution of the problem (3.1) with functions

g1(x) = |x|−4Bα1 [|x|4g](x), ϕ1(x) = f1(x), ϕ2(x) = f2(x) + αf1(x)

the conditions

v(0) = 0,
∂v(0)
∂xi

= 0, i = 1, 2, . . . , n,

hold. Then in the class of such functions the operator B−α is defined, and we can
consider the function

u(x) = c0 +
n∑
i=1

cixi+B−α[v](x).

We show that this function satisfies all conditions of the problem 1.1. Indeed, since

∆2v(x) = g1(x) ≡ |x|−4Bα1 [|x|4g](x),

it follows that

∆2u(x) = ∆2
[
c0 +

n∑
i=1

cixi+B−α[v](x)
]

=
1

Γ(α)

∫ 1

0

(t− τ)α−1τ−α∆2v(τx)dτ

= |x|−4B−α[Bα2 [|x|4g]](x).

The above expression, by (2.11), equals to g(x). Further, using (2.11), we obtain

Dα
2 [u](x)

∣∣
∂Ω

= Bα2 [u](x)
∣∣
∂Ω

= Bα2 [c0 +
n∑
i=1

cixi+B−α[v]](x)
∣∣
∂Ω

= v(x)
∣∣
∂Ω

= ϕ1(x) = f1(x),

Dα+1
2 [u](x)

∣∣
∂Ω

= Bα+1
2 [u](x)

∣∣
∂Ω

= rα+1 d

dr
J3−(α+1) d

2

dr2
u(x)

= rα+1 d

dr
J2−α d

2

dr2
u(x) = r

d

dr
Bα1 [u](x)− αBα1 [u](x)

∣∣
∂Ω

= r
d

dr
Bα1 [c0 +

n∑
i=1

cixi+B−α[v]](x)− αBα1 [c0 +
n∑
i=1

cixi+B−α[v]](x)
∣∣
∂Ω

= r
d

dr
Bα1 [u](x)− αBα1 [u](x)

∣∣
∂Ω

= r
dv(x)
dr

− αv(x)|∂Ω

= ϕ2(x)− αϕ1(x) = f2(x) + αf1(x)− αf1(x) = f2(x).

Consequently, the function c0 +
∑n
i=1 cixi+B

−α[v] satisfies all conditions of the
problem 1.2. �
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Remark 4.3. If in (4.1) α = 1, then condition on solvability of the problem
1.1 coincides with the condition (1.6). Similarly, in the case α = 2 condition on
solvability of the problem 1.2 coincides with the conditions (1.7) and (1.8).
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