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GROUND STATE SOLUTIONS FOR SEMILINEAR ELLIPTIC
EQUATIONS WITH ZERO MASS IN RN

JIU LIU, JIA-FENG LIAO, CHUN-LEI TANG

Abstract. In this article, we study the semilinear elliptic equation

−∆u = |u|p(x)−2u, x ∈ RN

u ∈ D1,2(RN ),

where N ≥ 3, p(x) =

(
p, x ∈ Ω

2∗, x 6∈ Ω,
with 2 < p < 2∗ := 2N/(N − 2), Ω ⊂ RN

is a bounded set with nonempty interior. By using the Nehari manifold, we

obtain a positive ground state solution.

1. Introduction and statement of main result

Considering the semilinear elliptic equation

−∆u = |u|2
∗−2u+ χΩ(x)(|u|p−2u− |u|2

∗−2u), x ∈ RN

u ∈ D1,2(RN ),
(1.1)

where N ≥ 3, 2 < p < 2∗ := 2N/(N − 2), Ω ⊂ RN is a bounded set with nonempty
interior and

χΩ(x) =

{
1, x ∈ Ω
0. x 6∈ Ω

(1.2)

The well-known semilinear elliptic equation with zero mass is

−∆u = |u|2
∗−2u, x ∈ RN

u ∈ D1,2(RN ),
(1.3)

where N ≥ 3, which has been studied very intensely (see [6,10,18]) and the explicit
expression of positive solutions was given. Of course, the semilinear elliptic equa-
tion with zero mass whose nonlinear term with subcritical growth has also been
investigated by many authors, for example [4, 7, 8, 9].
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By a transformation, (1.1) is equivalent to the following elliptic equation with
variable exponent

−∆u = |u|p(x)−2u, x ∈ RN

u ∈ D1,2(RN ),
(1.4)

where

p(x) =

{
p, x ∈ Ω
2∗. x 6∈ Ω

The equations with variable exponent appear in various mathematical models, for
example: electrorheological fluids [1, 17], nonlinear Darcy’s law in porous medium
[5], image processing [12]. Recently, these equations have been investigated by
many authors, see for example, [2, 11, 13, 14, 16]. However, they did not consider
problem (1.4); thus we study it in this article. Our main result reads as follows.

Theorem 1.1. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Then
equation (1.1) has a positive ground state solution.

If p ∈ C(RN , [2, 2∗]) and p 6≡ 2∗, we do not yet know whether equation (1.1) has
solution. We shall consider it in the future.

This article is organized as follows. Section 2 contains some preliminaries. Sec-
tion 3 gives the proof of theorem 1.1.

2. Preliminaries

In what follows, we use the following notation.
• D1,2(RN ) is the completion of C∞0 (RN ) with respect to the norm

‖u‖2D1,2(RN ) =
∫

RN

|∇u|2 dx.

• Lt(RN ), 2 ≤ t < +∞, denotes a Lebesgue space endowed with the norm

|u|tt =
∫

RN

|u|t dx.

• S denotes the best constant of Sobolev embedding D1,2(RN ) ↪→ L2∗(RN ); that
is,

S|u|22∗ ≤ ‖u‖2D1,2(RN ) for all u ∈ D1,2(RN ).

• D−1 is the dual space of D1,2(RN ).
• C, Ci denote various positive constants.

For equation (1.1), the energy functional I : D1,2(RN )→ R is defined by

I(u) =
1
2
‖u‖2D1,2(RN ) −

1
2∗

∫
RN

|u|2
∗
dx− 1

p

∫
RN

χΩ(x)|u|p dx

+
1
2∗

∫
RN

χΩ(x)|u|2
∗
dx

=
1
2
‖u‖2D1,2(RN ) −

1
p

∫
Ω

|u|p dx− 1
2∗

∫
RN\Ω

|u|2
∗
dx.

The Hölder and Sobolev inequalities imply∫
Ω

|u|p dx ≤ |u|p2∗,Ω(meas Ω)
2∗−p
2∗ ≤ |u|p2∗(meas Ω)

2∗−p
2∗

≤ S−
p
2 (meas Ω)

2∗−p
2∗ ‖u‖p

D1,2(RN )
,

(2.1)



EJDE-2015/84 GROUND STATE SOLUTIONS 3

where

|u|s,Ω =
(∫

Ω

|u|t dx
)1/t

, ∀t ∈ [1,+∞).

Thus the functional I is well defined. By Lemma 3.1 in next section, I is of class
C1(D1,2(RN ),R) and satisfies

〈I ′(u), v〉 =
∫

RN

∇u · ∇v dx−
∫

RN

|u|2
∗−2uv dx−

∫
RN

χΩ(x)|u|p−2uv dx

+
∫

RN

χΩ(x)|u|2
∗−2uv dx

=
∫

RN

∇u · ∇v dx−
∫

Ω

|u|p−2uv dx−
∫

RN\Ω
|u|2

∗−2uv dx,

(2.2)

for all u, v ∈ D1,2(RN ). Hence weak solutions of (1.1) correspond to the critical
point of the functional I. Define

N := {u ∈ D1,2(RN )\{0} : J(u) = 0}, m := inf
u∈N

I(u),

where
J(u) = ‖u‖2D1,2(RN ) −

∫
Ω

|u|p dx−
∫

RN\Ω
|u|2

∗
dx.

Since all solutions of (1.1) belong to the manifold N , first we seek for the minimizer
u for m and then we prove u is a solution of equation (1.1).

3. Proof of Theorem 1.1

The proof relies on the following lemmas.

Lemma 3.1. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Then the
functional I is of class C1(D1,2(RN ),R) and I ′(·) satisfies (2.2).

Proof. Define

ψ(u) =
1
p

∫
Ω

|u|p dx+
1
2∗

∫
RN\Ω

|u|2
∗
dx,

we need only to prove ψ ∈ C1(D1,2(RN ),R). Let u, h ∈ D1,2(RN ). Given x ∈ Ω
and 0 < |t| < 1, by the mean value theorem, there exists λ1 ∈ (0, 1) such that∣∣|u+ th|p − |u|p

∣∣
t

= p|u+ λ1th|p−1|h| ≤ p(|u|+ |h|)p−1|h|.

Similarly, given x ∈ RN\Ω and 0 < |t| < 1, there exists λ2 ∈ (0, 1) such that∣∣|u+ th|2∗ − |u|2∗
∣∣

t
= 2∗|u+ λ2th|2

∗−1|h| ≤ 2∗(|u|+ |h|)2∗−1|h|.

The Hölder inequality implies that∫
Ω

(|u|+ |h|)p−1|h| dx ≤
(∫

Ω

(|u|+ |h|)p dx
) p−1

p |h|p,Ω

≤ (|u|p,Ω + |h|p,Ω)p−1|h|p,Ω < +∞
and∫

RN\Ω
(|u|+ |h|)2∗−1|h| dx ≤

(∫
RN\Ω

(|u|+ |h|)2∗ dx
) 2∗−1

2∗ |h|2∗,RN\Ω
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≤ (|u|2∗,RN\Ω + |h|2∗,RN\Ω)2∗−1|h|2∗,RN\Ω < +∞ .

It follows from the Lebesgue theorem that

〈ψ′(u), h〉 = lim
t→0

ψ(u+ th)− ψ(u)
t

= lim
t→0

∫
Ω

|u+ th|p − |u|p

pt
dx+ lim

t→0

∫
RN\Ω

|u+ th|2∗ − |u|2∗

2∗t
dx

=
∫

Ω

lim
t→0

|u+ th|p − |u|p

pt
dx+

∫
RN\Ω

lim
t→0

|u+ th|2∗ − |u|2∗

2∗t
dx

=
∫

Ω

|u|p−2uh dx+
∫

RN\Ω
|u|2

∗−2uh dx.

Assume that un → u in D1,2(RN ), then un → u in L2∗(RN ) and Lp(Ω). If fol-
lows from [19, Theorem A.2 and A.4] that |un|p−2un → |u|p−2u in L

p
p−1 (Ω) and

|un|2
∗−2un → |u|2

∗−2u in L
2∗

2∗−1 (RN\Ω). Hence combining the Hölder and Sobolev
inequalities, we obtain

‖ψ′(un)− ψ′(u)‖D−1

≤ sup
‖ϕ‖D1,2(RN )=1,ϕ∈D1,2(RN )

∣∣∣ ∫
Ω

(|un|p−2un − |u|p−2u)ϕdx
∣∣∣

+ sup
‖ϕ‖D1,2(RN )=1,ϕ∈D1,2(RN )

∣∣∣ ∫
RN\Ω

(|un|2
∗−2un − |u|2

∗−2u)ϕdx
∣∣∣

≤ C
∣∣|un|p−2un − |u|p−2u

∣∣
p

p−1 ,Ω
+ C

∣∣|un|2
∗−2un − |u|2

∗−2u
∣∣

2∗
2∗−1 ,RN\Ω

= o(1).

Thus ψ is C1. It is obvious that I ′(·) satisfies (2.2). The proof is complete. �

Lemma 3.2. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Then for
any u ∈ D1,2(RN )\{0}, there exists tu > 0 such that tuu ∈ N .

Proof. For any u ∈ D1,2(RN )\{0}, define

f(t) := I(tu) =
t2

2
‖u‖2D1,2(RN ) −

tp

p

∫
Ω

|u|p dx− t2
∗

2∗

∫
RN\Ω

|u|2
∗
dx, ∀t ∈ (0,+∞).

Then one has

f ′(t)t = 〈I ′(tu), tu〉 = t2‖u‖2D1,2(RN ) − t
p

∫
Ω

|u|p dx− t2
∗
∫

RN\Ω
|u|2

∗
dx.

Combining 2 < p < 2∗, we have f ′(t)t > 0 for t > 0 small enough and f ′(t)t < 0 for
t > 0 large enough. Thus there exists tu > 0 such that f ′(tu)tu = 〈I ′(tuu), tuu〉 = 0.
That is tuu ∈ N . The proof is complete. �

Lemma 3.3. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Then m > 0.

Proof. For any u ∈ N , one has

‖u‖2D1,2(RN ) =
∫

Ω

|u|p dx+
∫

RN\Ω
|u|2

∗
dx

≤ C‖u‖p
D1,2(RN )

+ C‖u‖2
∗

D1,2(RN ),
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which implies that there exists α > 0 such that

‖u‖D1,2(RN ) ≥ α, ∀u ∈ N . (3.1)

Thus for any u ∈ N , we have

I(u) = I(u)− 1
p
〈I ′(u), u〉

=
(1

2
− 1
p

)
‖u‖2D1,2(RN ) +

(1
p
− 1

2∗
) ∫

RN\Ω
|u|2

∗
dx

≥
(1

2
− 1
p

)
‖u‖2D1,2(RN )

≥
(1

2
− 1
p

)
α2.

(3.2)

Hence m > 0. The proof is complete. �

Lemma 3.4. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Then for
any u ∈ N , J ′(u) 6= 0.

Proof. By (3.1), for any u ∈ N , one has

〈J ′(u), u〉 = 〈J ′(u), u〉 − pJ(u)

= (2− p)‖u‖2D1,2(RN ) − (2∗ − p)
∫

RN\Ω
|u|2

∗
dx

≤ (2− p)‖u‖2D1,2(RN )

≤ (2− p)α2 < 0.

(3.3)

Hence the proof is complete. �

Lemma 3.5. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Suppose that
u ∈ N and I(u) = m. Then u is a solution of (1.1).

Proof. Assume that u ∈ N and I(u) = m. Then by the Lagrange multiplier rule,
there exists λ ∈ R such that I ′(u) = λJ ′(u), which implies that 0 = 〈I ′(u), u〉 =
λ〈J ′(u), u〉. By Lemma 3.4, we obtain λ = 0. Hence I ′(u) = 0. The proof is
complete. �

Lemma 3.6. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Then there
exists a bounded sequence {un} ⊂ N satisfying I(un)→ m and I ′(un)→ 0 in D−1.

Proof. By the Ekeland variational principle in [19], there exist {un} ⊂ N and
{λn} ⊂ R such that I(un)→ m and I ′(un)− λnJ

′(un)→ 0 in D−1. By (3.2), one
has

I(un) = I(un)− 1
p
〈I ′(un), un〉 ≥

(1
2
− 1
p

)
‖un‖2D1,2(RN ),

which implies {un} is bounded in D1,2(RN ). Then we have

0 = 〈I ′(un), un〉 = λn〈J ′(un), un〉+ o(1).

Combining (3.3), we obtain λn → 0. For any ϕ ∈ D1,2(RN ) with ‖ϕ‖D1,2(RN ) = 1,
it follows from (2.1), the Hölder and Sobolev inequalities that∣∣ ∫

Ω

|un|p−2unϕdx
∣∣ ≤ (∫

Ω

|un|p
) p−1

p
(∫

Ω

|ϕ|p
) 1

p
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≤
(
S−

p
2 (meas Ω)

2∗−p
2∗ ‖un‖pD1,2(RN )

) p−1
p
(
|ϕ|p2∗(meas Ω)

2∗−p
2∗
) 1

p

≤ C‖un‖p−1
D1,2(RN )

‖ϕ‖D1,2(RN ) ≤ C.

Thus combining the Hölder and Sobolev inequalities, we have

‖J ′(un)‖D−1 = sup
‖ϕ‖D1,2(RN )=1,ϕ∈D1,2(RN )

|〈J ′(un), ϕ〉|

= sup
‖ϕ‖D1,2(RN )=1,ϕ∈D1,2(RN )

∣∣∣2 ∫
RN

∇un · ∇ϕdx− p
∫

Ω

|un|p−2unϕdx

− 2∗
∫

RN\Ω
|un|2

∗−2unϕdx
∣∣∣

≤ sup
‖ϕ‖D1,2(RN )=1,ϕ∈D1,2(RN )

[2‖un‖D1,2(RN )‖ϕ‖D1,2(RN ) + C

+ C‖un‖2
∗−1

D1,2(RN )
‖ϕ‖D1,2(RN )] ≤ C.

Hence we obtain

‖I ′(un)‖D−1 ≤ ‖I ′(un)− λnJ
′(un)‖D−1 + |λn|‖J ′(un)‖D−1 = o(1).

The proof is complete. �

If p(x) ≡ 2∗, equation (1.4) reduces to (1.3). It is well known that (1.3) has
ground state solution

v(x) =
CN

(1 + |x|2)
N−2

2

, (3.4)

where CN := [N(N − 2)]
N−2

4 and v satisfies∫
RN

|∇v|2 dx =
∫

RN

|v|2
∗
dx = SN/2.

Let the energy functional of (1.3) be

I∞(u) =
1
2
‖u‖2D1,2(RN ) −

1
2∗

∫
RN

|u|2
∗
dx.

Then we have

I∞(v) = I∞(v)− 1
2∗
〈I ′∞(v), v〉 =

1
N

∫
RN

|∇v|2 dx =
1
N
SN/2.

Now for the energy m, we make the following estimation.

Lemma 3.7. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Then
m < 1

N S
N/2.

Proof. Inspired by the idea in [3,15]. For ground state solution v of equation (1.3),
we define vn(x) := v(x + xn), where xn := (0, 0, . . . , 0, n). Thus ‖vn‖D1,2(RN ) =
‖v‖D1,2(RN ) = S

N
4 and then vn ⇀ u in D1,2(RN ), vn → u in Lp

loc(RN ), vn(x) →
u(x) a.e. in RN . Since for any x ∈ RN , vn(x) → 0, u = 0. By Lemma 3.2, there
exists tn ∈ (0,+∞) such that tnvn ∈ N . Then one has

‖vn‖2D1,2(RN ) = tp−2
n

∫
Ω

|vn|p dx+ t2
∗−2

n

∫
RN\Ω

|vn|2
∗
dx. (3.5)
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By (2.1) and (3.5), one has

‖v‖2D1,2(RN ) = ‖vn‖2D1,2(RN )

≤ C(tp−2
n ‖vn‖pD1,2(RN )

+ t2
∗−2

n ‖vn‖2
∗

D1,2(RN ))

= C(tp−2
n ‖v‖p

D1,2(RN )
+ t2

∗−2
n ‖v‖2

∗

D1,2(RN )),

which indicates that tn cannot appraoch zero, that is tn ≥ t0 for some t0 > 0. Since
Ω is bounded, there exists R > 0 such that Ω ⊂ BR := {x ∈ RN : |x| < R}. Since
for n large enough,∫

|x−xn|<R

1
(1 + |x|2)N

dx ≤
∫
|x−xn|<R

2N

n2N
dx =

2N

n2N
measBR = o(1), (3.6)

we have∫
RN

|v|2
∗
dx =

∫
RN

|vn|2
∗
dx

≥
∫

RN\Ω
|vn|2

∗
dx

≥
∫
|x|≥R

|vn|2
∗
dx

= C2∗

N

∫
|x|≥R

1
(1 + |x+ xn|2)N

dx

= C2∗

N

∫
|x−xn|≥R

1
(1 + |x|2)N

dx

= C2∗

N

∫
RN

1
(1 + |x|2)N

dx− C2∗

N

∫
|x−xn|<R

1
(1 + |x|2)N

dx

=
∫

RN

|v|2
∗
dx+ o(1).

Thus one has ∫
RN\Ω

|vn|2
∗
dx =

∫
RN

|v|2
∗
dx+ o(1) = SN/2 + o(1). (3.7)

It follows from (3.5) that

‖vn‖2D1,2(RN )

(∫
RN\Ω

|vn|2
∗
dx
)−1

≥ t2
∗−2

n ,

which implies
lim sup

n→∞
t2
∗−2

n ≤ ‖v‖2D1,2(RN )S
−N

2 = 1.

Thus up to a subsequence, one has tn → T ∈ (t0, 1]. Notice that∫
Ω

|vn|p dx = o(1).

By (3.5) and (3.7), one has SN/2 = T 2∗−2SN/2. Thus T = 1. From (3.7) it follows
that ∫

Ω

|vn|2
∗
dx = o(1).
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We claim that
t2
∗

n

2∗

∫
Ω
|vn|2

∗
dx

tp
n

p

∫
Ω
|vn|p dx

→ 0.

Indeed, by (3.4) and (3.6), for n large enough, one has∫
Ω

|vn|2
∗
dx ≤ C2∗

N

∫
BR

1
(1 + |x+ xn|2)N

dx

= C2∗

N

∫
|x−xn|<R

1
(1 + |x|2)N

dx

=
C2∗

N 2N

n2N
measBR.

Since the interior of Ω is nonempty, there exist z0 ∈ RN and r > 0 such that
Br(z0) := {x ∈ RN : |x− z0| < r} ⊂ Ω. Thus for n large enough, one has∫

Ω

|vn|p dx ≥ Cp
N

∫
Br(z0)

1

(1 + |x+ xn|2)
(N−2)p

2

dx

≥ Cp
N

∫
Br(z0)

1

2
(N−2)p

2 n(N−2)p
dx

=
Cp

N2
(2−N)p

2

n(N−2)p
measBr.

Then we obtain ∫
Ω
|vn|2

∗
dx∫

Ω
|vn|p dx

≤ C ′N
1

n2N−(N−2)p
= o(1),

since p < 2N
N−2 . Combining tn → 1, we implies the claim holds. By calculations,

one has
1−t2n

2
1−t2∗n

2∗

=
2∗(1− t2n)
2(1− t2∗n )

→ 1.

Recall that tnvn ∈ N . Hence for n large enough, one has

m ≤ I(tnvn)

=
t2n
2
‖vn‖2D1,2(RN ) −

tpn
p

∫
Ω

|vn|p dx−
t2
∗

n

2∗

∫
RN\Ω

|vn|2
∗
dx

=
t2n
2
‖vn‖2D1,2(RN ) −

t2
∗

n

2∗

∫
RN

|vn|2
∗
dx− tpn

p

∫
Ω

|vn|p dx+
t2
∗

n

2∗

∫
Ω

|vn|2
∗
dx

= I∞(vn)− 1− t2n
2
‖vn‖2D1,2(RN ) +

1− t2∗n

2∗

∫
RN

|vn|2
∗
dx

− tpn
p

∫
Ω

|vn|p dx+
t2
∗

n

2∗

∫
Ω

|vn|2
∗
dx

= SN/2 +
(1− t2∗n

2∗
− 1− t2n

2

)
SN/2 − tpn

p

∫
Ω

|vn|p dx+
t2
∗

n

2∗

∫
Ω

|vn|2
∗
dx

< SN/2.

The proof is complete. �



EJDE-2015/84 GROUND STATE SOLUTIONS 9

Lemma 3.8. Assume that N ≥ 3, 2 < p < 2∗ and χΩ satisfies (1.2). Suppose
that the sequence {un} ⊂ N is bounded in D1,2(RN ) and satisfies I(un) → m <
1
N S

N/2 and I ′(un)→ 0 in D−1. Then there exists u ∈ D1,2(RN ) such that up to a
subsequence, un → u in D1,2(RN ).

Proof. Since {un} ⊂ D1,2(RN ) is a bounded, up to a subsequence, there exists
u ∈ D1,2(RN ) such that un ⇀ u in D1,2(RN ), un → u in Lp(Ω) and un(x)→ u(x)
a.e. in RN . For any v ∈ D1,2(RN ), by I ′(un)→ 0 in D−1, one has

0 = 〈I ′(un), v〉+ o(1)

=
∫

RN

∇un · ∇v dx−
∫

Ω

|un|p−2unv dx−
∫

RN\Ω
|un|2

∗−2unv dx+ o(1)

=
∫

RN

∇u · ∇v dx−
∫

Ω

|u|p−2uv dx−
∫

RN\Ω
|u|2

∗−2uv dx

= 〈I ′(u), v〉.
Thus we have

I(u) = I(u)− 1
p
〈I ′(u), u〉

=
(1

2
− 1
p

)
‖u‖2D1,2(RN ) +

(1
p
− 1

2∗
) ∫

RN\Ω
|u|2

∗
dx

≥
(1

2
− 1
p

)
‖u‖2D1,2(RN ) ≥ 0.

Define vn = un − u. Thus one has

‖un‖2D1,2(RN ) = ‖vn‖2D1,2(RN ) + ‖u‖2D1,2(RN ) + o(1).

The Brezis-Lieb lemma implies∫
Ω

|un|p dx =
∫

Ω

|vn|p dx+
∫

Ω

|u|p dx+ o(1) =
∫

Ω

|u|p dx+ o(1)

and ∫
RN\Ω

|un|2
∗
dx =

∫
RN\Ω

|vn|2
∗
dx+

∫
RN\Ω

|u|2
∗
dx+ o(1).

Combining this with I(un)→ m, we obtain

m =
1
2
‖vn‖2D1,2(RN ) −

1
2∗

∫
RN\Ω

|vn|2
∗
dx+ I(u) + o(1)

≥ 1
2
‖vn‖2D1,2(RN ) −

1
2∗

∫
RN\Ω

|vn|2
∗
dx+ o(1).

(3.8)

It follows from 〈I ′(un), un〉 = 0 and I ′(u) = 0 that

0 = ‖vn‖2D1,2(RN ) −
∫

RN\Ω
|vn|2

∗
dx+ 〈I ′(u), u〉+ o(1)

= ‖vn‖2D1,2(RN ) −
∫

RN\Ω
|vn|2

∗
dx+ o(1).

Up to a subsequence, we assume that

‖vn‖2D1,2(RN ) + o(1) = b =
∫

RN\Ω
|vn|2

∗
dx+ o(1).
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Thus we have

Sb2/2∗ = S
(∫

RN\Ω
|vn|2

∗
dx
)2/2∗

+ o(1)

≤ S
(∫

RN

|vn|2
∗
dx
)2/2∗

+ o(1)

≤ ‖vn‖2D1,2(RN ) + o(1) = b.

Assume that b 6= 0. Then one has b ≥ SN/2. From (3.8), we obtain

m ≥
(1

2
− 1

2∗
)
b ≥ 1

N
SN/2,

which is a contradiction. Hence b = 0, and the proof is complete. �

Proof of Theorem 1.1. By Lemmas 3.3, 3.6 and 3.7, there exists a bounded sequence
{un} ⊂ N satisfying I(un) → m ∈ (0, 1

N S
N/2) and I ′(un) → 0 in D−1. Lemma

3.8 implies that there exists u ∈ D1,2(RN ) such that up to a subsequence, un → u
in D1,2(RN ). Then I(u) = m and J(u) = 0. That is, m is achieved by a function
u ∈ D1,2(RN ). Since I(|u|) = I(u) and J(|u|) = J(u), we can assume that u is
nonnegative. Lemma 3.5 implies that u ∈ D1,2(RN ) is a solution of equation (1.1).
It follows from the definition of m that u ∈ D1,2(RN ) is a ground state solution of
equation (1.1). It follows from the strongly maximum principle that u > 0. This
completes the proof. �
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