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LYAPUNOV-TYPE INEQUALITIES FOR FRACTIONAL
BOUNDARY-VALUE PROBLEMS

MOHAMED JLELI, BESSEM SAMET

Abstract. In this article, we establish some Lyapunov-type inequalities for

fractional boundary-value problems under Sturm-Liouville boundary condi-
tions. As applications, we obtain intervals where linear combinations of cer-

tain Mittag-Leffler functions have no real zeros. We deduce also nonexistence
results for some fractional boundary-value problems.

1. Introduction

The well-known Lyapunov result [9] states that if a nontrivial solution to the
boundary-value problem

u′′(t) + q(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0,

exists, where q : [a, b]→ R is a continuous function, then∫ b

a

|q(s)| ds > 4
b− a

.

This result found many practical applications in differential and difference equations
(oscillation theory, disconjugacy, eigenvalue problems, etc.); see [1, 2, 11, 13, 14, 15]
and references therein.

The search for Lyapunov-type inequalities in which the starting differential equa-
tion is constructed via fractional differential operators has begun very recently. The
first work in this direction is due to Ferreira [4], where he derived a Lyapunov-type
inequality for differential equations depending on the Riemann-Liouville fractional
derivative; that is, for the boundary-value problem

(aDαu)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = u(b) = 0,
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where aD
α denotes the Riemann-Liouville fractional derivative of order α. Pre-

cisely, the author proved that if the above problem has a nontrivial solution, then∫ b

a

|q(s)| ds > Γ(α)
( 4
b− a

)α−1
.

Clearly, if we let α = 2 in the above inequality, one obtains Lyapunov’s standard
inequality. In [5], a Lyapunov-type inequality was obtained by the same author for
the Caputo fractional boundary-value problem

(CaD
αu)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = u(b) = 0,

where C
aD

α denotes the Caputo fractional derivative of order α. In this work,
Ferreira proved that if the above problem has a nontrivial solution, then∫ b

a

|q(s)| ds > Γ(α)αα

[(α− 1)(b− a)]α−1
.

For other works on Lyapunov-type inequalities for fractional boundary-value prob-
lems we refer the reader to [6, 7].

Motivated by the above works, we consider a Caputo fractional differential equa-
tion with Sturm-Liouville boundary conditions. More precisely, we consider the
fractional boundary-value problem

(CaD
αu)(t) + q(t)u(t) = 0, a < t < b, 1 < α < 2, (1.1)

with the boundary conditions

pu(a)− ru′(a) = u(b) = 0, (1.2)

where p > 0, r ≥ 0 and q : [a, b]→ R is a continuous function. We distinguish two
cases: the case r

p >
b−a
α−1 and the case 0 ≤ r

p ≤
b−a
α−1 . For each case, a Lyapunov-type

inequality is derived. The obtained results recover several existing inequalities from
the literature. As applications, we obtain intervals where linear combinations of
certain Mittag-Leffler functions have no real zeros. We deduce also nonexistence
results for some fractional boundary-value problems.

Before presenting our main results, let us start by recalling the concepts of the
Riemann-Liouville fractional integral and the Caputo fractional derivative of order
α ≥ 0. For more details, we refer to [8].

Let α ≥ 0 and let f be a real function defined on a certain interval [a, b]. The
Riemann-Liouville fractional integral of order α is defined by

(aI0f)(t) = f(t)

and

(aIαf)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds, α > 0, t ∈ [a, b].

The Caputo fractional derivative of order α ≥ 0 is defined by

(CaD
0f)(t) = f(t)

and
(CaD

αf)(t) = (aIm−αDmf)(t), α > 0,

where m is the smallest integer greater or equal to α.
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2. Main results

2.1. Integral representation of the solution. We start by writing (1.1)-(1.2)
in its equivalent integral form.

Lemma 2.1. u ∈ C[a, b] is a solution to (1.1)-(1.2) if and only if u is a solution
to the integral equation

u(t) =
∫ b

a

G(t, s)q(s)u(s) ds, t ∈ [a, b],

where G, the Green function associated to (1.1)-(1.2), is given by

G(t, s) =
1

Γ(α)


( rp+t−a)(b−s)α−1

γ − (t− s)α−1, a ≤ s ≤ t ≤ b,
( rp+t−a)(b−s)α−1

γ , a ≤ t ≤ s ≤ b,

where γ = r
p + b− a.

Proof. The general solution to (1.1) is

u(t) = c0 + c1(t− a)− 1
Γ(α)

∫ t

a

(t− s)α−1q(s)u(s) ds,

where c0 and c1 are real constants. Taking the derivative of u(t), we obtain

u′(t) = c1 −
(α− 1)
Γ(α)

∫ t

a

(t− s)α−2q(s)u(s) ds.

Using the boundary condition pu(a)− ru′(a) = 0, we obtain

pc0 − rc1 = 0. (2.1)

The boundary condition u(b) = 0 gives us

c0 + c1(b− a)− 1
Γ(α)

∫ b

a

(b− s)α−1q(s)u(s) ds = 0. (2.2)

Then (2.1) and (2.2) yield

c0 =
r

p
c1 =

r

pγΓ(α)

∫ b

a

(b− s)α−1q(s)u(s) ds .

Therefore,

u(t) =
r

pγΓ(α)

∫ b

a

(b− s)α−1q(s)u(s) ds+
(t− a)
γΓ(α)

∫ b

a

(b− s)α−1q(s)u(s) ds

− 1
Γ(α)

∫ t

a

(t− s)α−1q(s)u(s) ds,

which concludes the proof. �

2.2. Green function estimates. Let

g1(t, s) =
( rp + t− a)(b− s)α−1

γ
− (t− s)α−1, a ≤ s ≤ t ≤ b,

g2(t, s) =
( rp + t− a)(b− s)α−1

γ
, a ≤ t ≤ s ≤ b.

We distinguish two cases.
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Case r
p >

b−a
α−1 .

Lemma 2.2. Suppose that
r

p
>
b− a
α− 1

.

Then

0 ≤ G(t, s) ≤ G(s, s), (t, s) ∈ [a, b]× [a, b],

max
a≤s≤b

G(s, s) =
1

Γ(α)

r
p (b− a)α−1

( rp + b− a)
.

Proof. Obviously, the function g2 satisfies the following inequalities:

0 ≤ g2(t, s) ≤ g2(s, s), a ≤ t ≤ s ≤ b.

Now, let us compute the derivative of g2(s, s) on (a, b). After some simplifications,
we obtain

(g2(s, s))′ =
(b− s)α−2

γ

(
− αs+ (1− α)(

r

p
− a) + b

)
.

Then (g2(s, s))′ has a unique zero, attained at the point

s∗ =
b+ (1− α)( rp − a)

α
.

It is easy to see that (g2(s, s))′ > 0 on (−∞, s∗) and (g2(s, s))′ < 0 on (s∗, b). On
the other hand, from the condition r

p > b−a
α−1 , we obtain easily that s∗ < a. By

continuity of g2, we deduce that

max
a≤s≤b

g2(s, s) = g2(a, a) =
r
p (b− a)α−1

( rp + b− a)
.

Thus

0 ≤ g2(t, s) ≤
r
p (b− a)α−1

( rp + b− a)
, a ≤ t ≤ s ≤ b.

Now, we turn our attention to the function g1(t, s). Let s ∈ [a, b) be fixed. Differ-
entiating g1(t, s) with respect to t, we obtain

∂tg1(t, s) =
(b− s)α−1

γ
− (α− 1)(t− s)α−2, s < t.

It follows from the above equality that ∂tg1(t, s) = 0 if and only if

t = t∗ = s+
[ (b− s)α−1

γ(α− 1)
] 1
α−2 ,

provided t∗ ≤ b, i.e. as long as a ≤ s ≤ b− (α− 1)γ. However, from the condition
r
p > b−a

α−1 , we observe easily that b − (α − 1)γ < a. Then we deduce that s >
b− (α−1)γ, i.e. t∗ > b. In this case, ∂tg1(t, s) < 0, i.e. g1(·, s) is strictly decreasing
and, since g1(b, s) = 0, we conclude that

0 ≤ g1(t, s) ≤ g1(s, s) = g2(s, s) ≤ g2(a, a) ≤
r
p (b− a)α−1

( rp + b− a)
a ≤ s ≤ t ≤ b,

which concludes the proof. �



EJDE-2015/88 LYAPUNOV-TYPE INEQUALITIES 5

Case 0 ≤ r
p ≤

b−a
α−1 .

Lemma 2.3. Suppose that

0 ≤ r

p
≤ b− a
α− 1

.

Then

Γ(α)|G(t, s)| ≤ max{A(α, r/p),B(α, r/p)}, (t, s) ∈ [a, b]× [a, b],

where

A(α, r/p) =
(b− a)α−1

( rp + b− a)

(( (b− a)α−1

( rp + b− a)(α− 1)α−1

) 1
α−2

(2− α)− r

p

)
,

B(α, r/p) = (
r

p
+ b− a)α−1 (α− 1)α−1

αα
.

Proof. Following the proof of Lemma 2.2, we have

0 ≤ g2(t, s) ≤ g2(s, s), a ≤ t ≤ s ≤ b

and (g2(s, s))′ has a unique zero, attained at the point

s∗ =
b+ (1− α)( rp − a)

α
.

Under the condition 0 ≤ r
p ≤

b−a
α−1 , it is easy to observe that s∗ ∈ [a, b]. Moreover,

(g2(s, s))′ > 0 on (−∞, s∗) and (g2(s, s))′ < 0 on (s∗, b). Then

max
a≤s≤b

g2(s, s) = g2(s∗, s∗) = B(α, r/p).

Thus we have
0 ≤ g2(t, s) ≤ B(α, r/p), a ≤ t ≤ s ≤ b.

Following the proof of Lemma 2.2, for a fixed s ∈ [a, b), ∂tg1(t, s) = 0 if and only if

t = t∗ = s+
[ (b− s)α−1

γ(α− 1)
] 1
α−2 ,

provided t∗ ≤ b, i.e. as long as a ≤ s ≤ b − (α − 1)γ. So, if s > b − (α − 1)γ (i.e.
∂tg1(t, s) has no zeros), then ∂tg1(t, s) < 0, i.e. g1(·, s) is strictly decreasing and,
since g1(b, s) = 0, we obtain

max
s≤t≤b

g1(t, s) = g1(s, s) = g2(s, s), s ∈ (b− (α− 1)γ, b).

It is easy to check that
s∗ ∈ (b− (α− 1)γ, b).

Thus we have

0 ≤ g1(t, s) ≤ g2(s∗, s∗) = B(α, r/p), b− (α− 1)γ < s ≤ t ≤ b.

Now, we have to check the case when a ≤ s ≤ b − (α − 1)γ; i.e., t∗ ≤ b. It is easy
to see that ∂tg1(t, s) < 0 for t < t∗ and that ∂tg1(t, s) ≥ 0 for t ≥ t∗. This together
with the fact that g1(b, s) = 0 implies that g1(t∗, s) ≤ 0 and, therefore, we only
have to show that

|g1(t∗, s)| ≤ max {A(α, r/p),B(α, r/p)} , s ∈ [a, b− (α− 1)γ].



6 M. JLELI, B. SAMET EJDE-2015/88

After some simplifications, we obtain

|g1(t∗, s)| = (b− s)
(α−1)2

α−2 (2− α)

γ
α−1
α−2 (α− 1)

α−1
α−2

− (b− s)α−1

γ
(s− a+

r

p
).

Let us define the function

h(s) =
(b− s)

(α−1)2

α−2 (2− α)

γ
α−1
α−2 (α− 1)

α−1
α−2

− (b− s)α−1

γ
(s− a+

r

p
), s ∈ [a, b− (α− 1)γ].

Now, we differentiate h in the interior of [a, b− (α− 1)γ]. We obtain

h′(s) =
(b− s)

(α−1)2

α−2 −1

(α− 1)
3−α
α−2 γ

α−1
α−2

+
(α− 1)(s− a+ r

p )(b− s)α−2

γ
− (b− s)α−1

γ
.

It is clear that h′ is an increasing function in [a, b− (α− 1)γ]. Then we have

h′(s) ≤ h′(b− (α− 1)γ).

On the other hand, after some simplifications, we obtain

h′(b− (α− 1)γ) = 0,

which yields h′(s) ≤ 0. Therefore,

max
a≤s≤b−(α−1)γ

h(s) = h(a) = A(α, r/p),

which concludes the proof. �

2.3. Lyapunov-type inequalities. We are ready to state and prove our main
results.

Theorem 2.4. If there exists a nontrivial continuous solution of the fractional
boundary-value problem

(CaD
αu)(t) + q(t)u(t) = 0, a < t < b, 1 < α < 2,

pu(a)− ru′(a) = u(b) = 0,

where p > 0, r
p >

b−a
α−1 and q : [a, b]→ R is a continuous function, then∫ b

a

|q(s)| ds ≥
(
1 +

p

r
(b− a)

) Γ(α)
(b− a)α−1

. (2.3)

Proof. Let X = C[a, b] be the Banach space endowed with the norm

‖y‖∞ = max{|y(t)| : a ≤ t ≤ b}.
It follows from Lemma 2.1 that

u(t) =
∫ b

a

G(t, s)q(s)u(s) ds, t ∈ [a, b].

We obtain

|u(t)| ≤ ‖u‖∞max |G(t, s)|a≤t,s≤b
∫ b

a

|q(s)| ds.

Now, Lemma 2.2 yields

‖u‖∞ ≤ ‖u‖∞
1

Γ(α)

r
p (b− a)α−1

( rp + b− a)

∫ b

a

|q(s)| ds,

from which the inequality (2.3) follows. �
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Similarly, using Lemma 2.1 and Lemma 2.3, we obtain the following result.

Theorem 2.5. If there exists a nontrivial continuous solution of the fractional
boundary-value problem

(CaD
αu)(t) + q(t)u(t) = 0, a < t < b, 1 < α < 2,

pu(a)− ru′(a) = u(b) = 0,

where p > 0, 0 ≤ r
p ≤

b−a
α−1 and q : [a, b]→ R is a continuous function, then∫ b

a

|q(s)| ds ≥ Γ(α)
max{A(α, r/p),B(α, r/p)}

. (2.4)

2.4. Particular cases.

Case r = 0. In the case r = 0, from Theorem 2.5, taking r = 0 in (2.4), we obtain∫ b

a

|q(s)| ds ≥ Γ(α)
max{A(α, 0),B(α, 0)}

.

On the other hand, we have

A(α, 0) =
2− α

(α− 1)
α−1
α−2

(b− a)α−1,

B(α, 0) =
(α− 1)α−1

αα
(b− a)α−1 .

Using the inequality (see [5])

2− α
(α− 1)

α−1
α−2

≤ (α− 1)α−1

αα
, 1 < α < 2,

we deuce that
max{A(α, 0),B(α, 0)} = B(α, 0).

Thus we obtain the following result (see [5, Theorem 1]).

Corollary 2.6. If there exists a nontrivial continuous solution of the fractional
boundary-value problem

(CaD
αu)(t) + q(t)u(t) = 0, a < t < b, 1 < α < 2,

u(a) = u(b) = 0,

where q : [a, b]→ R is a continuous function, then∫ b

a

|q(s)| ds ≥ Γ(α)αα

[(α− 1)(b− a)]α−1
.

Case r
p = b−a

α−1 with α ' 2. In the case r
p = b−a

α−1 , from Theorem 2.5, taking
r
p = b−a

α−1 in (2.4), we obtain∫ b

a

|q(s)| ds ≥ Γ(α)
max{A

(
α, b−aα−1

)
,B
(
α, b−aα−1

)
}
.

An easy computation gives us

A
(
α,
b− a
α− 1

)
=

(b− a)α−1

α

(2− α
α

1
α−2
− 1
)
,
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B
(
α,
b− a
α− 1

)
=

(b− a)α−1

α
.

Thus we have

A
(
α,
b− a
α− 1

)
− B

(
α,
b− a
α− 1

)
=

(b− a)α−1

α

(2− α
α

1
α−2
− 2
)
.

On the other hand,

lim
α→2−

2− α
α

1
α−2

= +∞.

Then there exists δ > 0 such that

2− δ < α < 2⇒ 2− α
α

1
α−2

> 2.

Thus for 2− δ < α < 2, we have

max
{
A
(
α,
b− a
α− 1

)
,B
(
α,
b− a
α− 1

)}
= A

(
α,
b− a
α− 1

)
.

Hence we have the following result.

Corollary 2.7. There exists δ > 0 such that if there exists a nontrivial continuous
solution of the fractional boundary-value problem

(CaD
αu)(t) + q(t)u(t) = 0, a < t < b, 2− δ < α < 2,

pu(a)− ru′(a) = u(b) = 0,

where r
p = b−a

α−1 and q : [a, b]→ R is a continuous function, then∫ b

a

|q(s)| ds ≥ Γ(α)α
α−1
α−2

(b− a)α−1(2− α− α
1

α−2 )
.

Case p ' 0. Letting p → 0+ in the inequality (2.3), from Theorem 2.4 we obtain
the following result.

Corollary 2.8. If there exists a nontrivial continuous solution of the fractional
boundary-value problem

(CaD
αu)(t) + q(t)u(t) = 0, a < t < b, 1 < α < 2,

u′(a) = u(b) = 0,

where q : [a, b]→ R is a continuous function, then∫ b

a

|q(s)| ds ≥ Γ(α)
(b− a)α−1

. (2.5)

Taking α = 2 in the inequality (2.5), we obtain the following result.

Corollary 2.9. If there exists a nontrivial continuous solution of the boundary-
value problem

u′′(t) + q(t)u(t) = 0, a < t < b,

u′(a) = u(b) = 0,

where q : [a, b]→ R is a continuous function, then∫ b

a

|q(s)| ds ≥ 1
b− a

.
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3. Applications

In this section, we present some applications of our main results.

3.1. Real zeros of certain Mittag-Leffler functions. Let α, β > 0 be fixed.
The complex function

Eα,β(z) =
∞∑
k=0

zk

Γ(kα+ β)
, α > 0, β > 0, z ∈ C

is analytic in the whole complex plane; it will be referred to [10,12] as the Mittag-
Leffler function with parameters (α, β).

Next, using the above Lyapunov-type inequalities, we give intervals where linear
combinations of some Mittag-Leffler functions have no real zeros.

Theorem 3.1. Let 1 < α < 2. The Mittag-Leffler function Eα,1(x) has no real
zeros for

x ∈ (−Γ(α), 0].

Proof. Let (a, b) = (0, 1), and consider the fractional Sturm-Liouville eigenvalue
problem

(C0 D
αu)(t) + λu(t) = 0, 0 < t < 1,

u′(0) = u(1) = 0.

By [3], we know that the eigenvalues λ ∈ R of the above problem satisfy

λ > 0 and Eα,1(−λ) = 0.

The corresponding eigenfunctions are

u(t) = AEα,1(−λtα), t ∈ [0, 1].

By Corollary 2.8, if a real eigenvalue λ exists; i.e., Eα,1(−λ) = 0, then λ ≥ Γ(α),
which concludes the proof. �

Theorem 3.2. Let 1 < α < 2, p > 0, r
p > 1

α−1 . The linear combination of
Mittag-Leffler functions given by

pEα,2(x) + qrEα,1(x)

has no real zeros for
x ∈ (−(1 +

p

r
)Γ(α), 0].

Proof. Let (a, b) = (0, 1), and consider the following fractional Sturm-Liouville
eigenvalue problem

(C0 D
αu)(t) + λu(t) = 0, 0 < t < 1,

pu(0)− ru′(0) = u(1) = 0.

By [3], we know that the eigenvalues λ ∈ R of the above problem satisfies

λ > 0 and pEα,2(−λ) + qrEα,1(−λ) = 0.

The corresponding eigenfunctions are

u(t) = A
(
Eα,1(−λtα) +

p

r
tEα,2(−λtα)

)
, t ∈ [0, 1].

By Theorem 2.4, if a real eigenvalue λ exists, then λ ≥ (1+ p
r )Γ(α), which concludes

the proof. �
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3.2. Applications to fractional boundary-value problems. In this section, we
apply the results on the Liapunov-type inequalities obtained previoulsy to study the
nonexistence of solutions for certain fractional boundary-value problems. Consider
the fractional boundary-value problem

(C0 D
αu)(t) + q(t)u(t) = 0, 0 < t < 1, 3/2 < α < 2, (3.1)

with the boundary conditions

u(0)− 2u′(0) = u(1) = 0, (3.2)

where q : [a, b]→ R is a continuous function. We have the following result.

Theorem 3.3. Assume that ∫ 1

0

|q(s)| ds < 3
2

Γ(α). (3.3)

Then(3.1)-(3.2) has no nontrivial solution.

Proof. Assume the contrary, i.e. (3.1)-(3.2) has a nontrivial solution u(t). By
Theorem 2.4 with (p, r) = (1, 2), we obtain∫ 1

0

|q(s)| ds ≥ 3
2

Γ(α),

which contradicts assumption (3.3). �

Consider now the fractional boundary-value problem

(C0 D
αu)(t) + q(t)u(t) = 0, 0 < t < 1, 1 < α < 2, (3.4)

with the boundary conditions

2u(0)− u′(0) = u(1) = 0, (3.5)

where q : [a, b]→ R is a continuous function. We have the following result.

Theorem 3.4. Assume that∫ 1

0

|q(s)| ds < Γ(α)
max{A(α, 1/2),B(α, 1/2)}

. (3.6)

Then (3.4)-(3.5) has no nontrivial solution.

Proof. Assume the contrary; i.e., (3.4)-(3.5) has a nontrivial solution u(t). By
Theorem 2.5 with (p, r) = (2, 1), we obtain∫ 1

0

|q(s)| ds ≥ Γ(α)
max{A(α, 1/2),B(α, 1/2)}

,

which contradicts assumption (3.6). �
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