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EXISTENCE OF SOLUTIONS TO QUASILINEAR
SCHRÖDINGER EQUATIONS WITH INDEFINITE POTENTIAL

ZUPEI SHEN, ZHIQING HAN

Abstract. In this article, we study the existence and multiplicity of solutions
of the quasilinear Schrödinger equation

−u′′ + V (x)u− (|u|2)′′u = f(u)

on R, where the potential V allows sign changing and the nonlinearity satisfies

conditions weaker than the classical Ambrosetti-Rabinowitz condition. By a

local linking theorem and the fountain theorem, we obtain the existence and
multiplicity of solutions for the equation.

1. Introduction

We study the existence and multiplicity of solutions for the quasilinear elliptic
equation

− u′′ + V (x)u− (|u|2)′′u = f(u), x ∈ R. (1.1)
Solutions of the equation are related to standing wave solutions for quasilinear
Schrödinger equation of the form

i∂tz = −z′′ + Ṽ (x)z − (|z|2)′′z − f̃(|z|2)z (1.2)

which arises in various fields of physics, like the theory of superfluids or in dissi-
pative quantum mechanics, plasma physics, fluid mechanics and in the theory of
Heisenberg ferromagnets, etc. For further physical motivations and a more com-
plete list of references, we refer to [6, 9, 11] and the references therein.

As far as we know, the first existence result for equation (1.1) by variational
methods is due to [11], where by a constrained minimization argument the authors
proved the existence of a positive ground state solution with an unknown Lagrange
multiplier λ in front of the nonlinear term. Ambrosetti and Wang [12] considered
the existence of positive solutions of perturbation to the equation with a particular
nonlinearity g(u) = up. Alves et al [1], considered the existence and concentration
of positive solutions as ε→ 0 for a related equation with ε2. Some related problems
on R are also considered in [2].

There is also much work devoting to the corresponding high dimensional equa-
tion; e.g. see [6, 10, 8, 9]. The solutions of equation (1.1) correspond to the critical
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points of the functional on H1(R):

Φ(u) =
1
2

∫
R
u′

2 + V (x)u2dx+
∫

R
u′

2
u2dx−

∫
R
F (u)dx, (1.3)

where F (t) =
∫ t
0
f(s)ds. All the above mentioned papers require that the potential

V (x) is positive. So that the energy functional Φ possesses the mountain pass ge-
ometry. Therefore, the mountain pass lemma can be applied. In [13], the authors
consider the case which the potential V (x) allows sign-change. However, in order
to satisfy the conditions of mountain pass theory, they need additional conditions
on nonlinearity. The similar assumptions are added in [14] (See Remark ). The
aim of the paper is to investigate equation (1.1) where the potential V (x) can be
sign changing and the nonlinearity does not need to satisfy Ambrosetti-Rabinowitz
condition. The term

∫
R u
′2u2dx in (1.3) is homogeneous of order 4 and non-convex,

it prevents the linking geometric structure of the energy functional under our as-
sumption. Inspired by the recent work of Chen and Liu [5] we make use of the
local linking theory to overcome this difficulty. To state our main results, we list
the assumptions on f and V as follows.

(V1) The potential V (x) ∈ C(R) is bounded from below and µ(V −1(−∞,M)) <
∞ for every M > 0.

(F1) There exists C > 0 and p > 2 such that

|f(t)| ≤ C|t|p−1 for all t ∈ R.
(F2) 4F (t) ≤ f(t)t and

lim
t→∞

F (t)
t4

= +∞ for all t ∈ R.

We are now ready to state our results.

Theorem 1.1. Suppose that (V1), (F1)–(F2) are satisfied and f is odd. Then
equation (1.1) has a sequence of solutions such that Φ(uk)→ +∞.

Theorem 1.2. Suppose that (V1), (F1)–(F2) are satisfied. Then equation (1.1)
has at least one nontrivial solution.

Remark 1.3. In [13,14], the authors need assumptions (F2) and

(G2) F̃ (x, u) := 1
4f(x, u)u − F (x, u) ≥ 0, and there exist c0 > 0 and σ >

max{1, 2N
N+2} such that

|F (x, u)|σ ≤ c0|u|2σF̃ (x, u)

for all (x, u) ∈ RN .
In this paper, (G2) is not needed.

Throughout this paper, the letters C and Ci denote positive constants, which
may be different from place to place. The usual norm in Lp(R) with 1 ≤ p ≤ +∞
is denoted by | · |p

2. Preliminaries

To overcome the non-compactness of the embedding H1(R) ↪→ L2(R), we con-
sider a linear subspace X of H1(R):

X := {u ∈ H1(R) :
∫

R
V̄ (x)u2dx <∞}
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equipped with the inner product

〈u, v〉 =
∫

R
u′v′ + V̄ uvdx

and the corresponding norm ‖u‖ = 〈u, v〉1/2, where V̄ = V (x) +m > 1 for a fixed
positive number m. It is well known that the imbedding X ↪→ L2(R) is compact
under the condition (V1). See [4]. Therefore, the eigenvalues of the operator

S := −∆ + V

can be numbered as
−∞ < λ1 ≤ λ2 ≤ λ3 . . . , λl →∞

and the corresponding eigenfunctions are denoted by φ1, φ2 . . . . We assume that
0 ∈ (λl, λl+1) for some l > 1. Let

X− = span{φ1, . . . , φl}, X+ = (X−)⊥.

Then X− and X+ are the negative and positive spaces of the quadratic form

Q(u) =
1
2

∫
R
u′(x)2 + V (x)u2(x)dx.

. It is well known that there is a positive constant α > 0 such that

±Q(u) ≥ α‖u‖2, u ∈ X±. (2.1)

Let

J(u) =
1
2

∫
R
u′

2 + V (x)u2dx−
∫

R
F (u)dx, I(u) =

∫
R
u′

2
u2dx.

Then
Φ(u) = J(u) + I(u).

By the continuous imbedding H1(R) ↪→ L∞(R) and X ↪→ H1(R), I is well defined
on X and

|I(u)| ≤ |u|2∞‖u‖2H1 ≤ C‖u‖4 for all u ∈ X. (2.2)

To verify that the functional Φ is C1, it is sufficient to prove this for I(u).

Lemma 2.1. I(u) belongs to C1 in X.

The proof of the above lemma is similar to that of [11, Lemma 1]. We omit
it here. From the above discussions, the functional Φ(u) is a C1 functional with
derivative given by

(Φ′(u), v) =
∫

R
u′v′ + V̄ uvdx+

∫
R

2u′2uv + 2u2u′v′dx−
∫

R
g(u)vdx

= 〈u, v〉+
∫

R
2u′2uv + 2u2u′v′dx−

∫
R
g(u)vdx,

(2.3)

where g(t) = f(t) + mt. To prove our main results, we need to introduce some
definitions and theorems.
Definition. We say that Φ ∈ C1(X) satisfies condition (PS) if any sequence
(un)⊂ X such that

Φ(un)→ c, Φ′(un)→ 0

has a convergent subsequence.
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For the proof of Theorem 1.1, we use the following fountain theorem by Bartsch
[3]. For k = 1, 2 . . . , let

Yk = span{φ1, . . . φk}, Zk = span{φk, φ1+k . . . }. (2.4)

Theorem 2.2. Assume that the even functional Φ ∈ C1(X) satisfies the (PS)
condition, if there exists k0 > 0 such that for k ≥ k0 there exists ρk > rk > 0 such
that

(i) bk = infu∈Zk,‖u‖=rk Φ(u)→ +∞ as k →∞,
(ii) αk = maxu∈Yk,‖u‖=ρk Φ(u) ≤ 0.

Then Φ has a sequence of critical points {uk} such that Φ(uk)→ +∞.

For the proof of Theorem 1.2, we will use the local linking theorem. Recall that
the definition of local linking at 0 with respect to the direct sum decomposition
X = X+ ⊕X−, if there is ρ > 0 such that for u ∈ X−

Φ(u) ≤ 0, for u ∈ X−, ‖u‖ ≤ ρ
Φ(u) ≥ 0, for u ∈ X+, ‖u‖ ≤ ρ.

(2.5)

Next, we consider two sequences of finite dimensional subspaces

X±0 ⊂ X
±
1 ⊂ · · · ⊂ X±

such that
X± = ∪n∈NX

±
n .

For multi-index α = (α−, α+) ∈ N2, we set Xα = X−α ⊕ X+
α and denote by Φα

the restriction of Φ on Xα. A sequence {αn} ⊂ N2 is admissible if, for any α ∈ N2,
there is m ∈ N such that α ≤ αn for n ≥ m, where for α, β ∈ N2, α ≤ β means
α± ≤ β±. Obviously, if {αn} is admissible, then any subsequence of {αn} is also
admissible.
Definition. We say that Φ ∈ C1(X) satisfies condition (C)∗ if, whenever {αn} ⊂
N2 admissible, any sequence {un} ⊂ X such that

un ∈ Xαn , sup
n

Φ(un) <∞, (1 + ‖un‖)‖Φ′αn (un)‖ → 0 (2.6)

contains a subsequence which converges to a critical point of Φ.

Theorem 2.3 (Local linking theorem [7]). Suppose that Φ ∈ C1(X) has a local
linking at 0, Φ satisfies (C)∗, Φ maps bounded sets into bounded sets and for every
m ∈ N,

Φ(u)→ −∞ as ‖u‖ → ∞, u ∈ X− ⊕X+
m. (2.7)

Then Φ has a nontrivial critical point.

3. Proofs of Theorems 1.1 and 1.2

It is reasonable to write the functional Φ in a form in which the quadratic part
is ‖u‖2. Let g(t) = f(t) + mt. By (F1)–(F2), it is known that G(t) satisfies the
following properties

G(t) ≤ t

4
g(t) +

m

4
t2, (3.1)

lim
|t|→∞

G(t)
t4

= +∞, (3.2)
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and hence there is a Λ > 0 such that

G(t) ≥ −Λt4 for all t ∈ R. (3.3)

Lemma 3.1. Suppose that (V1), (F1)–(F2) are satisfied, then Φ satisfies the (PS)
condition.

Proof. Suppose that {un} is a (PS) sequence. We claim that {un} is bounded. By
contradiction, we may assume that ‖un‖ → ∞. Using (2.3) and (3.1),we have

4 sup
n

Φ(un) + ‖un‖ ≥ 4Φ(un)− (Φ′(un), un)

= ‖un‖2 +
∫

R
g(un)un − 4G(un)dx

≥ ‖un‖2 −m
∫

R
u2
ndx.

(3.4)

By (3.4), we obtain
‖un‖ = O(|un|2). (3.5)

Let vn = ‖un‖−1un. Up to a subsequence, by the compact embedding X ↪→ L2(R)
we can assume that

vn ⇀ v in X, vn → v in L2(R), vn(x)→ v(x) a.e in R.
By (3.5), we have

|vn|2 ≥
|un|2
c|un|2

=
1
c
> 0

for some positive constant c > 0. Therefor v 6= 0. Using (3.3), we obtain∫
R

G(un)
‖un‖4

dx =
∫
v=0

G(un)
‖un‖4

dx+
∫
v 6=0

G(un)
‖un‖4

dx

=
∫
v=0

G(un)
u4
n

v4
ndx+

∫
v 6=0

G(un)
u4
n

v4
ndx

≥ −Λ
∫
v=0

v4
n dx+

∫
v 6=0

G(un)
u4
n

v4
ndx

= I1 + I2.

Obviously, I1 ≥ −c > −∞. For x ∈ {x ∈ R|v 6= 0}, we have |un| → ∞. By (3.2),
we obtain

G(un)
‖un‖4

=
G(un)
u4
n

v4
n → +∞.

By Fatou’s lemma, I2 → +∞. Then we have∫
R

G(un)
‖un‖4

dx→ +∞. (3.6)

On the other hand∫
R
G(un)dx =

1
2
‖un‖2 +

∫
R
u′n

2
u2
ndx− Φ(un)

≤ 1
2
‖un‖2 + c‖un‖4 + C.

Then we have ∫
R
G(un)dx = O(‖un‖4), (3.7)
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a contradiction to (3.6). So {un} is bounded.
Next, we show that such sequence {un} has a subsequence converging to a critical

point of Φ. Because {un} is bounded in X, we may assume un ⇀ u in X. Since
the imbedding X ↪→ Lp(R) is compact, we have un → u in Lp(R). By a simple
computation, we have

Φ′(un)(un−u) = ‖un−u‖2+2
∫

R
u′

2(un−u)2+2
∫

R
u2(u′n−u′)2−

∫
R
g(un)(un−u).

By condition (F1) and Holder’s inequality, we have∫
R
f(un)(un − u) ≤ C|u|p−1

p |un − u|p.

Since un → u in Lp(R) and p ≥ 1, we have∫
R
f(un)(un − u)dx→ 0 as n→∞. (3.8)

Similarly, ∫
R
mun(un − u)dx→ 0 as n→∞. (3.9)

By (3.8) and (3.9), we obtain∫
R
g(un)(un − u)→ 0 as n→∞. (3.10)

By the assumptions we have

Φ′(un)(un − u) = o(‖un − u‖). (3.11)

From (3.10) we obtain

Φ′(un)(un − u) = ‖un − u‖2 + 2
∫

R
u′

2(un − u)2 + 2
∫

R
u2(u′n − u′)2 + o(1).

Hence we obtain ‖un − u‖ → 0 as n→∞. This completes the proof. �

Lemma 3.2. Under assumptions (V1), (F1)–(F2), the functional Φ has a local
linking at 0 with respect to the decomposition X = X+ ⊕X−.

Proof. By (F1), there exists a C > 0 such that

|F (u)| ≤ C|u|p. (3.12)

Using (2.1), (2.2), for u ∈ X−, there exists a δ > 0. Then we have

Φ(u) =
1
2

∫
R
u′

2 + V (x)u2dx+
∫

R
u′

2
u2dx−

∫
R
F (u)dx

≤ 1
2

∫
R
u′

2 + V (x)u2dx+ C‖u‖4 + C|u|pp

≤ −α‖u‖2 + C‖u‖4 + C1|u|pp
≤ −δ‖u‖2 + C‖u‖4 + C1‖u‖p.

(3.13)

If u ∈ X+, then there exists ξ > 0 such that

Φ(u) =
1
2

∫
R
u′

2 + V (x)u2dx+
∫

R
u′

2
u2dx−

∫
R
F (u)dx

≥ ξ‖u‖2 − C1‖u‖p.
(3.14)
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By (3.13) and (3.14), there exists 0 < ρ < 1, such that

Φ(u) ≤ 0 for u ∈ X−, ‖u‖ ≤ ρ,
Φ(u) ≥ 0 for u ∈ X+, ‖u‖ ≤ ρ.

This completes the proof. �

Lemma 3.3. Let Y be a finite dimensional subspace of X. Then Φ is anti-coercive
on Y ; that is,

Φ(u)→ −∞ as ‖u‖ → ∞ u ∈ Y.

Proof. A similar lemma was proved in [5], we sketch the proof here for the reader’s
convenience. If the conclusion were not true, we can choose {un} ⊂ Y and ς ∈ R
such that

‖un‖ → ∞, Φ(un) ≥ ς. (3.15)

Let vn = ‖un‖−1un. Since dimY <∞, up to a subsequence, we have

‖vn − v‖ → 0, vn(x)→ v(x) a.e. R

for some v ∈ Y with ‖v‖ = 1. If v(x) 6= 0, we have |un(x)| → ∞. Using (2.2) and
(3.6), we deduce

Φ(un) ≤ ‖un‖4
( 1

2‖un‖2
+ C −

∫
R

G(un)
‖un‖4

dx
)
→ −∞,

a contradiction with (3.15). �

Lemma 3.4. Suppose , (V1), (F1)-(F2) are satisfied. Then Φ satisfies condition
(C)∗.

This proof is similar to the Lemma 3.1 and is omitted here. See also [5].

Proof of Theorem 1.1. It suffices to verify that

(i) bk = infu∈Zk,‖u‖=rk Φ(u)→ +∞ as k →∞,
(ii) αk = maxu∈Yk,‖u‖=ρk Φ(u) ≤ 0.

(i) We claim that for any 2 ≤ p, we have

βk := sup
u∈Zk,‖u‖=1

‖u‖Lp → 0, as k →∞. (3.16)

If the conclusion were not true, we may assume that βk → β > 0 as k →∞. Then
there exists a uk ∈ Zk with ‖uk‖ = 1 and ‖uk‖p ≥ β

2 for large k. By the Parseval
equality we have

〈u, uk〉 =
∣∣〈 ∞∑
j=k

αjφj , uk〉
∣∣

≤ ‖
∞∑
j=k

αjφj‖ ‖uk‖

=
( ∞∑
j=k

α2
j

)1/2

→ 0
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where 〈, 〉 denotes the inner product in X. Using the Riesz-Frechet representation
theorem, we obtain that uk ⇀ 0 and thus uk → 0 in Lp. This is a contradiction.
For u ∈ Zk with ‖u‖ = rk, for enough small ε,

Φ(u) =
1
2

∫
R
u′

2 + V (x)u2dx+
∫

R
u′

2
u2dx−

∫
R
F (u)dx

≥ k‖u‖2 −
∫

R
F (u)dx

≥ k‖u‖2 − C|u|pp
≥ k‖u‖2 − Cβpk‖u‖

p.

Choosing rk = β−1
k , we have

Φ(u) ≥ kβ−2
k − C → +∞.

This proves (i).
(ii) Since dimYk <∞, using Lemma 3.3, we have

Φ(u)→ −∞ for u ∈ Yk and ρk →∞.

Then we obtain
αk = max

u∈YK ,‖u‖=ρk
Φ(u) ≤ 0.

This completes the proof. �

Proof of Theorem 1.2. In Lemmas 3.2 and 3.4, we see that Φ satisfies condition
(C)∗, and has a local linking at 0. Since dim(X− ⊕X+

m) <∞, By Lemma 3.3, we
have Φ(u) → −∞, as ‖u‖ → ∞, u ∈ X− ⊕ X+

m. By Theorem 2.3, equation (1.1)
has at least one nontrivial solution. �
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