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EXISTENCE OF SOLUTIONS FOR FRACTIONAL p-KIRCHHOFF
EQUATIONS WITH CRITICAL NONLINEARITIES

PAWAN KUMAR MISHRA, KONIJETI SREENADH

Abstract. In this article, we show the existence of non-negative solutions of
the fractional p-Kirchhoff problem

−M(

Z
R2n
|u(x)− u(y)|pK(x− y)dx dy)LKu = λf(x, u) + |u|p

∗−2u in Ω,

u = 0 in Rn \ Ω,

where LK is a p-fractional type non local operator with kernel K, Ω is a

bounded domain in Rn with smooth boundary, M and f are continuous func-
tions, and p∗ is the fractional Sobolev exponent.

1. Introduction

In this work, we study the existence of solutions for the following p-Kirchhoff
equation

−M
(∫

R2n
|u(x)− u(y)|pK(x− y)dx dy

)
LKu = λf(x, u) + |u|p

∗−2u in Ω,

u = 0 in Rn \ Ω,
(1.1)

where p > 1, n > ps with s ∈ (0, 1), p∗ = np
n−ps , λ is a positive parameter, Ω ⊂ Rn

is a bounded domain with smooth boundary and M : R+ → R+, f : Ω × R → R
are continuous functions that satisfy some growth assumptions which will be stated
later. Here the operator LK is the p-fractional type non-local operator defined as
follows:

LKu(x) = 2
∫

Rn
|u(x)− u(y)|p−2(u(x)− u(y))K(x− y)dy for all x ∈ Rn,

where K : Rn \ {0} → (0,+∞) is a measurable function with the property that

there exists θ > 0 and s ∈ (0, 1) such that θ|x|−(n+ps) ≤ K(x) ≤
θ−1|x|−(n+ps) for any x ∈ Rn \ {0}.

(1.2)

It is immediate to observe that mK ∈ L1(Rn) by setting m(x) = min{|x|p, 1}. A
typical example for K is given by K(x) = |x|−(n+ps). In this case problem (1.1)
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becomes

M
(∫

R2n

|u(x)− u(y)|p

|x− y|n+ps
dx dy

)
(−∆)spu = λf(x, u) + |u|p

∗−2u in Ω,

u = 0 in Rn \ Ω,
(1.3)

where (−∆)sp is the fractional p-Laplace operator defined as

−2
∫

Rn

|u(y)− u(x)|p−2(u(y)− u(x))
|x− y|n+pα

dy.

Problems (1.1) and (1.3) are variational in nature and the natural space to look
for solutions is the fractional Sobolev space W s,p

0 (Ω) (see [9]). To study (1.1) and
(1.3), it is important to encode the ‘boundary condition’ u = 0 in Rn \ Ω (which
is different from the classical case of the Laplacian) in the weak formulation. Also
that in the norm ‖u‖W s,p(Rn), the interaction between Ω and Rn \Ω gives positive
contribution. Inspired by [18,19], we define the function space for p-case as

X =
{
u : Rn → R : u is measurable, u

∣∣
Ω
∈ Lp(Ω),

(u(x)− u(y)) p
√
K(x− y) ∈ Lp(Q)

}
,

where Q := R2n \ (CΩ× CΩ). The space X is endowed with a norm, defined as

‖u‖X =
(
‖u‖Lp(Ω) +

∫
Q

|u(x)− u(y)|pK(x− y)dx dy
)1/p

. (1.4)

It is immediate to observe that bounded and Lipschitz functions belong to X, thus
X is not reduced to {0}. These spaces for the case p = 2 are studied in [18, 19].
The function space X0 denotes the closure of C∞0 (Ω) in X. By [11, Lemma 4], the
space X0 is a Banach space which can be endowed with the norm, defined as

‖u‖X0 =
(∫

Q

|u(x)− u(y)|pK(x− y)dx dy
)1/p

. (1.5)

Note that in (1.4) and (1.5), the integrals can be extended to all R2n, since u = 0
a.e. in Rn \Ω. In view of our problem, we assume that M : R+ → R+ satisfies the
following conditions:

(M1) M : R+ → R+ is an increasing and continuous function.
(M2) There exists m0 > 0 such that M(t) ≥ m0 = M(0) for any t ∈ R+.

A typical example for M is given by M(t) = m0 + tb with b ≥ 0.
Also, we assume that f : Ω× R→ R is a continuous function that satisfies:
(F1) f(x, t) = 0 for any x ∈ Ω, t ≤ 0 and limt→0

f(x,t)
tp−1 = 0, uniformly in x ∈ Ω;

(F2) There exists q ∈ (p, p∗) such that limt→∞
f(x,t)
tq−1 = 0, uniformly in x ∈ Ω;

(F3) There exists σ ∈ (p, p∗) such that for any x ∈ Ω and t > 0,

0 < σF (x, t) = σ

∫ t

0

f(x, s)ds ≤ tf(x, t).

Definition 1.1. A function u ∈ X0 is called weak solution of (1.1) if u satisfies

M(‖u‖pX0
)
∫

R2n
|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy

= λ

∫
Ω

f(x, u(x))ϕ(x) dx+
∫

Ω

|u(x)|p
∗−2u(x)ϕ(x)dx ∀ϕ ∈ X0.

(1.6)
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Thanks to our assumptions on Ω, M , f and K, all the integrals in (1.6) are well
defined if u, ϕ ∈ X0. We also point out that the odd part of function K gives no
contribution to the integral of the left-hand side of (1.6). Therefore, it would be
not restrictive to assume that K is even.

The fractional Laplacian (−∆)s2 operator has been a classical topic in Fourier
analysis and nonlinear partial differential equations for a long time. Non-local
operators, naturally arise in continuum mechanics, phase transition phenomena,
population dynamics and game theory, see [5] and references therein. Fractional
operators are also involved in financial mathematics, where Levy processes with
jumps appear in modeling the asset prices (see [2].) In [12] author gave motivation
for the study of fractional Kirchhoff equations occurring in vibrating strings. Here
we study the p-fractional version of the problem studied in [12]. We follow and
adopt the same approach as in [12] to obtain our results.

Recently, much interest has grown to the study of critical exponent problem for
non-local equations. The Brezis-Nirenberg problem for the Kirchhoff type equations
are studied in [1, 8, 10] and references therein. Also, there are many works on the
study of critical problems in a non-local setting inspired by fractional Laplacian
[7, 10, 12, 17, 18, 19, 22]. Variational problems involving p-fractional operator with
sub-critical and sign changing nonlinearities are studied in [13, 14], using Nehari
manifold and fibering maps.

In [12], authors considered the fractional Kirchhoff problem

−M
(∫

R2n
|u(x)− u(y)|2K(x− y)dx dy

)
LKu = λf(x, u) + |u|2

∗−2u in Ω,

u = 0 in Rn \ Ω,
(1.7)

with K(x) ∼ |x|−(n+2s) and f(x, u) having sub-critical growth. Using mountain
pass Lemma and the study of compactness of Palais-Smale sequences, they estab-
lished the existence of solutions of (1.7) for large λ. Inspired by the above articles,
in this paper we will investigate the existence of a nontrivial solution for p-fractional
Kirchhoff problem stated in (1.1). To the best of our knowledge, there are no works
on p-Kirchhoff fractional equations. With this introduction, we state our main
result.

Theorem 1.2. Let s ∈ (0, 1), p > 1, n > ps and Ω be a bounded open subset of
Rn. Assume that the functions K(x), M(t) and f(x, t) satisfy conditions (1.2),
(M1)–(M2) and (F1)–(F3). Then there exists λ∗ > 0 such that problem (1.1) has a
nontrivial solution uλ for all λ ≥ λ∗. Moreover, limλ→∞ ‖uλ‖X0 = 0.

2. Auxiliary problem and variational formulation

To prove Theorem 1.2, we first study an auxiliary truncated problem. Given σ
as in (F3) and a ∈ R such that m0 < a < σ

pm0, by (M1) there exists t0 > 0 such
that M(t0) = a. Now, by setting

Ma(t) :=

{
M(t) if 0 ≤ t ≤ t0,
a if t ≥ t0,

(2.1)

we introduce the auxiliary problem

−Ma(‖u‖pX0
)LKu = λf(x, u) + |u|p

∗−2u in Ω,

u = 0 in Rn \ Ω,
(2.2)
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with f satisfying conditions (F1)–(F3) and λ being a positive parameter. By (M1),
we also note that

Ma(t) ≤ a for all t ≥ 0. (2.3)

We obtain the following result.

Theorem 2.1. Assume that K(x), M(t) and f(x, t) satisfies (1.2), (M1)–(M2)
and (F1)–(F3), respectively. Then there exists λ0 > 0 such that problem (2.2) has
a nontrivial weak solution, for all λ ≥ λ0 and for all a ∈

(
m0,

σ
pm0

)
.

For the proof of Theorem 2.1, we observe that problem (2.2) has a variational
structure. The Euler functional corresponding to (2.2) is Ja,λ : X0 → R defined as
follows

Ja,λ(u) =
1
p
M̂a(‖u‖pX0

)− λ
∫

Ω

F (x, u(x))dx− 1
p∗

∫
Ω

|u(x)|p
∗
dx,

where

M̂a(t) =
∫ t

0

Ma(s)ds.

Then the functional Ja,λ is Fréchet differentiable on X0 and for any ϕ ∈ X0,

〈J ′a,λ(u), ϕ〉

= Ma(‖u‖pX0
)
∫
Q

|u(x)− u(y)|p−2
(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

− λ
∫

Ω

f(x, u(x))ϕ(x) dx−
∫

Ω

|u(x)|p
∗−2u(x)ϕ(x)dx .

(2.4)
Now we prove that the functional Ja,λ has the geometric features required by

the Mountain Pass Theorem.

Lemma 2.2. Let K(x), M(t) and f(x, t) be three functions satisfying (1.2), (M1)–
(M2) and (F1)–(F3), respectively. Then there exist two positive constants ρ and α
such that

Ja,λ(u) ≥ α > 0, (2.5)

for any u ∈ X0 with ‖u‖X0 = ρ.

Proof. By (F1) and (F2), it follows that, for any ε > 0 there exists δ = δ(ε) > 0
such that

|F (x, t)| ≤ ε|t|p + δ|t|q . (2.6)

By (M2) and (2.6), we obtain

Ja,λ(u) ≥ m0

p
‖u‖pX0

− ελ
∫

Ω

|u(x)|pdx− δλ
∫

Ω

|u(x)|qdx− 1
p∗

∫
Ω

|u(x)|p
∗
dx.

So, by fractional Sobolev inequality (see [9, Theorem 6.5]), there is a positive con-
stant C = C(Ω) such that

Ja,λ(u) ≥
(m0

p
− ελC

)
‖u‖pX0

− δλC‖u‖qX0
− C‖u‖p

∗

X0
.

Therefore, by fixing ε such that m0
p − ελC > 0, since p < q < p∗, the result follows

by choosing ρ sufficiently small. �
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Lemma 2.3. Let K(x), M(t) and f(x, t) be three functions satisfying (1.2), (M1)–
(M2) and (F1)–(F3), respectively. Then there exists e ∈ X0 with Ja,λ(e) < 0 and
‖e‖X0 > ρ.

Proof. We fix u0 ∈ X0 such that ‖u0‖X0 = 1 and u0 ≥ 0 a.e. in Rn. For t > 0, by
(F3) and (2.3), we obtain

Ja,λ(tu0) ≤ at
p

p
− c1tσλ

∫
Ω

|u0(x)|σdx+ c2|Ω| −
tp
∗

p∗

∫
Ω

|u0(x)|p
∗
dx.

Since σ > p, passing to the limit as t → +∞, we obtain that Ja,λ(tu0) → −∞, so
that the assertion follows by taking e = t∗u0, with t∗ > 0 large enough. �

Now, we prove that the Palais-Smale sequence is bounded.

Lemma 2.4. Let K(x), M(t) and f(x, t) be three functions satisfying (1.2), (M1)–
(M2) and (F1)–(F3), respectively. Let {uj}j∈N be a sequence in X0 such that, for
any c ∈ (0,∞),

Ja,λ(uj)→ c, J ′a,λ(uj)→ 0, (2.7)

as j → +∞. Then {uj}j∈N is bounded in X0.

Proof. By (2.7), there exists C > 0 such that

|Ja,λ(uj)| ≤ C, 〈J ′a,λ(uj), uj〉 ≤ C‖uj‖X0 , (2.8)

for any j ∈ N. Moreover, by (M2), (F3), and (2.3) it follows that

Ja,λ(uj)−
1
σ
J ′a,λ(uj)(uj) ≥

1
p
M̂a(‖uj‖pX0

)− 1
σ
Ma(‖uj‖pX0

)‖uj‖pX0

≥
(1
p
m0 −

1
σ
a
)
‖uj‖pX0

.

(2.9)

On the other hand, from (2.8), we obtain

Ja,λ(uj)−
1
σ
〈J ′a,λ(uj)(uj)〉 ≤ C(1 + ‖uj‖X0). (2.10)

Now, from (2.9) and (2.10) along with the assumption, m0 < a < σ
pm0, we obtain

‖uj‖pX0
≤ C(1 + ‖uj‖X0), (2.11)

which implies that sequence {uj} is bounded in X0 �

Now, we define
ca,λ := inf

γ∈Γ
max
t∈[0,1]

Ja,λ(γ(t)) > 0, (2.12)

where
Γ := {γ ∈ C([0, 1], X0) : γ(0) = 0, Ja,λ(γ(1)) < 0}.

The following result is needed to study the asymptotic behavior of the solution of
problem (1.6).

Lemma 2.5. Let K(x), M(t) and f(x, t) be three functions satisfying (1.2), (M1)–
(M2) and (F1)–(F3). Then limλ→+∞ ca,λ = 0.
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Proof. Let e ∈ X0 be the function given by Lemma 2.3 and let {λj}j∈N be a
sequence such that λj → +∞. Since Ja,λ satisfies the Mountain Pass geometry,
it follows that there exists tλ > 0 such that Ja,λ(tλe) = maxt≥0 Ja,λ(te). Hence,
〈J ′a,λ(tλe), e〉 = 0 and by (2.4), we obtain

tp−1
λ ‖e‖pX0

Ma(tpλ‖e‖
p
X0

) = λ

∫
Ω

f(x, tλe(x))e(x) dx+ tp
∗−1
λ

∫
Ω

|e(x)|p
∗
dx . (2.13)

Now, by construction e ≥ 0 a.e. in Rn. So, by (F3), (2.3) and (2.13) it follows that

a‖e‖pX0
≥ tp

∗−p
λ

∫
Ω

|e(x)|p
∗
dx,

which implies that tλ is bounded for any λ > 0. Thus, there exists β ≥ 0 such that
tλj → β as j → +∞. So, by (2.3) and (2.13) there exists D > 0 such that

λj

∫
Ω

f(x, tλje(x))e(x) dx+ tp
∗−1
λj

∫
Ω

|e(x)|p
∗
dx = tp−1

λj
Ma(tpλj‖e‖

p
X0

) ≤ D, (2.14)

for any j ∈ N. We claim that β = 0. Indeed, if β > 0 then by (F1), (F2), for any
ε > 0, there exists δ = δ(ε) > 0 such that

|f(x, t)| ≤ ε|t|p−1 + qδ|t|q−1 for all t ∈ R,

and so, by the Dominated Convergence Theorem,∫
Ω

f(x, tλje(x))e(x) dx→
∫

Ω

f(x, βe(x))e(x) dx as j → +∞.

Now, since λj → +∞, we obtain

lim
j→+∞

λj

∫
Ω

f(x, tλje(x))e(x) dx+ tp
∗−1
λj

∫
Ω

|e(x)|p
∗
dx = +∞,

which contradicts (2.14). Thus, we have that β = 0. Now, we consider the following
path γ∗(t) = te for t ∈ [0, 1] which belongs to Γ. Using (F3), we obtain

0 < ca,λ ≤ max
t∈[0,1]

Ja,λ(γ∗(t)) ≤ Ja,λ(tλe) ≤
1
p
M̂a(tpλ‖e‖

p
X0

). (2.15)

By (M1) and the fact that β = 0, we obtain

lim
λ→+∞

M̂a(tpλ‖e‖
p
X0

) = 0,

and so by (2.15), we conclude the proof. �

Now we prove the following proposition, which will be useful in applying the
concentration-compactness principle (see [16, Theorem 2]) to prove Lemma 3.1.

Proposition 2.6. Let ξ ∈ Rn, δ ∈ (0, 1), u ∈ Lp
∗
(Rn). Let either U × V =

Bδ(ξ)× Rn or U × V = Rn ×Bδ(ξ). Then

lim
δ→0

δ−p
∫
U

∫
V ∩{|x−y|≤δ}

|u(x)|p|x− y|p−n−ps dx dy = 0, (2.16)

lim
δ→0

∫
U

∫
V ∩{|x−y|>δ}

|u(x)|p|x− y|−n−ps dx dy = 0. (2.17)
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Proof. We set ζδ :=
( ∫

Bδ(ξ)
|u(x)|p∗ dx

)p/p∗ and we remark that

lim
δ→0

ζδ = 0. (2.18)

Also we observe that, using the Hölder’s inequality with exponents p∗

p = n
n−ps and

n
ps , we obtain∫

Bδ(ξ)

|u(x)|p dx ≤
(∫

Bδ(ξ)

|u(x)|p
∗
dx
)p/p∗(∫

Bδ(ξ)

1 dx
)ps/n

≤ Cζδδps, (2.19)

for some C > 0 independent of δ (in what follows we will possibly change C from
line to line). Moreover

(U × V ) ∩ {|x− y| ≤ δ} ⊆ B2δ(ξ)×B2δ(ξ). (2.20)

Indeed, if (x, y) ∈ U × V = Bδ(ξ) × Rn, with |x − y| ≤ δ, we obtain |ξ − y| ≤
|ξ − x| + |x − y| ≤ δ + δ, and so we obtain (2.20). On the other hand, if (x, y) ∈
U × V = Rn ×Bδ(ξ) with |x− y| ≤ δ, we obtain

|ξ − x| ≤ |ξ − y|+ |y − x| ≤ δ + δ,

and this completes the proof of (2.20).
Now using the change of variable z := x− y and using (2.20), we obtain∫

x∈U

∫
y∈V ∩{|x−y|≤δ}

|u(x)|p|x− y|p−n−ps dx dy

≤
∫
x∈B2δ(p)

∫
y∈B2δ(p)∩{|x−y|≤δ}

|u(x)|p|x− y|p−n−ps dx dy

≤
∫
x∈B2δ(ξ)

∫
z∈Bδ

|u(x)|p|z|p−n−ps dx dz

≤ Cδp−ps
∫
x∈B2δ(ξ)

|u(x)|p dx.

Using this and (2.19), we obtain

δ−p
∫
U

∫
V ∩{|x−y|≤δ}

|u(x)|p|x− y|p−n−ps dx dy

≤ Cδ−ps
∫
x∈B2δ(ξ)

|u(x)|p dx ≤ Cζδ.
(2.21)

So, (2.21) and (2.18) imply (2.16). Now, we prove (2.17). For this, we fix an
auxiliary parameter K > 2 (such parameter will be taken arbitrarily large at the
end, after taking δ → 0). We observe that

U × V ⊆
(
BKδ(ξ)× Rn

)
∪
(
(Rn \BKδ(ξ))×Bδ(ξ

))
. (2.22)

Indeed, if U × V = Bδ(ξ)×Rn, then of course U × V ⊆ BKδ(ξ)×Rn, hence (2.22)
is obvious. If instead (x, y) ∈ U × V = Rn × Bδ(ξ), we distinguish two cases: if
x ∈ BKδ(ξ) then (x, y) ∈ BKδ(ξ)× Rn; if x ∈ Rn \BKδ(ξ), then

(x, y) ∈ (Rn \BKδ(ξ))× V = (Rn \BKδ(ξ))×Bδ(ξ).
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This completes the proof of (2.22). Now, we compute∫
x∈BKδ(ξ)

∫
y∈Rn∩{|x−y|>δ}

|u(x)|p|x− y|−n−ps dx dy

=
∫
x∈BKδ(ξ)

∫
z∈Rn\Bδ

|u(x)|p|z|−n−ps dx dz

= Cδ−ps
∫
x∈BKδ(ξ)

|u(x)|p dx ≤ CζKδ,

(2.23)

where (2.19) has been used again in the last step. Now, we observe that if x ∈
Rn \BKδ(ξ) and y ∈ Bδ(ξ) then

|x− y| ≥ |x− ξ| − |y − ξ| = |x− ξ|
2

+
|x− ξ|

2
− |y − p|

≥ |x− ξ|
2

+
Kδ

2
− δ ≥ |x− ξ|

2
.

As a consequence we infer that∫
x∈Rn\BKδ(ξ)

∫
y∈Bδ(ξ)

|u(x)|p|x− y|−n−ps dx dy

≤ C
∫
x∈Rn\BKδ(ξ)

∫
y∈Bδ(ξ)

|u(x)|p|x− ξ|−n−ps dx dy

= Cδn
∫
x∈Rn\BKδ(p)

|u(x)|p|x− ξ|−n−ps dx.

Now using the Hölder’s inequality with exponents p∗

p = n
n−ps and n

ps , we obtain∫
x∈Rn\BKδ(ξ)

∫
y∈Bδ(ξ)

|u(x)|p|x− y|−n−ps dx dy

≤ Cδn
(∫

x∈Rn\BKδ(ξ)
|u(x)|p

∗
dx
)p/p∗(∫

x∈Rn\BKδ(ξ)
|x− ξ|−(n+ps)n/ps dx

)ps/n
≤ Cδn‖u‖p

Lp∗ (Rn)

(∫ +∞

Kδ

ρ−((n+ps)n/ps)+(n−1)dρ
)ps/n

= Cδn‖u‖p
Lp∗ (Rn)

(
(Kδ)−n

2/ps
)ps/n

= CK−n‖u‖p
Lp∗ (Rn)

.

(2.24)
By collecting the results in (2.22), (2.23) and (2.24), we obtain∫

U

∫
V ∩{|x−y|>δ}

|u(x)|p|x− y|−n−ps dx dy

≤
∫
x∈BKδ(ξ)

∫
y∈Rn∩{|x−y|>δ}

|u(x)|p|x− y|−n−ps dx dy

+
∫
x∈Rn\BKδ(ξ)

∫
y∈Bδ(ξ)

|u(x)|p|x− y|−n−ps dx dy

≤ CζKδ + CK−n‖u‖p
Lp∗ (Rn)

.

From this, we first take δ → 0 and then K → +∞ to obtain (2.17) (using again
(2.18)). �
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3. Proofs of Theorems 1.2 and 2.1

We need the following lemma in which we study the local Palais-Smale sequences
and show the Palais-Smale condition, (PS)c in short, below the first critical level.

Lemma 3.1. There exists λ0 > 0 such that Ja,λ satisfies (PS)ca,λ for all λ > λ0,
where ca,λ is defined in (2.12).

Proof. Let {uj} be a Palais-Smale sequence in X0 at level ca,λ i.e. {uj} satisfies
(2.7). By lemma 2.4, {uj} is bounded in X0 and so upto subsequence {uj} converges
weakly to u in X0, strongly in Lq for all 1 ≤ q < p∗ and point wise to u almost
everywhere in Ω. Also there exists h ∈ Lp(Ω) such that |uj(x)| ≤ h(x) a.e. in Ω.
Also {‖uj‖X0} as a real sequence converges to α (say). Since Ma is continuous,
Ma(‖uj‖pX0

)→Ma(αp). Now we claim that

‖uj‖pX0
→ ‖u‖pX0

as j → +∞, (3.1)

Once the claim is proved, we can invoke Brezis-Leib lemma to prove that uj con-
verges to u strongly in X0. We know that {uj} is also bounded in W s,p

0 (Ω). So we
may assume that there exists two positive measures µ and ν on Rn such that

|(−∆)spuj |pdx
∗
⇀ µ and |uj |p

∗
⇀ ν, (3.2)

in the sense of measure. Moreover, (see, [16]), we have a countable index set J ,
positive constants {νj}j∈J and {µj}j∈J such that

ν = |u|p
∗
dx+

∑
i∈J

νiδxi , (3.3)

µ ≥ |(−∆)spu|pdx+
∑
i∈J

µiδxi , νi ≤ Sµp
∗/p
i , (3.4)

where S is the best constant of the embedding W s,p
0 (Ω) into Lp

∗
(Ω). Our goal is

to show that J is empty. Suppose not, then there exists i ∈ J . For this xi, define
φiδ(x) = φ(x−xiδ ), x ∈ Rn and φ ∈ C∞0 (Rn, [0, 1]) such that φ = 1 in B(0, 1) and
φ = 0 in Rn \B(0, 2). Since {φiδuj} is bounded in X0, we have J ′a,λ(uj)(φiδuj)→ 0
as j → +∞. That is,

Ma(‖uj‖pX0
)
∫

R2n
uj(x)|uj(x)− uj(y)|p−2(uj(x)− uj(y))

×
(
φiδ(x)− φiδ(y)

)
K(x− y) dx dy

= −Ma(‖uj‖pX0
)
∫

R2n
φiδ(y)|uj(x)− uj(y)|pK(x− y) dx dy

+ λ

∫
Ω

f(x, uj(x))φiδ(x)uj(x)dx+
∫

Ω

|uj(x)|p
∗
φiδ(x)dx + oj(1),

(3.5)

as j →∞. Now using Hölder’s inequality and the fact that {uj} is bounded in X0,
we obtain∣∣ ∫

R2n
uj(x)|(uj(x)− uj(y)|p−2(uj(x)− uj(y))

(
φiδ(x)− φiδ(y)

)
K(x− y) dx dy

∣∣
≤ C

(∫
R2n
|uj(x)|p|φiδ(x)− φiδ(y)|pK(x− y) dx dy

)1/p

.
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Now we claim that

lim
δ→0

[
lim

j→+∞

(∫
R2n
|uj(x)|p|φiδ(x)− φiδ(y)|pK(x− y) dx dy

)]
= 0. (3.6)

Using the Lipschitz regularity of φiδ, we have, for some L ≥ 0,∫
R2n
|uj(x)|p|φiδ(x)− φiδ(y)|pK(x− y) dx dy

≤ 1
θ

∫
R2n
|uj(x)|p|φiδ(x)− φiδ(y)|p|x− y|−n−ps dx dy

≤ Lpδ−p

θ

∫
Rn

∫
Rn∩{|x−y|≤δ}

|uj(x)|p|x− y|p−n−ps dx dy

+
2p

θ

∫
Rn

∫
Rn∩{|x−y|>δ}

|uj(x)|p|x− y|−n−ps dx dy

≤ C (Lpδ−p + 2p)
θ

∫
Rn
|h(x)|p dx dy < +∞,

(3.7)

with C = C(n, s, δ) > 0. So, by dominated convergence theorem

lim
j→+∞

∫
R2n
|uj(x)|p|φiδ(x)− φiδ(y)|pK(x− y) dx dy

=
∫

R2n
|u(x)|p|φiδ(x)− φiδ(y)|pK(x− y) dx dy.

Now, following the calculations in (3.7), we obtain∫
U×V

|u(x)|p|φiδ(x)− φiδ(y)|pK(x− y) dx dy

≤ Lp

θ
δ−p

∫
U

∫
V ∩{|x−y|≤δ}

|u(x)|p|x− y|p−n−ps dx dy

+
2p

θ

∫
U

∫
V ∩{|x−y|>δ}

|u(x)|p|x− y|−n−ps dx dy,

(3.8)

where U and V are two generic subsets of Rn. Next we claim that∫
R2n
|u(x)|p|φiδ(x)− φiδ(y)|pK(x− y) dx dy → 0, as δ → 0.

When U = V = Rn \ B(xi, δ) claim follows. When U × V = B(xi, δ) × Rn and
U × V = Rn ×B(xi, δ), we can use Proposition 2.6 to prove the claim. Thus

lim
δ→0

∫
R2n
|u(x)|p|φiδ(x)− φiδ(y)|pK(x− y) dx dy = 0. (3.9)

Hence

Ma(‖uj‖pX0
)
∫

R2n
uj(x)|(uj(x)− uj(y)|p−2(uj(x)− uj(y))

×
(
φiδ(x)− φiδ(y)

)
K(x− y) dx dy → 0,

(3.10)
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as δ → 0 and j →∞. Now, using Hölder’s inequality,∣∣∣ ∫
Rn

uj(x)− uj(y)
|x− y|n+ps

∣∣∣p
≤ 2p−1

[
|uj(y)|p

∣∣∣ ∫
Rn\Ω

1
|x− y|n+ps

∣∣∣p +
∣∣∣ ∫

Ω

uj(x)− uj(y)
|x− y|n+ps

dx
∣∣∣p]

≤ C1|uj(y)|p + C2

∫
Ω

|uj(x)− uj(y)|pK(x− y)dx,

(3.11)

where C1 = 2p−1|
∫

Rn\Ω
dx

|x−y|n+ps |p and C2 = 2p−1/θ. Now using equations (3.11)
and (3.2), we obtain

lim inf
j→+∞

∫
Rn
φiδ(y)

∫
Ω

|uj(x)− uj(y)|pK(x− y) dx dy

≥ C3
1

c(n, s)
lim inf
j→+∞

∫
Rn
φiδ(y)c(n, s)

∣∣∣ ∫
Rn

uj(x)− uj(y)
|x− y|n+ps

dx
∣∣∣pdy

− C4 lim inf
j→+∞

∫
Rn
φiδ(y)|uj(y)|pdy

≥ C3
1

c(n, s)

∫
Rn
φiδ(y)dµ− C4

∫
B(xi,δ)

|u(y)|pdy,

(3.12)

where C3 = 1/C2 and C4 = C1/C2. Moreover, for a given ε > 0 there exist Cε > 0
such that

|f(x, t)| ≤ ε|t|p−1 + Cε|t|q−1 . (3.13)

So, using Vitali’s convergence theorem, we obtain∫
B(xi,δ)

f(x, uj(x))uj(x)φiδ(x)dx→
∫
B(xi,δ)

f(x, u(x))u(x)φiδ(x)dx, (3.14)

as j → +∞. We also observe that the integral goes to 0 as δ → 0. So, using (3.10),
(3.12), (3.14) and (3.2) in (3.5), we obtain∫

Ω

φiδ(x)dν + λ

∫
B(xi,δ)

f(x, u(x))u(x)φiδ(x)dx

≥Ma(αp)C
(∫

Ω

φiδ(y)dµ−
∫
B(xi,δ)

|u(y)|pdy
)

+ oδ(1).

Now, by taking δ → 0, we conclude that νi ≥ Ma(αp)Cµi ≥ m0Cµi. Then by
(3.4), we obtain

νi ≥
(m0C)n/ps

S(n−ps)/ps , (3.15)

for any i ∈ J , where C = C3
c(n,s) , independent of λ. We will prove that (3.15) is not

possible.
Consider

lim
j→+∞

(
Ja,λ(uj)−

1
σ
J ′a,λ(uj)(uj)

)
= ca,λ. (3.16)
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Since, m0 < a < σ
pm0, we obtain

Ja,λ(uj)−
1
σ
J ′a,λ(uj)(uj)

≥ 1
p
M̂a(‖uj‖pX0

)− 1
σ
Ma(‖uj‖pX0

)‖uj‖pX0
+ (

1
σ
− 1
p∗

)
∫

Ω

|uj(x)|p
∗
dx

≥ 1
p
m0‖uj‖pX0

− 1
σ
a‖uj‖pX0

+ (
1
σ
− 1
p∗

)
∫

Ω

|uj(x)|p
∗
dx

≥
(1
p
m0 −

1
σ
a
)
‖uj‖pX0

+ (
1
σ
− 1
p∗

)
∫

Ω

|uj(x)|p
∗
dx

≥ (
1
σ
− 1
p∗

)
∫

Ω

φiδ(x)|uj(x)|p
∗
dx.

(3.17)

So, as j → 0,

ca,λ ≥ (
1
σ
− 1
p∗

)
∫

Ω

φiδ(x)dν

Now, taking δ → 0,

ca,λ ≥ (
1
σ
− 1
p∗

)
(m0C)

n
ps

S
n−ps
ps

> 0,

for all λ, but from Lemma 2.5, there exists λ0 > 0 such that

ca,λ < (
1
σ
− 1
p∗

)
(m0C)

n
ps

S
n−ps
ps

for all λ > λ0, which is a contradiction. Therefore νi = 0 or all i ∈ J . Hence J
is empty. Which implies uj → u in Lp

∗
(Ω). So, by (2.7) taking φ = uj and using

dominated convergence theorem,

lim
j→+∞

Ma(‖uj‖pX0
)‖uj‖pX0

= λ

∫
Ω

f(x, u(x))u(x)dx+
∫

Ω

|u(x)|2
∗
dx. (3.18)

Now, we take φ = u in (2.7) and recalling that Ma(‖uj‖pX0
)→Ma(αp), we obtain

Ma(αp)‖uj‖pX0
= λ

∫
Ω

f(x, u(x))u(x) dx−
∫

Ω

|u(x)|2
∗
dx . (3.19)

So, combining (3.18) and (3.19), we obtain

Ma(‖uj‖pX0
)‖uj‖pX0

→Ma(αp)‖u‖pX0
, as j → +∞.

So, using this result, we have

Ma(‖uj‖pX0
)(‖uj‖pX0

− ‖u‖pX0
) = Ma(‖uj‖pX0

)‖uj‖pX0
−Ma(αp)‖u‖pX0

−Ma(‖uj‖pX0
)‖u‖pX0

+Ma(αp)‖u‖pX0
,

which leads to
Ma(‖uj‖pX0

)(‖uj‖pX0
− ‖u‖pX0

)→ 0.
Also

m0(‖uj‖pX0
− ‖u‖pX0

) ≤Ma(‖uj‖pX0
)(‖uj‖pX0

− ‖u‖pX0
), (3.20)

which implies ‖uj‖pX0
→ ‖u‖pX0

and the claim is proved. Hence uj → u strongly in
X0. �

Proof of Theorem 2.1. Using Lemma 3.1 and by Mountain Pass Theorem, we ob-
tain a critical point u for the functional Ja,λ at the level ca,λ. Since Ja,λ(u) =
ca,λ > 0 = Ja,λ(0), we conclude that u 6≡ 0. �
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Proof of Theorem 1.2. Now to conclude the proof of Theorem 1.2 we claim that

there exists λ∗ ≥ λ0 such that ‖uλ‖X0 ≤ t0 for all λ ≥ λ∗ , (3.21)

where t0 is defined in (2.1). Suppose not, then there exists a sequence {λj} in R
such that ‖uλj‖X0 ≥ t0. Since uλj is a critical point of the functional Ja,λj which
implies

ca,λj ≥
1
p
M̂a(‖uλj‖

p
X0

)− 1
σ
Ma(‖uλj‖

p
X0

)‖uλj‖
p
X0

≥
(1
p
m0 −

1
σ
a
)
‖uλj‖

p
X0

≥
(1
p
m0 −

1
σ
a
)
tp0,

which contradicts Lemma 2.5, since m0 < a < σ
pm0. Hence uλ is a solution of

problem (Mλ). Since ca,λ → 0 as λ→ 0, implies ‖uλ‖X0 → 0 as λ→∞.
Now, we claim that uλ is non-negative in Rn. Take v = u− ∈ X0, in (2.4), where

u− = max(−u, 0). Then

M(‖uλ‖pX0
)
∫
Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(u−λ (x)− u−λ (y))K(x− y)dxdy

=
∫

Ω

f(x, uλ)u−λ (x)dx+
∫

Ω

|u−λ (x)|p
∗
dx.

Now, using

(uλ(x)− uλ(y))(u−λ (x)− u−λ (y)) ≤ −|u−λ (x)− u−λ (y)|2

and f(x, uλ(x))u−λ (x) = 0 for a.e. x ∈ Rn we obtain

0 ≤ −M(‖uλ‖pX0
)
∫
Q

|u−λ (x)− u−λ (y)|pK(x− y)−
∫

Ω

|u−λ (x)|p
∗
dx ≤ −m0‖u−λ ‖

p
X0
.

Thus ‖u−λ ‖X0 = 0 and hence uλ > 0. �
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