Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 93, pp. 1–14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF SOLUTIONS FOR FRACTIONAL *p*-KIRCHHOFF EQUATIONS WITH CRITICAL NONLINEARITIES

PAWAN KUMAR MISHRA, KONIJETI SREENADH

ABSTRACT. In this article, we show the existence of non-negative solutions of the fractional $p\mbox{-}Kirchhoff$ problem

$$-M(\int_{\mathbb{R}^{2n}} |u(x) - u(y)|^p K(x - y) dx \, dy) \mathcal{L}_K u = \lambda f(x, u) + |u|^{p^* - 2} u \quad \text{in } \Omega,$$
$$u = 0 \quad \text{in } \mathbb{R}^n \setminus \Omega,$$

where \mathcal{L}_K is a *p*-fractional type non local operator with kernel K, Ω is a bounded domain in \mathbb{R}^n with smooth boundary, M and f are continuous functions, and p^* is the fractional Sobolev exponent.

1. INTRODUCTION

In this work, we study the existence of solutions for the following p-Kirchhoff equation

$$-M\Big(\int_{\mathbb{R}^{2n}}|u(x)-u(y)|^{p}K(x-y)dx\,dy\Big)\mathcal{L}_{K}u = \lambda f(x,u) + |u|^{p^{*}-2}u \quad \text{in }\Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^{n} \setminus \Omega,$$
(1.1)

where p > 1, n > ps with $s \in (0, 1)$, $p^* = \frac{np}{n-ps}$, λ is a positive parameter, $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary and $M : \mathbb{R}^+ \to \mathbb{R}^+$, $f : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ are continuous functions that satisfy some growth assumptions which will be stated later. Here the operator \mathcal{L}_K is the *p*-fractional type non-local operator defined as follows:

$$\mathcal{L}_{K}u(x) = 2\int_{\mathbb{R}^{n}} |u(x) - u(y)|^{p-2}(u(x) - u(y))K(x-y)dy \quad \text{for all } x \in \mathbb{R}^{n},$$

where $K : \mathbb{R}^n \setminus \{0\} \to (0, +\infty)$ is a measurable function with the property that

there exists
$$\theta > 0$$
 and $s \in (0, 1)$ such that $\theta |x|^{-(n+ps)} \le K(x) \le \theta^{-1} |x|^{-(n+ps)}$ for any $x \in \mathbb{R}^n \setminus \{0\}$. (1.2)

It is immediate to observe that $mK \in L^1(\mathbb{R}^n)$ by setting $m(x) = \min\{|x|^p, 1\}$. A typical example for K is given by $K(x) = |x|^{-(n+ps)}$. In this case problem (1.1)

²⁰⁰⁰ Mathematics Subject Classification. 34B27, 35J60, 35B05.

Key words and phrases. Kirchhoff non-local operators; fractional differential equations; critical exponent.

^{©2015} Texas State University - San Marcos.

Submitted September 2, 2014. Published April 12, 2015.

becomes

$$M\Big(\int_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^p}{|x - y|^{n + ps}} dx \, dy\Big) (-\Delta)_p^s u = \lambda f(x, u) + |u|^{p^* - 2} u \quad \text{in } \Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^n \setminus \Omega,$$

(1.3)

where $(-\Delta)_p^s$ is the fractional *p*-Laplace operator defined as

$$-2\int_{\mathbb{R}^n} \frac{|u(y) - u(x)|^{p-2}(u(y) - u(x))}{|x - y|^{n + p\alpha}} dy.$$

Problems (1.1) and (1.3) are variational in nature and the natural space to look for solutions is the fractional Sobolev space $W_0^{s,p}(\Omega)$ (see [9]). To study (1.1) and (1.3), it is important to encode the 'boundary condition' u = 0 in $\mathbb{R}^n \setminus \Omega$ (which is different from the classical case of the Laplacian) in the weak formulation. Also that in the norm $||u||_{W^{s,p}(\mathbb{R}^n)}$, the interaction between Ω and $\mathbb{R}^n \setminus \Omega$ gives positive contribution. Inspired by [18, 19], we define the function space for *p*-case as

$$X = \left\{ u : \mathbb{R}^n \to \mathbb{R} : u \text{ is measurable, } u \big|_{\Omega} \in L^p(\Omega), \\ (u(x) - u(y)) \sqrt[p]{K(x-y)} \in L^p(Q) \right\},$$

where $Q := \mathbb{R}^{2n} \setminus (\mathcal{C}\Omega \times \mathcal{C}\Omega)$. The space X is endowed with a norm, defined as

$$||u||_X = \left(||u||_{L^p(\Omega)} + \int_Q |u(x) - u(y)|^p K(x - y) dx \, dy\right)^{1/p}.$$
 (1.4)

It is immediate to observe that bounded and Lipschitz functions belong to X, thus X is not reduced to $\{0\}$. These spaces for the case p = 2 are studied in [18, 19]. The function space X_0 denotes the closure of $C_0^{\infty}(\Omega)$ in X. By [11, Lemma 4], the space X_0 is a Banach space which can be endowed with the norm, defined as

$$||u||_{X_0} = \left(\int_Q |u(x) - u(y)|^p K(x - y) dx \, dy\right)^{1/p}.$$
(1.5)

Note that in (1.4) and (1.5), the integrals can be extended to all \mathbb{R}^{2n} , since u = 0a.e. in $\mathbb{R}^n \setminus \Omega$. In view of our problem, we assume that $M : \mathbb{R}^+ \to \mathbb{R}^+$ satisfies the following conditions:

- (M1) $M : \mathbb{R}^+ \to \mathbb{R}^+$ is an increasing and continuous function.
- (M2) There exists $m_0 > 0$ such that $M(t) \ge m_0 = M(0)$ for any $t \in \mathbb{R}^+$.

A typical example for M is given by $M(t) = m_0 + tb$ with $b \ge 0$.

Also, we assume that $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a continuous function that satisfies:

- (F1) f(x,t) = 0 for any $x \in \Omega$, $t \leq 0$ and $\lim_{t\to 0} \frac{f(x,t)}{t^{p-1}} = 0$, uniformly in $x \in \Omega$; (F2) There exists $q \in (p, p^*)$ such that $\lim_{t\to\infty} \frac{f(x,t)}{t^{q-1}} = 0$, uniformly in $x \in \Omega$; (F3) There exists $\sigma \in (p, p^*)$ such that for any $x \in \Omega$ and t > 0,

$$0 < \sigma F(x,t) = \sigma \int_0^t f(x,s) ds \le t f(x,t).$$

Definition 1.1. A function $u \in X_0$ is called weak solution of (1.1) if u satisfies

$$M(\|u\|_{X_0}^p) \int_{\mathbb{R}^{2n}} |u(x) - u(y)|^{p-2} (u(x) - u(y))(\varphi(x) - \varphi(y))K(x - y)dx dy$$

= $\lambda \int_{\Omega} f(x, u(x))\varphi(x) dx + \int_{\Omega} |u(x)|^{p^*-2} u(x)\varphi(x)dx \quad \forall \varphi \in X_0.$ (1.6)

 $\mathbf{2}$

Thanks to our assumptions on Ω , M, f and K, all the integrals in (1.6) are well defined if $u, \varphi \in X_0$. We also point out that the odd part of function K gives no contribution to the integral of the left-hand side of (1.6). Therefore, it would be not restrictive to assume that K is even.

The fractional Laplacian $(-\Delta)_2^s$ operator has been a classical topic in Fourier analysis and nonlinear partial differential equations for a long time. Non-local operators, naturally arise in continuum mechanics, phase transition phenomena, population dynamics and game theory, see [5] and references therein. Fractional operators are also involved in financial mathematics, where Levy processes with jumps appear in modeling the asset prices (see [2].) In [12] author gave motivation for the study of fractional Kirchhoff equations occurring in vibrating strings. Here we study the *p*-fractional version of the problem studied in [12]. We follow and adopt the same approach as in [12] to obtain our results.

Recently, much interest has grown to the study of critical exponent problem for non-local equations. The Brezis-Nirenberg problem for the Kirchhoff type equations are studied in [1, 8, 10] and references therein. Also, there are many works on the study of critical problems in a non-local setting inspired by fractional Laplacian [7, 10, 12, 17, 18, 19, 22]. Variational problems involving *p*-fractional operator with sub-critical and sign changing nonlinearities are studied in [13, 14], using Nehari manifold and fibering maps.

In [12], authors considered the fractional Kirchhoff problem

$$-M\Big(\int_{\mathbb{R}^{2n}}|u(x)-u(y)|^2K(x-y)dx\,dy\Big)\mathcal{L}_K u = \lambda f(x,u) + |u|^{2^*-2}u \quad \text{in }\Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^n \setminus \Omega,$$
(1.7)

with $K(x) \sim |x|^{-(n+2s)}$ and f(x, u) having sub-critical growth. Using mountain pass Lemma and the study of compactness of Palais-Smale sequences, they established the existence of solutions of (1.7) for large λ . Inspired by the above articles, in this paper we will investigate the existence of a nontrivial solution for *p*-fractional Kirchhoff problem stated in (1.1). To the best of our knowledge, there are no works on *p*-Kirchhoff fractional equations. With this introduction, we state our main result.

Theorem 1.2. Let $s \in (0,1)$, p > 1, n > ps and Ω be a bounded open subset of \mathbb{R}^n . Assume that the functions K(x), M(t) and f(x,t) satisfy conditions (1.2), (M1)–(M2) and (F1)–(F3). Then there exists $\lambda^* > 0$ such that problem (1.1) has a nontrivial solution u_{λ} for all $\lambda \geq \lambda^*$. Moreover, $\lim_{\lambda \to \infty} \|u_{\lambda}\|_{X_0} = 0$.

2. Auxiliary problem and variational formulation

To prove Theorem 1.2, we first study an auxiliary truncated problem. Given σ as in (F3) and $a \in \mathbb{R}$ such that $m_0 < a < \frac{\sigma}{p}m_0$, by (M1) there exists $t_0 > 0$ such that $M(t_0) = a$. Now, by setting

$$M_{a}(t) := \begin{cases} M(t) & \text{if } 0 \le t \le t_{0}, \\ a & \text{if } t \ge t_{0}, \end{cases}$$
(2.1)

we introduce the auxiliary problem

$$-M_a(\|u\|_{X_0}^p)\mathcal{L}_K u = \lambda f(x, u) + |u|^{p^*-2}u \quad \text{in } \Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^n \setminus \Omega,$$
(2.2)

with f satisfying conditions (F1)–(F3) and λ being a positive parameter. By (M1), we also note that

$$M_a(t) \le a \quad \text{for all } t \ge 0. \tag{2.3}$$

We obtain the following result.

Theorem 2.1. Assume that K(x), M(t) and f(x,t) satisfies (1.2), (M1)–(M2) and (F1)–(F3), respectively. Then there exists $\lambda_0 > 0$ such that problem (2.2) has a nontrivial weak solution, for all $\lambda \geq \lambda_0$ and for all $a \in (m_0, \frac{\sigma}{n}m_0)$.

For the proof of Theorem 2.1, we observe that problem (2.2) has a variational structure. The Euler functional corresponding to (2.2) is $\mathcal{J}_{a,\lambda}: X_0 \to \mathbb{R}$ defined as follows

$$\mathcal{J}_{a,\lambda}(u) = \frac{1}{p}\widehat{M_a}(\|u\|_{X_0}^p) - \lambda \int_{\Omega} F(x, u(x))dx - \frac{1}{p^*} \int_{\Omega} |u(x)|^{p^*} dx,$$

where

$$\widehat{M_a}(t) = \int_0^t M_a(s) ds.$$

Then the functional $\mathcal{J}_{a,\lambda}$ is Fréchet differentiable on X_0 and for any $\varphi \in X_0$,

$$\begin{aligned} \langle \mathcal{J}'_{a,\lambda}(u),\varphi \rangle \\ &= M_a(\|u\|_{X_0}^p) \int_Q |u(x) - u(y)|^{p-2} \big(u(x) - u(y) \big) \big(\varphi(x) - \varphi(y) \big) K(x-y) \, dx \, dy \\ &- \lambda \int_\Omega f(x,u(x))\varphi(x) \, dx - \int_\Omega |u(x)|^{p^*-2} u(x)\varphi(x) dx \,. \end{aligned}$$

$$(2.4)$$

Now we prove that the functional $\mathcal{J}_{a,\lambda}$ has the geometric features required by the Mountain Pass Theorem.

Lemma 2.2. Let K(x), M(t) and f(x,t) be three functions satisfying (1.2), (M1)–(M2) and (F1)–(F3), respectively. Then there exist two positive constants ρ and α such that

$$\mathcal{J}_{a,\lambda}(u) \ge \alpha > 0, \tag{2.5}$$

for any $u \in X_0$ with $||u||_{X_0} = \rho$.

Proof. By (F1) and (F2), it follows that, for any $\epsilon > 0$ there exists $\delta = \delta(\epsilon) > 0$ such that

$$|F(x,t)| \le \epsilon |t|^p + \delta |t|^q \,. \tag{2.6}$$

By (M2) and (2.6), we obtain

$$\mathcal{J}_{a,\lambda}(u) \geq \frac{m_0}{p} \|u\|_{X_0}^p - \epsilon \lambda \int_{\Omega} |u(x)|^p dx - \delta \lambda \int_{\Omega} |u(x)|^q dx - \frac{1}{p^*} \int_{\Omega} |u(x)|^{p^*} dx.$$

So, by fractional Sobolev inequality (see [9, Theorem 6.5]), there is a positive constant $C = C(\Omega)$ such that

$$\mathcal{J}_{a,\lambda}(u) \ge \left(\frac{m_0}{p} - \epsilon \lambda C\right) \|u\|_{X_0}^p - \delta \lambda C \|u\|_{X_0}^q - C \|u\|_{X_0}^{p^*}.$$

Therefore, by fixing ϵ such that $\frac{m_0}{p} - \epsilon \lambda C > 0$, since $p < q < p^*$, the result follows by choosing ρ sufficiently small.

Lemma 2.3. Let K(x), M(t) and f(x,t) be three functions satisfying (1.2), (M1)–(M2) and (F1)–(F3), respectively. Then there exists $e \in X_0$ with $\mathcal{J}_{a,\lambda}(e) < 0$ and $\|e\|_{X_0} > \rho$.

Proof. We fix $u_0 \in X_0$ such that $||u_0||_{X_0} = 1$ and $u_0 \ge 0$ a.e. in \mathbb{R}^n . For t > 0, by (F3) and (2.3), we obtain

$$\mathcal{J}_{a,\lambda}(tu_0) \le a \frac{t^p}{p} - c_1 t^{\sigma} \lambda \int_{\Omega} |u_0(x)|^{\sigma} dx + c_2 |\Omega| - \frac{t^{p^*}}{p^*} \int_{\Omega} |u_0(x)|^{p^*} dx.$$

Since $\sigma > p$, passing to the limit as $t \to +\infty$, we obtain that $\mathcal{J}_{a,\lambda}(tu_0) \to -\infty$, so that the assertion follows by taking $e = t_*u_0$, with $t_* > 0$ large enough. \Box

Now, we prove that the Palais-Smale sequence is bounded.

Lemma 2.4. Let K(x), M(t) and f(x,t) be three functions satisfying (1.2), (M1)–(M2) and (F1)–(F3), respectively. Let $\{u_j\}_{j\in\mathbb{N}}$ be a sequence in X_0 such that, for any $c \in (0, \infty)$,

$$\mathcal{J}_{a,\lambda}(u_j) \to c, \quad \mathcal{J}'_{a,\lambda}(u_j) \to 0,$$
 (2.7)

as $j \to +\infty$. Then $\{u_j\}_{j \in \mathbb{N}}$ is bounded in X_0 .

Proof. By (2.7), there exists C > 0 such that

$$|\mathcal{J}_{a,\lambda}(u_j)| \le C, \quad \langle \mathcal{J}'_{a,\lambda}(u_j), u_j \rangle \le C \|u_j\|_{X_0}, \tag{2.8}$$

for any $j \in \mathbb{N}$. Moreover, by (M2), (F3), and (2.3) it follows that

$$\mathcal{J}_{a,\lambda}(u_j) - \frac{1}{\sigma} \mathcal{J}'_{a,\lambda}(u_j)(u_j) \ge \frac{1}{p} \widehat{M_a}(\|u_j\|_{X_0}^p) - \frac{1}{\sigma} M_a(\|u_j\|_{X_0}^p) \|u_j\|_{X_0}^p \ge (\frac{1}{p} m_0 - \frac{1}{\sigma} a) \|u_j\|_{X_0}^p.$$
(2.9)

On the other hand, from (2.8), we obtain

$$\mathcal{J}_{a,\lambda}(u_j) - \frac{1}{\sigma} \langle \mathcal{J}'_{a,\lambda}(u_j)(u_j) \rangle \le C(1 + \|u_j\|_{X_0}).$$

$$(2.10)$$

Now, from (2.9) and (2.10) along with the assumption, $m_0 < a < \frac{\sigma}{p} m_0$, we obtain

$$\|u_j\|_{X_0}^p \le C(1+\|u_j\|_{X_0}),\tag{2.11}$$

which implies that sequence $\{u_j\}$ is bounded in X_0

Now, we define

$$c_{a,\lambda} := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \mathcal{J}_{a,\lambda}(\gamma(t)) > 0, \qquad (2.12)$$

where

$$\Gamma := \{ \gamma \in C([0,1], X_0) : \gamma(0) = 0, \ \mathcal{J}_{a,\lambda}(\gamma(1)) < 0 \}.$$

The following result is needed to study the asymptotic behavior of the solution of problem (1.6).

Lemma 2.5. Let K(x), M(t) and f(x, t) be three functions satisfying (1.2), (M1)–(M2) and (F1)–(F3). Then $\lim_{\lambda\to+\infty} c_{a,\lambda} = 0$.

Proof. Let $e \in X_0$ be the function given by Lemma 2.3 and let $\{\lambda_j\}_{j\in\mathbb{N}}$ be a sequence such that $\lambda_j \to +\infty$. Since $\mathcal{J}_{a,\lambda}$ satisfies the Mountain Pass geometry, it follows that there exists $t_{\lambda} > 0$ such that $\mathcal{J}_{a,\lambda}(t_{\lambda}e) = \max_{t\geq 0} \mathcal{J}_{a,\lambda}(te)$. Hence, $\langle \mathcal{J}'_{a,\lambda}(t_{\lambda}e), e \rangle = 0$ and by (2.4), we obtain

$$t_{\lambda}^{p-1} \|e\|_{X_0}^p M_a(t_{\lambda}^p \|e\|_{X_0}^p) = \lambda \int_{\Omega} f(x, t_{\lambda} e(x)) e(x) \, dx + t_{\lambda}^{p^*-1} \int_{\Omega} |e(x)|^{p^*} dx \,. \tag{2.13}$$

Now, by construction $e \ge 0$ a.e. in \mathbb{R}^n . So, by (F3), (2.3) and (2.13) it follows that

$$a \|e\|_{X_0}^p \ge t_{\lambda}^{p^*-p} \int_{\Omega} |e(x)|^{p^*} dx,$$

which implies that t_{λ} is bounded for any $\lambda > 0$. Thus, there exists $\beta \ge 0$ such that $t_{\lambda_j} \to \beta$ as $j \to +\infty$. So, by (2.3) and (2.13) there exists D > 0 such that

$$\lambda_j \int_{\Omega} f(x, t_{\lambda_j} e(x)) e(x) \, dx + t_{\lambda_j}^{p^* - 1} \int_{\Omega} |e(x)|^{p^*} dx = t_{\lambda_j}^{p - 1} M_a(t_{\lambda_j}^p \|e\|_{X_0}^p) \le D, \quad (2.14)$$

for any $j \in \mathbb{N}$. We claim that $\beta = 0$. Indeed, if $\beta > 0$ then by (F1), (F2), for any $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$|f(x,t)| \le \epsilon |t|^{p-1} + q\delta |t|^{q-1}$$
 for all $t \in \mathbb{R}$,

and so, by the Dominated Convergence Theorem,

$$\int_{\Omega} f(x, t_{\lambda_j} e(x)) e(x) \, dx \to \int_{\Omega} f(x, \beta e(x)) e(x) \, dx \quad \text{as } j \to +\infty$$

Now, since $\lambda_j \to +\infty$, we obtain

$$\lim_{j \to +\infty} \lambda_j \int_{\Omega} f(x, t_{\lambda_j} e(x)) e(x) \, dx + t_{\lambda_j}^{p^* - 1} \int_{\Omega} |e(x)|^{p^*} dx = +\infty,$$

which contradicts (2.14). Thus, we have that $\beta = 0$. Now, we consider the following path $\gamma_*(t) = te$ for $t \in [0, 1]$ which belongs to Γ . Using (F3), we obtain

$$0 < c_{a,\lambda} \le \max_{t \in [0,1]} \mathcal{J}_{a,\lambda}(\gamma_*(t)) \le \mathcal{J}_{a,\lambda}(t_\lambda e) \le \frac{1}{p} \widehat{M_a}(t_\lambda^p \|e\|_{X_0}^p).$$
(2.15)

By (M1) and the fact that $\beta = 0$, we obtain

$$\lim_{\lambda \to +\infty} \widehat{M_a}(t^p_\lambda \|e\|^p_{X_0}) = 0,$$

and so by (2.15), we conclude the proof.

Now we prove the following proposition, which will be useful in applying the concentration-compactness principle (see [16, Theorem 2]) to prove Lemma 3.1.

Proposition 2.6. Let $\xi \in \mathbb{R}^n$, $\delta \in (0,1)$, $u \in L^{p^*}(\mathbb{R}^n)$. Let either $U \times V = B_{\delta}(\xi) \times \mathbb{R}^n$ or $U \times V = \mathbb{R}^n \times B_{\delta}(\xi)$. Then

$$\lim_{\delta \to 0} \delta^{-p} \int_{U} \int_{V \cap \{|x-y| \le \delta\}} |u(x)|^p |x-y|^{p-n-ps} \, dx \, dy = 0, \tag{2.16}$$

$$\lim_{\delta \to 0} \int_{U} \int_{V \cap \{|x-y| > \delta\}} |u(x)|^p |x-y|^{-n-ps} \, dx \, dy = 0.$$
(2.17)

$$\square$$

$$\lim_{\delta \to 0} \zeta_{\delta} = 0. \tag{2.18}$$

Also we observe that, using the Hölder's inequality with exponents $\frac{p^*}{p} = \frac{n}{n-ps}$ and $\frac{n}{ps}$, we obtain

$$\int_{B_{\delta}(\xi)} |u(x)|^{p} dx \le \left(\int_{B_{\delta}(\xi)} |u(x)|^{p^{*}} dx\right)^{p/p^{*}} \left(\int_{B_{\delta}(\xi)} 1 dx\right)^{ps/n} \le C\zeta_{\delta}\delta^{ps}, \quad (2.19)$$

for some C > 0 independent of δ (in what follows we will possibly change C from line to line). Moreover

$$(U \times V) \cap \{|x - y| \le \delta\} \subseteq B_{2\delta}(\xi) \times B_{2\delta}(\xi).$$

$$(2.20)$$

Indeed, if $(x, y) \in U \times V = B_{\delta}(\xi) \times \mathbb{R}^n$, with $|x - y| \leq \delta$, we obtain $|\xi - y| \leq |\xi - x| + |x - y| \leq \delta + \delta$, and so we obtain (2.20). On the other hand, if $(x, y) \in U \times V = \mathbb{R}^n \times B_{\delta}(\xi)$ with $|x - y| \leq \delta$, we obtain

$$|\xi - x| \le |\xi - y| + |y - x| \le \delta + \delta,$$

and this completes the proof of (2.20).

Now using the change of variable z := x - y and using (2.20), we obtain

$$\begin{split} &\int_{x \in U} \int_{y \in V \cap \{|x-y| \le \delta\}} |u(x)|^p |x-y|^{p-n-ps} \, dx \, dy \\ &\leq \int_{x \in B_{2\delta}(p)} \int_{y \in B_{2\delta}(p) \cap \{|x-y| \le \delta\}} |u(x)|^p |x-y|^{p-n-ps} \, dx \, dy \\ &\leq \int_{x \in B_{2\delta}(\xi)} \int_{z \in B_{\delta}} |u(x)|^p |z|^{p-n-ps} \, dx \, dz \\ &\leq C \delta^{p-ps} \int_{x \in B_{2\delta}(\xi)} |u(x)|^p \, dx. \end{split}$$

Using this and (2.19), we obtain

$$\delta^{-p} \int_{U} \int_{V \cap \{|x-y| \le \delta\}} |u(x)|^{p} |x-y|^{p-n-ps} \, dx \, dy$$

$$\leq C \delta^{-ps} \int_{x \in B_{2\delta}(\xi)} |u(x)|^{p} \, dx \le C \zeta_{\delta}.$$
 (2.21)

So, (2.21) and (2.18) imply (2.16). Now, we prove (2.17). For this, we fix an auxiliary parameter K > 2 (such parameter will be taken arbitrarily large at the end, after taking $\delta \to 0$). We observe that

$$U \times V \subseteq \left(B_{K\delta}(\xi) \times \mathbb{R}^n \right) \cup \left(\left(\mathbb{R}^n \setminus B_{K\delta}(\xi) \right) \times B_{\delta}(\xi) \right).$$
(2.22)

Indeed, if $U \times V = B_{\delta}(\xi) \times \mathbb{R}^n$, then of course $U \times V \subseteq B_{K\delta}(\xi) \times \mathbb{R}^n$, hence (2.22) is obvious. If instead $(x, y) \in U \times V = \mathbb{R}^n \times B_{\delta}(\xi)$, we distinguish two cases: if $x \in B_{K\delta}(\xi)$ then $(x, y) \in B_{K\delta}(\xi) \times \mathbb{R}^n$; if $x \in \mathbb{R}^n \setminus B_{K\delta}(\xi)$, then

$$(x,y) \in (\mathbb{R}^n \setminus B_{K\delta}(\xi)) \times V = (\mathbb{R}^n \setminus B_{K\delta}(\xi)) \times B_{\delta}(\xi).$$

This completes the proof of (2.22). Now, we compute

$$\int_{x \in B_{K\delta}(\xi)} \int_{y \in \mathbb{R}^n \cap \{|x-y| > \delta\}} |u(x)|^p |x-y|^{-n-ps} dx dy$$

=
$$\int_{x \in B_{K\delta}(\xi)} \int_{z \in \mathbb{R}^n \setminus B_{\delta}} |u(x)|^p |z|^{-n-ps} dx dz$$
 (2.23)
=
$$C\delta^{-ps} \int_{x \in B_{K\delta}(\xi)} |u(x)|^p dx \le C\zeta_{K\delta},$$

where (2.19) has been used again in the last step. Now, we observe that if $x \in \mathbb{R}^n \setminus B_{K\delta}(\xi)$ and $y \in B_{\delta}(\xi)$ then

$$\begin{split} |x-y| \geq |x-\xi| - |y-\xi| &= \frac{|x-\xi|}{2} + \frac{|x-\xi|}{2} - |y-p| \\ \geq \frac{|x-\xi|}{2} + \frac{K\delta}{2} - \delta \geq \frac{|x-\xi|}{2}. \end{split}$$

As a consequence we infer that

$$\int_{x\in\mathbb{R}^n\setminus B_{K\delta}(\xi)} \int_{y\in B_{\delta}(\xi)} |u(x)|^p |x-y|^{-n-ps} \, dx \, dy$$

$$\leq C \int_{x\in\mathbb{R}^n\setminus B_{K\delta}(\xi)} \int_{y\in B_{\delta}(\xi)} |u(x)|^p |x-\xi|^{-n-ps} \, dx \, dy$$

$$= C\delta^n \int_{x\in\mathbb{R}^n\setminus B_{K\delta}(p)} |u(x)|^p |x-\xi|^{-n-ps} \, dx.$$

Now using the Hölder's inequality with exponents $\frac{p^*}{p} = \frac{n}{n-ps}$ and $\frac{n}{ps}$, we obtain

$$\int_{x\in\mathbb{R}^{n}\setminus B_{K\delta}(\xi)}\int_{y\in B_{\delta}(\xi)}|u(x)|^{p}|x-y|^{-n-ps}\,dx\,dy$$

$$\leq C\delta^{n}\Big(\int_{x\in\mathbb{R}^{n}\setminus B_{K\delta}(\xi)}|u(x)|^{p^{*}}\,dx\Big)^{p/p^{*}}\Big(\int_{x\in\mathbb{R}^{n}\setminus B_{K\delta}(\xi)}|x-\xi|^{-(n+ps)n/ps}\,dx\Big)^{ps/n}$$

$$\leq C\delta^{n}\|u\|_{L^{p^{*}}(\mathbb{R}^{n})}^{p}\Big(\int_{K\delta}^{+\infty}\rho^{-((n+ps)n/ps)+(n-1)}d\rho\Big)^{ps/n}$$

$$= C\delta^{n}\|u\|_{L^{p^{*}}(\mathbb{R}^{n})}^{p}((K\delta)^{-n^{2}/ps})^{ps/n}$$

$$= CK^{-n}\|u\|_{L^{p^{*}}(\mathbb{R}^{n})}^{p}.$$
(2.24)

By collecting the results in (2.22), (2.23) and (2.24), we obtain

$$\int_{U} \int_{V \cap \{|x-y| > \delta\}} |u(x)|^{p} |x-y|^{-n-ps} dx dy$$

$$\leq \int_{x \in B_{K\delta}(\xi)} \int_{y \in \mathbb{R}^{n} \cap \{|x-y| > \delta\}} |u(x)|^{p} |x-y|^{-n-ps} dx dy$$

$$+ \int_{x \in \mathbb{R}^{n} \setminus B_{K\delta}(\xi)} \int_{y \in B_{\delta}(\xi)} |u(x)|^{p} |x-y|^{-n-ps} dx dy$$

$$\leq C\zeta_{K\delta} + CK^{-n} ||u||_{L^{p^{*}}(\mathbb{R}^{n})}^{p}.$$

From this, we first take $\delta \to 0$ and then $K \to +\infty$ to obtain (2.17) (using again (2.18)).

3. Proofs of Theorems 1.2 and 2.1

We need the following lemma in which we study the local Palais-Smale sequences and show the Palais-Smale condition, $(PS)_c$ in short, below the first critical level.

Lemma 3.1. There exists $\lambda_0 > 0$ such that $\mathcal{J}_{a,\lambda}$ satisfies $(PS)_{c_{a,\lambda}}$ for all $\lambda > \lambda_0$, where $c_{a,\lambda}$ is defined in (2.12).

Proof. Let $\{u_j\}$ be a Palais-Smale sequence in X_0 at level $c_{a,\lambda}$ i.e. $\{u_j\}$ satisfies (2.7). By lemma 2.4, $\{u_j\}$ is bounded in X_0 and so up to subsequence $\{u_j\}$ converges weakly to u in X_0 , strongly in L^q for all $1 \leq q < p^*$ and point wise to u almost everywhere in Ω . Also there exists $h \in L^p(\Omega)$ such that $|u_j(x)| \leq h(x)$ a.e. in Ω . Also $\{||u_j||_{X_0}\}$ as a real sequence converges to α (say). Since M_a is continuous, $M_a(||u_j||_{X_0}) \to M_a(\alpha^p)$. Now we claim that

$$\|u_j\|_{X_0}^p \to \|u\|_{X_0}^p \quad \text{as } j \to +\infty, \tag{3.1}$$

Once the claim is proved, we can invoke Brezis-Leib lemma to prove that u_j converges to u strongly in X_0 . We know that $\{u_j\}$ is also bounded in $W_0^{s,p}(\Omega)$. So we may assume that there exists two positive measures μ and ν on \mathbb{R}^n such that

$$|(-\Delta)_p^s u_j|^p dx \stackrel{*}{\rightharpoonup} \mu \quad \text{and} \quad |u_j|^{p^*} \rightharpoonup \nu,$$
(3.2)

in the sense of measure. Moreover, (see, [16]), we have a countable index set J, positive constants $\{\nu_j\}_{j\in J}$ and $\{\mu_j\}_{j\in J}$ such that

$$\nu = |u|^{p^*} dx + \sum_{i \in J} \nu_i \delta_{x_i}, \qquad (3.3)$$

$$\mu \ge |(-\Delta)_p^s u|^p dx + \sum_{i \in J} \mu_i \delta_{x_i}, \quad \nu_i \le S \mu_i^{p^*/p}, \tag{3.4}$$

where S is the best constant of the embedding $W_0^{s,p}(\Omega)$ into $L^{p^*}(\Omega)$. Our goal is to show that J is empty. Suppose not, then there exists $i \in J$. For this x_i , define $\phi_{\delta}^i(x) = \phi(\frac{x-x_i}{\delta}), x \in \mathbb{R}^n$ and $\phi \in C_0^{\infty}(\mathbb{R}^n, [0, 1])$ such that $\phi = 1$ in B(0, 1) and $\phi = 0$ in $\mathbb{R}^n \setminus B(0, 2)$. Since $\{\phi_{\delta}^i u_j\}$ is bounded in X_0 , we have $\mathcal{J}'_{a,\lambda}(u_j)(\phi_{\delta}^i u_j) \to 0$ as $j \to +\infty$. That is,

$$M_{a}(\|u_{j}\|_{X_{0}}^{p})\int_{\mathbb{R}^{2n}}u_{j}(x)|u_{j}(x)-u_{j}(y)|^{p-2}(u_{j}(x)-u_{j}(y))$$

$$\times \left(\phi_{\delta}^{i}(x)-\phi_{\delta}^{i}(y)\right)K(x-y)\,dx\,dy$$

$$= -M_{a}(\|u_{j}\|_{X_{0}}^{p})\int_{\mathbb{R}^{2n}}\phi_{\delta}^{i}(y)|u_{j}(x)-u_{j}(y)|^{p}K(x-y)\,dx\,dy$$

$$+\lambda\int_{\Omega}f(x,u_{j}(x))\phi_{\delta}^{i}(x)u_{j}(x)dx+\int_{\Omega}|u_{j}(x)|^{p^{*}}\phi_{\delta}^{i}(x)dx+o_{j}(1),$$
(3.5)

as $j \to \infty$. Now using Hölder's inequality and the fact that $\{u_j\}$ is bounded in X_0 , we obtain

$$\begin{split} & \left| \int_{\mathbb{R}^{2n}} u_j(x) |(u_j(x) - u_j(y))|^{p-2} (u_j(x) - u_j(y)) \left(\phi_{\delta}^i(x) - \phi_{\delta}^i(y) \right) K(x-y) \, dx \, dy \right| \\ & \leq C \Big(\int_{\mathbb{R}^{2n}} |u_j(x)|^p |\phi_{\delta}^i(x) - \phi_{\delta}^i(y)|^p K(x-y) \, dx \, dy \Big)^{1/p}. \end{split}$$

Now we claim that

$$\lim_{\delta \to 0} \left[\lim_{j \to +\infty} \left(\int_{\mathbb{R}^{2n}} |u_j(x)|^p |\phi_{\delta}^i(x) - \phi_{\delta}^i(y)|^p K(x-y) \, dx \, dy \right) \right] = 0. \tag{3.6}$$

Using the Lipschitz regularity of ϕ^i_{δ} , we have, for some $L \ge 0$,

$$\begin{split} &\int_{\mathbb{R}^{2n}} |u_j(x)|^p |\phi_{\delta}^i(x) - \phi_{\delta}^i(y)|^p K(x-y) \, dx \, dy \\ &\leq \frac{1}{\theta} \int_{\mathbb{R}^{2n}} |u_j(x)|^p |\phi_{\delta}^i(x) - \phi_{\delta}^i(y)|^p |x-y|^{-n-ps} \, dx \, dy \\ &\leq \frac{L^p \delta^{-p}}{\theta} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n \cap \{|x-y| \le \delta\}} |u_j(x)|^p |x-y|^{p-n-ps} \, dx \, dy \\ &\quad + \frac{2^p}{\theta} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n \cap \{|x-y| > \delta\}} |u_j(x)|^p |x-y|^{-n-ps} \, dx \, dy \\ &\leq C \frac{(L^p \delta^{-p} + 2^p)}{\theta} \int_{\mathbb{R}^n} |h(x)|^p \, dx \, dy < +\infty, \end{split}$$
(3.7)

with $C = C(n, s, \delta) > 0$. So, by dominated convergence theorem

$$\lim_{j \to +\infty} \int_{\mathbb{R}^{2n}} |u_j(x)|^p |\phi_\delta^i(x) - \phi_\delta^i(y)|^p K(x-y) \, dx \, dy$$
$$= \int_{\mathbb{R}^{2n}} |u(x)|^p |\phi_\delta^i(x) - \phi_\delta^i(y)|^p K(x-y) \, dx \, dy.$$

Now, following the calculations in (3.7), we obtain

$$\int_{U \times V} |u(x)|^{p} |\phi_{\delta}^{i}(x) - \phi_{\delta}^{i}(y)|^{p} K(x-y) \, dx \, dy \\
\leq \frac{L^{p}}{\theta} \delta^{-p} \int_{U} \int_{V \cap \{|x-y| \le \delta\}} |u(x)|^{p} |x-y|^{p-n-ps} \, dx \, dy \\
+ \frac{2^{p}}{\theta} \int_{U} \int_{V \cap \{|x-y| > \delta\}} |u(x)|^{p} |x-y|^{-n-ps} \, dx \, dy,$$
(3.8)

where U and V are two generic subsets of \mathbb{R}^n . Next we claim that

$$\int_{\mathbb{R}^{2n}} |u(x)|^p |\phi^i_{\delta}(x) - \phi^i_{\delta}(y)|^p K(x-y) \, dx \, dy \to 0, \quad \text{as } \delta \to 0.$$

When $U = V = \mathbb{R}^n \setminus B(x_i, \delta)$ claim follows. When $U \times V = B(x_i, \delta) \times \mathbb{R}^n$ and $U \times V = \mathbb{R}^n \times B(x_i, \delta)$, we can use Proposition 2.6 to prove the claim. Thus

$$\lim_{\delta \to 0} \int_{\mathbb{R}^{2n}} |u(x)|^p |\phi^i_{\delta}(x) - \phi^i_{\delta}(y)|^p K(x-y) \, dx \, dy = 0.$$
(3.9)

Hence

$$M_{a}(\|u_{j}\|_{X_{0}}^{p}) \int_{\mathbb{R}^{2n}} u_{j}(x) |(u_{j}(x) - u_{j}(y)|^{p-2} (u_{j}(x) - u_{j}(y)) \times \left(\phi_{\delta}^{i}(x) - \phi_{\delta}^{i}(y)\right) K(x-y) \, dx \, dy \to 0,$$
(3.10)

10

as $\delta \to 0$ and $j \to \infty$. Now, using Hölder's inequality,

$$\left| \int_{\mathbb{R}^{n}} \frac{u_{j}(x) - u_{j}(y)}{|x - y|^{n + ps}} \right|^{p} \\
\leq 2^{p-1} \left[|u_{j}(y)|^{p} \right| \int_{\mathbb{R}^{n} \setminus \Omega} \frac{1}{|x - y|^{n + ps}} \Big|^{p} + \left| \int_{\Omega} \frac{u_{j}(x) - u_{j}(y)}{|x - y|^{n + ps}} dx \Big|^{p} \right] \qquad (3.11)$$

$$\leq C_{1} |u_{j}(y)|^{p} + C_{2} \int_{\Omega} |u_{j}(x) - u_{j}(y)|^{p} K(x - y) dx,$$

where $C_1 = 2^{p-1} | \int_{\mathbb{R}^n \setminus \Omega} \frac{dx}{|x-y|^{n+ps}} |^p$ and $C_2 = 2^{p-1}/\theta$. Now using equations (3.11) and (3.2), we obtain

$$\begin{aligned} \liminf_{j \to +\infty} \int_{\mathbb{R}^n} \phi_{\delta}^i(y) \int_{\Omega} |u_j(x) - u_j(y)|^p K(x-y) \, dx \, dy \\ \ge C_3 \frac{1}{c(n,s)} \liminf_{j \to +\infty} \int_{\mathbb{R}^n} \phi_{\delta}^i(y) c(n,s) \Big| \int_{\mathbb{R}^n} \frac{u_j(x) - u_j(y)}{|x-y|^{n+ps}} \, dx \Big|^p \, dy \\ - C_4 \liminf_{j \to +\infty} \int_{\mathbb{R}^n} \phi_{\delta}^i(y) |u_j(y)|^p \, dy \\ \ge C_3 \frac{1}{c(n,s)} \int_{\mathbb{R}^n} \phi_{\delta}^i(y) d\mu - C_4 \int_{B(x_i,\delta)} |u(y)|^p \, dy, \end{aligned}$$
(3.12)

where $C_3 = 1/C_2$ and $C_4 = C_1/C_2$. Moreover, for a given $\epsilon > 0$ there exist $C_\epsilon > 0$ such that

$$|f(x,t)| \le \epsilon |t|^{p-1} + C_{\epsilon} |t|^{q-1} \,. \tag{3.13}$$

So, using Vitali's convergence theorem, we obtain

$$\int_{B(x_i,\delta)} f(x,u_j(x))u_j(x)\phi^i_{\delta}(x)dx \to \int_{B(x_i,\delta)} f(x,u(x))u(x)\phi^i_{\delta}(x)dx, \qquad (3.14)$$

as $j \to +\infty$. We also observe that the integral goes to 0 as $\delta \to 0$. So, using (3.10), (3.12), (3.14) and (3.2) in (3.5), we obtain

$$\int_{\Omega} \phi_{\delta}^{i}(x) d\nu + \lambda \int_{B(x_{i},\delta)} f(x,u(x))u(x)\phi_{\delta}^{i}(x) dx$$

$$\geq M_{a}(\alpha^{p})C\Big(\int_{\Omega} \phi_{\delta}^{i}(y) d\mu - \int_{B(x_{i},\delta)} |u(y)|^{p} dy\Big) + o_{\delta}(1).$$

Now, by taking $\delta \to 0$, we conclude that $\nu_i \ge M_a(\alpha^p)C\mu_i \ge m_0C\mu_i$. Then by (3.4), we obtain

$$\nu_i \ge \frac{(m_0 C)^{n/ps}}{S^{(n-ps)/ps}},\tag{3.15}$$

for any $i \in J$, where $C = \frac{C_3}{c(n,s)}$, independent of λ . We will prove that (3.15) is not possible.

Consider

$$\lim_{j \to +\infty} \left(\mathcal{J}_{a,\lambda}(u_j) - \frac{1}{\sigma} \mathcal{J}'_{a,\lambda}(u_j)(u_j) \right) = c_{a,\lambda}.$$
 (3.16)

Since, $m_0 < a < \frac{\sigma}{p}m_0$, we obtain

$$\begin{aligned} \mathcal{J}_{a,\lambda}(u_{j}) &= \frac{1}{\sigma} \mathcal{J}'_{a,\lambda}(u_{j})(u_{j}) \\ &\geq \frac{1}{p} \widehat{M_{a}}(\|u_{j}\|_{X_{0}}^{p}) - \frac{1}{\sigma} M_{a}(\|u_{j}\|_{X_{0}}^{p}) \|u_{j}\|_{X_{0}}^{p} + (\frac{1}{\sigma} - \frac{1}{p^{*}}) \int_{\Omega} |u_{j}(x)|^{p^{*}} dx \\ &\geq \frac{1}{p} m_{0} \|u_{j}\|_{X_{0}}^{p} - \frac{1}{\sigma} a \|u_{j}\|_{X_{0}}^{p} + (\frac{1}{\sigma} - \frac{1}{p^{*}}) \int_{\Omega} |u_{j}(x)|^{p^{*}} dx \\ &\geq (\frac{1}{p} m_{0} - \frac{1}{\sigma} a) \|u_{j}\|_{X_{0}}^{p} + (\frac{1}{\sigma} - \frac{1}{p^{*}}) \int_{\Omega} |u_{j}(x)|^{p^{*}} dx \\ &\geq (\frac{1}{\sigma} - \frac{1}{p^{*}}) \int_{\Omega} \phi_{\delta}^{i}(x) |u_{j}(x)|^{p^{*}} dx. \end{aligned}$$
(3.17)

$$c_{a,\lambda} \ge \left(\frac{1}{\sigma} - \frac{1}{p^*}\right) \int_{\Omega} \phi^i_{\delta}(x) d\nu$$

Now, taking $\delta \to 0$,

$$c_{a,\lambda} \ge (\frac{1}{\sigma} - \frac{1}{p^*}) \frac{(m_0 C)^{\frac{n}{p_s}}}{S^{\frac{n-p_s}{p_s}}} > 0,$$

for all λ , but from Lemma 2.5, there exists $\lambda_0 > 0$ such that

$$c_{a,\lambda} < (\frac{1}{\sigma} - \frac{1}{p^*}) \frac{(m_0 C)^{\frac{m_s}{p_s}}}{S^{\frac{n-p_s}{p_s}}}$$

for all $\lambda > \lambda_0$, which is a contradiction. Therefore $\nu_i = 0$ or all $i \in J$. Hence J is empty. Which implies $u_j \to u$ in $L^{p^*}(\Omega)$. So, by (2.7) taking $\phi = u_j$ and using dominated convergence theorem,

$$\lim_{j \to +\infty} M_a(\|u_j\|_{X_0}^p) \|u_j\|_{X_0}^p = \lambda \int_{\Omega} f(x, u(x)) u(x) dx + \int_{\Omega} |u(x)|^{2^*} dx.$$
(3.18)

Now, we take $\phi = u$ in (2.7) and recalling that $M_a(||u_j||_{X_0}^p) \to M_a(\alpha^p)$, we obtain

$$M_{a}(\alpha^{p}) \|u_{j}\|_{X_{0}}^{p} = \lambda \int_{\Omega} f(x, u(x))u(x) \, dx - \int_{\Omega} |u(x)|^{2^{*}} dx \,. \tag{3.19}$$

So, combining (3.18) and (3.19), we obtain

$$M_a(||u_j||_{X_0}^p)||u_j||_{X_0}^p \to M_a(\alpha^p)||u||_{X_0}^p, \text{ as } j \to +\infty.$$

So, using this result, we have

$$M_{a}(\|u_{j}\|_{X_{0}}^{p})(\|u_{j}\|_{X_{0}}^{p} - \|u\|_{X_{0}}^{p}) = M_{a}(\|u_{j}\|_{X_{0}}^{p})\|u_{j}\|_{X_{0}}^{p} - M_{a}(\alpha^{p})\|u\|_{X_{0}}^{p}$$
$$- M_{a}(\|u_{j}\|_{X_{0}}^{p})\|u\|_{X_{0}}^{p} + M_{a}(\alpha^{p})\|u\|_{X_{0}}^{p},$$

which leads to

$$M_a(\|u_j\|_{X_0}^p)(\|u_j\|_{X_0}^p - \|u\|_{X_0}^p) \to 0$$

Also

$$m_0(\|u_j\|_{X_0}^p - \|u\|_{X_0}^p) \le M_a(\|u_j\|_{X_0}^p)(\|u_j\|_{X_0}^p - \|u\|_{X_0}^p),$$
(3.20)

which implies $||u_j||_{X_0}^p \to ||u||_{X_0}^p$ and the claim is proved. Hence $u_j \to u$ strongly in X_0 .

Proof of Theorem 2.1. Using Lemma 3.1 and by Mountain Pass Theorem, we obtain a critical point u for the functional $\mathcal{J}_{a,\lambda}$ at the level $c_{a,\lambda}$. Since $\mathcal{J}_{a,\lambda}(u) = c_{a,\lambda} > 0 = \mathcal{J}_{a,\lambda}(0)$, we conclude that $u \neq 0$.

there exists $\lambda^* \ge \lambda_0$ such that $||u_\lambda||_{X_0} \le t_0$ for all $\lambda \ge \lambda^*$, (3.21)

where t_0 is defined in (2.1). Suppose not, then there exists a sequence $\{\lambda_j\}$ in \mathbb{R} such that $\|u_{\lambda_j}\|_{X_0} \ge t_0$. Since u_{λ_j} is a critical point of the functional $\mathcal{J}_{a,\lambda_j}$ which implies

$$c_{a,\lambda_{j}} \geq \frac{1}{p} \widehat{M_{a}}(\|u_{\lambda_{j}}\|_{X_{0}}^{p}) - \frac{1}{\sigma} M_{a}(\|u_{\lambda_{j}}\|_{X_{0}}^{p}) \|u_{\lambda_{j}}\|_{X_{0}}^{p}$$
$$\geq (\frac{1}{p} m_{0} - \frac{1}{\sigma} a) \|u_{\lambda_{j}}\|_{X_{0}}^{p}$$
$$\geq (\frac{1}{p} m_{0} - \frac{1}{\sigma} a) t_{0}^{p},$$

which contradicts Lemma 2.5, since $m_0 < a < \frac{\sigma}{p}m_0$. Hence u_{λ} is a solution of problem (M_{λ}) . Since $c_{a,\lambda} \to 0$ as $\lambda \to 0$, implies $||u_{\lambda}||_{X_0} \to 0$ as $\lambda \to \infty$.

Now, we claim that u_{λ} is non-negative in \mathbb{R}^n . Take $v = u^- \in X_0$, in (2.4), where $u^- = \max(-u, 0)$. Then

$$M(\|u_{\lambda}\|_{X_{0}}^{p})\int_{Q}|u_{\lambda}(x)-u_{\lambda}(y)|^{p-2}(u_{\lambda}(x)-u_{\lambda}(y))(u_{\lambda}^{-}(x)-u_{\lambda}^{-}(y))K(x-y)dxdy$$
$$=\int_{\Omega}f(x,u_{\lambda})u_{\lambda}^{-}(x)dx+\int_{\Omega}|u_{\lambda}^{-}(x)|^{p^{*}}dx.$$

Now, using

$$(u_{\lambda}(x) - u_{\lambda}(y))(u_{\lambda}^{-}(x) - u_{\lambda}^{-}(y)) \leq -|u_{\lambda}^{-}(x) - u_{\lambda}^{-}(y)|^{2}$$

and $f(x, u_{\lambda}(x))u_{\lambda}^{-}(x) = 0$ for a.e. $x \in \mathbb{R}^{n}$ we obtain

$$0 \le -M(\|u_{\lambda}\|_{X_{0}}^{p}) \int_{Q} |u_{\lambda}^{-}(x) - u_{\lambda}^{-}(y)|^{p} K(x-y) - \int_{\Omega} |u_{\lambda}^{-}(x)|^{p^{*}} dx \le -m_{0} \|u_{\lambda}^{-}\|_{X_{0}}^{p}.$$

Thus $||u_{\lambda}^{-}||_{X_0} = 0$ and hence $u_{\lambda} > 0$.

$$\square$$

References

- C. O. Alves, F. J. S. A. Correa, G. M. Figueiredo; On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 2, (2010), 409–417.
- [2] D. Applebaum; Levy processes From probability fo finance and quantum groups, Notices Amer. Math. Soc., 51, (2004), 1336-1347.
- [3] B. Barrios, A. Figalli, E. Valdinoci; Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, available online at http://arxiv.org/abs/1202.4606.
- [4] B. Barrios, E. Colorado, A. de Pablo, U. Sánchez; On some critical problems for the fractional Laplacian operator, Journal of Differential Equations, 252, (2012), 6133-6162.
- [5] L. A. Caffarelli; Nonlocal equations, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, 7, (2012), 37-52.
- [6] L. Caffarelli, E. Valdinoci; Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41, no. 1-2, (2011), 203–240.
- [7] A. Capella; Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10, no. 6, (2011), 1645–1662.
- [8] N. Daisuke; The critical problem of Kirchoff type elliptic equations in dimension four, Journal of Differential Equations, 257, no.4, (2014), 1168-1193.
- [9] E. Di Nezza, G. Palatucci, E. Valdinoci; *Hitchhiker's guide to the fractional Sobolev spaces*, B. Sci. Math., 136, (2012), 521-573.

- [10] G. M. Figueiredo; Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401, no. 2, (2013), 706–713.
- [11] A. Fiscella; Saddle point solutions for non-local elliptic operators, Preprint available at: arXiv:1210.8401.
- [12] Alessio Fiscella, E. Valdinoci; A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94, (2014), 156–170.
- [13] S. Goyal, K. Sreenadh; A Nehari manifold for non-local elliptic operator with concave-convex non-linearities and sign-changing weight function, to appear in Proc. Indian Acad. Sci. Math. Sci.
- [14] S. Goyal, K. Sreenadh; Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function, Adv. Nonlinear Anal., 4, no. 1, (2015), 37-58.
- [15] A. Iannizzotto, S. Liu, K. Perera, M. Squassina; Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 2014, DOI 10.1515/acv-2014-0024.
- [16] G. Palatucci, A. Pisante; Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50, no. 3-4, (2014), 799-829.
- [17] R. Servadei, E. Valdinoci; A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12, no. 6, (2013), 2445-2464.
- [18] R. Servadei, E. Valdinoci; Fractional Laplacian equations with critical Sobolev exponent, preprint available at http://www.math.utexas.edu/mp_arc-bin/mpa?yn=12-58.
- [19] R. Servadei, E. Valdinoci; The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, no. 1, (2015), 67-102.
- [20] R. Servadei, E. Valdinoci; Weak and Viscosity of the fractional Laplace equation, Publ. Mat., 58, no. 1, (2014), 133-154.
- [21] R. Servadei, E. Valdinoci; Levy-Stampacchia type estimates for variational inequalities driven by non-local operators, Rev. Mat. Iberoam., 29, (2013), 1091-1126.
- [22] J. Tan; The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36, no. 1-2, (2011), 21–41.

Pawan Kumar Mishra

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY DELHI, HAUZ KHAZ, NEW DELHI-16, INDIA

E-mail address: pawanmishra312840gmail.com

Konijeti Sreenadh

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY DELHI, HAUZ KHAZ, NEW DELHI-16, INDIA

E-mail address: sreenadh@gmail.com