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BOUNDEDNESS AND LARGE-TIME BEHAVIOR OF
SOLUTIONS FOR A GIERER-MEINHARDT SYSTEM OF THREE

EQUATIONS

SAFIA HENINE, SALEM ABDELMALEK, AMAR YOUKANA

Abstract. The aim of this work is to prove the uniform boundedness and the

existence of global solutions for Gierer-Meinhardt model of three substance
described by reaction-diffusion equations with Neumann boundary conditions.

Based on a Lyapunov functional we establish the asymptotic behaviour of the

solutions.

1. Introduction

In this article, we consider the Gierer-Meinhardt type system of three equations

∂u

∂t
− a1∆u = −b1u+ f(u, v, w), in R+ × Ω,

∂v

∂t
− a2∆v = −b2v + g(u, v, w), in R+ × Ω,

∂w

∂t
− a3∆w = −b3w + h(u, v, w), in R+ × Ω,

(1.1)

where

f(u, v, w) = ρ1(x, u, v, w)
up1

vq1(wr1 + c)
+ σ1(x),

g(u, v, w) = ρ2(x, u, v, w)
up2

vq2wr2
+ σ2(x),

h(u, v, w) = ρ3(x, u, v, w)
up3

vq3wr3
+ σ3(x),

with homogeneous Neumann boundary conditions

∂u

∂η
=
∂v

∂η
=
∂w

∂η
= 0 on R+ × ∂Ω, (1.2)

and initial data

u(0, x) = ϕ1(x), v(0, x) = ϕ2(x), w(0, x) = ϕ3(x), in Ω. (1.3)
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Here Ω is an open bounded domain in RN with smooth boundary ∂Ω and outer
normal η(x). The constants c, pi, qi, ri, ai and bi, i = 1, 2, 3 are real numbers such
that

c, pi, qi, ri ≥ 0, and ai, bi > 0,
and

0 < p1 − 1 < max
{
p2 min

( q1

q2 + 1
,
r1

r2
, 1
)
, p3 min

( r1

r3 + 1
,
q1

q3
, 1
)}
. (1.4)

The initial data are assumed to be positive and continuous functions on Ω̄. For
i = 1, 2, 3, we assume that σi are positive functions in C(Ω̄), and ρi are positive
bounded functions in C1(Ω̄× R3

+).
In 1972, following the ingenious idea of Turing [15], Gierer and Meinhardt [2]

proposed a mathematical model for pattern formations of spatial tissue structure
of hydra in morphogenesis, a biological phenomenon discovered by Trembley in
1744 [14]. It can be expressed in the following system

∂u

∂t
= a1∆u− µ1u+

up

vq
+ σ, in R+ × Ω,

∂v

∂t
= a2∆v − µ2v +

ur

vs
, in R+ × Ω,

(1.5)

on a bounded Ω ⊂ RN , with the homogeneous Neumann boundary conditions and
positive initial data: a1, a2, µ1, µ2 and σ are positive constants, and p, q, r, s are non
negative constants satisfying the relation

p− 1
r

<
q

s+ 1
.

The existence of global solutions to the system (1.5) is proved by Rothe [11] with
special cases N = 3, p = 2, q = 1, r = 2 and s = 0. The Rothe’s method can not
be applied (at least directly) to general p, q, r, s. Wu and Li [16] obtained the same
results for the problem (1.5) so long as u, v−1 and σ are suitably small. Li, Chen
and Qin [7] showed that the solutions of this problem are bounded all the time for
each pair of initial values in L∞(Ω) if

p− 1
r

< min
{

1,
q

s+ 1
}
. (1.6)

Masuda and Takahashi [8] considered the generalized Gierer-Meinhardt system

∂ui
∂t

= ai∆ui − µiui + gi(x, u1, u2), in R+ × Ω (i = 1, 2), (1.7)

where ai, µi, i = 1, 2 are positive constants, and

g1(x, u1, u2) = ρ1(x, u1, u2)
up1
uq2

+ σ1(x),

g2(x, u1, u2) = ρ2(x, u1, u2)
ur1
us2

+ σ2(x),

with σ1(·) (resp. σ2(·)) is a positive (resp. non-negative) C1 function on Ω̄, and ρ1

(resp. ρ2) is a non negative (resp. positive) bounded and C1 function on Ω̄× R2
+.

They extended the result of global existence of solutions for (1.7) of Li, Chen and
Qin [7] to

p− 1
r

<
2

N + 2
, (1.8)
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and
ϕ1, ϕ2 ∈W 2,l(Ω), l > max{N, 2},

∂ϕ1

∂η
=
∂ϕ2

∂η
= 0 on ∂Ω and ϕ1 ≥ 0, ϕ2 > 0 in Ω̄.

(1.9)

Jiang [6] obtained the same results as Masuda and Takahashi [8] by another
method such that (1.6) and (1.9) are satisfied.

Abdelmalek, et al [1] considered the following Gierer-Meinhardt system of three
equations

∂u

∂t
− a1∆u = −b1u+

up1

vq1(wr1 + c)
+ σ, in R+ × Ω,

∂v

∂t
− a2∆v = −b2v +

up2

vq2wr2
, in R+ × Ω,

∂w

∂t
− a3∆w = −b3w +

up3

vq3wr3
, in R+ × Ω,

(1.10)

with homogeneous Neumann boundary conditions
∂u

∂η
=
∂v

∂η
=
∂w

∂η
= 0 on R+ × ∂Ω, (1.11)

and the initial data
u(0, x) = ϕ1(x) > 0,

v(0, x) = ϕ2(x) > 0,

w(0, x) = ϕ3(x) > 0
(1.12)

in Ω, and ϕi ∈ C(Ω̄) for all i = 1, 2, 3. Under the condition (1.4) and by using a
suitable Lyapunov functional, they studied the global existence of solutions for the
system (1.10)–(1.12). Their method gave only the existence of global solutions, and
they did not obtain results about the uniform boundedness of solutions on (0,+∞).

For the asymptotic behavior of the solutions, Wu and Li [16] considered the
system

∂u1

∂t
= a1∆u1 − u1 +

up1
uq2

+ σ1(x), in R+ × Ω,

τ
∂u2

∂t
= a2∆u2 − u2 +

ur1
us2

+ σ2(x), in R+ × Ω,
(1.13)

with the constant of relaxation time τ > 0, and they proved that if σ1 ≡ σ2 ≡ 0
and τ > q

p−1 , then (u(t, x), v(t, x))→ (0, 0) uniformly on Ω̄ as t→ +∞.
Under suitable conditions on τ and on the initial data, Suzuki and Takagi [12,13]

also studied the behavior of the solutions for (1.13) with the constant of relaxation
time τ .

We first treat the uniform boundedness of the solutions for Gierer-Meinhardt
system of three equations by proving that the Lyapunov function argument pro-
posed in [1] can be adapted to our situation. Interestingly, we show that the same
Lyapunov function satisfies a differential inequality from which the uniform bound-
edness of the solutions is deduced for any positive time. Then under reasonable
conditions on the coefficients b1, b2 and b3, and by using the uniform boundedness
of the solutions and the Lyapunov function which is non-increasing function, we
deal with the long-time behavior of solutions as the time goes to +∞. In particular
we are concerned with σ1 ≡ 0, σ2 and σ3 are non-negative constants to assure that

lim
t→+∞

‖u(t, .)‖∞ = lim
t→+∞

‖v(t, .)− σ2

b2
‖∞ = lim

t→+∞
‖w(t, .)− σ3

b3
‖∞ = 0 .
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2. Notation and preliminary results

2.1. Existence of local solutions. For i = 1, 2, 3 we set

ϕi
¯

= min
x∈Ω̄

ϕi(x), ϕ̄i = max
x∈Ω̄

ϕi(x),

ρi
¯

= min
x∈Ω̄,ξ∈R3

+

ρi(x, ξ), ρ̄i = max
x∈Ω̄,ξ∈R3

+

ρi(x, ξ),

σi
¯

= min
x∈Ω̄

σi(x), σ̄i = max
x∈Ω̄

σi(x).

The basic existence theory for abstract semi linear differential equations directly
leads to a local existence result to system (1.1)–(1.3) (see, Henry [5]). All solutions
are classical on (0, T ) × Ω, T < Tmax, where Tmax(‖u0‖∞, ‖w0‖∞) denotes the
eventual blowing-up time in L∞(Ω).

2.2. Positivity of solutions.

Lemma 2.1. If (u, v, w) is a solution of the problem (1.1)–(1.3), then for all (t, x) ∈
(0, Tmmax)× Ω, we have

(1)

u(t, x) ≥ e−b1tϕ1 > 0,

v(t, x) ≥ e−b2tϕ2 > 0,

w(t, x) ≥ e−b3tϕ3 > 0.

(2)

u(t, x) ≥ min
(
σ1 /b1, ϕ1

)
= m1,

v(t, x) ≥ min
(
σ2 /b2, ϕ2

)
= m2,

w(t, x) ≥ min
(
σ3 /b3, ϕ3

)
= m3.

The proof of the above lemma follows immediate from the maximum principle.

3. Boundedness of solutions

For proving the existence of global solutions for (1.1)–(1.3), it suffices to prove
that the solutions remains bounded in (0, T ) × Ω̄. One of the main results of this
paper reads as follows.

Theorem 3.1. Assume that (1.4) holds. Let (u, v, w) be a solution to (1.1)–(1.3),
and let

L(t) =
∫

Ω

uα(t, x)
vβ(t, x)wγ(t, x)

dx, for all t ∈ (0, T ), (3.1)

where α, β and γ are positive constants satisfying the following conditions:

α > 2 max
(

1,
3b2 + b3
b1

)
,

1
β
>

(a1 + a2)2

2a1a2
, (3.2)

and( 1
2β
− (a1 + a2)2

4a1a2

)( 1
2γ
− (a1 + a3)2

4a1a3

)
>
( (α− 1)(a2 + a3)

2α
√
a2a3

− (a1 + a2)(a1 + a3)
4
√
a2

1a2a3

)2

.

(3.3)
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Then there exists a positive constant C such that for all t ∈ (0, T ),

d

dt
L(t) ≤ −(αb1 − 3b2β − γb3)L(t) + C. (3.4)

Corollary 3.2. Under the assumptions of Theorem 3.1, all solutions of (1.1)–(1.3)
with positive initial data in C(Ω̄) are global and uniformly bounded on (0,+∞)× Ω̄.

Before proving the above theorem we first need the following technical lemma.

Lemma 3.3. Suppose that x > 0, y > 0 and z > 0, then for each group of indices
r, p, q, δ, θ, λ and ξ satisfies λ < p < δ (not necessarily positive), and any constant
Λ > 0, we have

xp

yqzr
≤ Λ

xδ

yθzξ
+ Λ−

p−λ
δ−p

xλ

yη1zη2
,

where

η1 = [q(δ − λ)− θ(p− λ)](δ − p)−1,

η2 = [r(δ − λ)− ξ(p− λ)](δ − p)−1.

Proof. We can write

xp

yqzr
=
(
x
δ(p−λ)
δ−λ y−

θ(p−λ)
δ−λ z−

ξ(p−λ)
δ−λ

)(
x
λ(δ−p)
δ−λ y

θ(p−λ)
δ−λ −qz

ξ(p−λ)
δ−λ −r

)
.

By using Young’s inequality we obtain

xp

yqzr
≤ ε xδ

yθzξ
+ ε−

p−λ
δ−p

xλ

yη1zη2
,

where

η1 = [q(δ − λ)− θ(p− λ)](δ − p)−1,

η2 = [r(δ − λ)− ξ(p− λ)](δ − p)−1.

Then Lemma 3.3 is proved. �

Proof of Theorem 3.1. Let (u, v, w) be the solution of system (1.1)–(1.3) in (0, T ).
Differentiating L(t) respect to t, we obtain L′(t) = I + J , where

I = a1α

∫
Ω

uα−1

vβwγ
∆u dx− a2β

∫
Ω

uα

vβ+1wγ
∆v dx− a3γ

∫
Ω

uα

vβwγ+1
∆w dx,

J = (−αb1 + βb2 + γb3)L(t) + α

∫
Ω

ρ1(x, u, v, w)
uα−1+p1

vβ+q1wγ+r1
dx

− β
∫

Ω

ρ2(x, u, v, w)
uα+p2

vβ+1+q2wγ+r2
dx− γ

∫
Ω

ρ3(x, u, v, w)
uα+p3

vβ+q3wγ+1+r3
dx

+ α

∫
Ω

σ1(x)
uα−1

vβwγ
dx− β

∫
Ω

σ2(x)
uα

vβ+1wγ
dx− γ

∫
Ω

σ3(x)
uα

vβwγ+1
dx.

Using Green’s formula, for all t ∈ (0, T ), we obtain (see [1])

I ≤ 0. (3.5)
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Now let us estimate the term J . For all t ∈ (0, T ) we have

J ≤
(
− αb1 + βb2 + γb3

)
L(t) + αρ̄1

∫
Ω

uα−1+p1

vβ+q1wγ+r1
dx− βρ2

∫
Ω

uα+p2

vβ+1+q2wγ+r2
dx

− ρ3γ

∫
Ω

uα+p3

vβ+q3wγ+1+r3
dx+ ασ̄1

∫
Ω

uα−1

vβwγ
dx.

(3.6)
Applying Lemma 3.3 with p = α − 1, q = θ = β, r = γ, δ = α, ξ = γ and λ = 0,
one gets

ασ̄1

∫
Ω

uα−1

vβwγ
dx ≤ βb2

∫
Ω

uα

vβwγ
dx+ C1

∫
Ω

1
vβwγ

dx, (3.7)

where C1 = ασ̄1( βb2ασ̄1
)1−α.

Now, we choose ε1 ∈ (0, α) such that

β + α
q1p2 − (p1 − 1)(1 + q2)

ε1(p2 + 1− p1)
+ α

q1 − 1− q2

p2 + 1− p1
≥ 0,

γ + α
r1p2 − r2(p1 − 1)
ε1(p2 − p1 + 1)

+ α
r1 − r2

p2 − p1 + 1
≥ 0.

Again, applying Lemma 3.3 for p = α− 1 + p1, q = β + q1, r = γ + r1, δ = α+ p2,
θ = β + 1 + q2, ξ = γ + r2 and λ = α− ε1, we obtain

αρ̄1

∫
Ω

uα−1+p1

vq1+βwr1+γ
dx ≤ βρ2

∫
Ω

up2+α

vq2+β+1wr2+γ
dx+ C2

∫
Ω

uα−ε1

vη1wη2
dx, (3.8)

where

η1 = β + [q1p2 − (q2 + 1)(p1 − 1) + ε1(q1 − q2 − 1)](p2 − p1 + 1)−1,

η2 = γ + [r1p2 − r2(p1 − 1) + ε1(r1 − r2)](p2 − p1 + 1)−1,

and C2 = αρ̄1(
βρ2
αρ̄1

)−
p1−1+ε1
p2−p1+1 .

In an analoguous way, we have

C2

∫
Ω

uα−ε1

vη1η2
dx ≤ b2β

∫
Ω

uα

vβwγ
dx+ C3

∫
Ω

1
vη3η4

dx, (3.9)

where

η3 = β + α[ε−1
1 (q1p2 − (q2 + 1)(p1 − 1)) + q1 − q2 − 1](p2 − p1 + 1)−1 ≥ 0,

η4 = γ + α[ε−1
1 (r1p2 − r2(p1 − 1)) + r1 − r2](p2 − p1 + 1)−1 ≥ 0,

and C3 = C2( b2βC2
)−

α−ε1
ε1 .

Or, we choose ε2 ∈ (0, α) such that

β + α
q1p3 − q3(p1 − 1)
ε2(p3 − p1 + 1)

+ α
q1 − q3

p3 − p1 + 1
≥ 0,

γ + α
r1p3 − (r3 + 1)(p1 − 1)

ε2(p3 − p1 + 1)
+ α

r1 − r2 − 1
p3 − p1 + 1

≥ 0.

Now, applying Lemma 3.3 with p = p1 +α−1, q = q1 +β, r = r1 +γ, δ = p3 +α,
θ = q3 + β, ξ = r3 + γ + 1 and λ = α− ε2, we find that

αρ̄1

∫
Ω

uα−1+p1

vβ+q1wγ+r1
dx ≤ γρ3

∫
Ω

uα+p3

vβ+q3wγ+1+r3
dx+ C4

∫
Ω

uα−ε2

vη5wη6
dx, (3.10)
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where

η5 = β + [q1p3 − q3(p1 − 1) + ε2(q1 − q3)](p3 − p1 + 1)−1,

η6 = γ + [r1p3 − (r3 + 1)(p1 − 1) + ε2(r1 − r3 − 1)](p3 − p1 + 1)−1,

and C4 = αρ̄1(
γρ3
αρ̄1

)−
p1−1+ε2
p3−p1+1 . In the same way, we obtain

C4

∫
Ω

uα−ε2

vη5wη6
dx ≤ b2β

∫
Ω

uα

vβwγ
dx+ C5

∫
Ω

1
vη7wη8

dx, (3.11)

where

η7 = β + α[ε−1
2 (q1p3 − q3(p1 − 1)) + q1 − q3](p3 − p1 + 1)−1 ≥ 0,

η8 = γ + α[ε−1
2 (r1p3 − (r3 + 1)(p1 − 1)) + r1 − r3 − 1](p3 − p1 + 1)−1 ≥ 0,

and C5 = C4( b2βC4
)−

α−ε2
ε2 .

From (3.6)–(3.11) there exists a positive constant C such that

L′(t) ≤ −(b1α− 3βb2 − γb3)L(t) + C, ∀t ∈ (0, T ).

Then the proof is complete. �

Proof of Corollary 3.2. Since

L(t) ≤ L(0) +
C

αb1 − 3b2β − γb3
for all t ∈ (0, T ),

then there exist non-negative constants C6, C7 and C8 independent of t such that

‖f(u, v, w)− b1u‖N ≤ C6,

‖g(u, v;w)− b2v‖N ≤ C7,

‖h(u, v, w)− b3w‖N ≤ C8.

Since (ϕ1, ϕ2, ϕ3) ∈ (C(Ω̄))3, we conclude from the Lp-Lq-estimate (see Henry
[5], Haraux and Kirane [4]) that

u ∈ L∞((0, T ), L∞(Ω)), v ∈ L∞((0, T ), L∞(Ω)), w ∈ L∞((0, T ), L∞(Ω)).

Finally, we deduce that the solutions of the system (1.1)–(1.3) are global and uni-
formly bounded on (0,+∞)× Ω̄. �

Remark 3.4. It is clear that the results of this section are valid when σ1 ≡ σ2 ≡
σ3 ≡ 0.

4. Asymptotic behavior of the solutions

In this section, we study the asymptotic behavior of the solutions for the system
∂u

∂t
− a1∆u = −b1u+ f(u, v, w), in R+ × Ω,

∂v

∂t
− a2∆v = −b2v + g(u, v, w), in R+ × Ω,

∂w

∂t
− a3∆w = −b3w + h(u, v, w), in R+ × Ω,

(4.1)

where

f(u, v, w) = ρ1(x, u, v, w)
up1

vq1(wr1 + c)
+ σ1,
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g(u, v, w) = ρ2(x, u, v, w)
up2

vq2wr2
+ σ2,

h(u, v, w) = ρ3(x, u, v, w)
up3

vq3wr3
+ σ3,

with homogeneous Neumann boundary conditions

∂u

∂η
=
∂v

∂η
=
∂w

∂η
= 0 on R+ × ∂Ω, (4.2)

and initial data

u(0, x) = ϕ1(x), v(0, x) = ϕ2(x), w(0, x) = ϕ3(x) in Ω. (4.3)

Here σ1, σ2 and σ3 are non negative constants.
Before stating the results, let us expose some simple facts concluded from the

result of the previous section. From Theorem 3.1, and by using classical method
of a semi group and a power fractional (see [5]) we can find the positive constants
M1,M2 and M3 explicitly (see [9]) such that

‖u(t, .)‖∞M1, ‖v(t, .)‖∞ ≤M2, ‖w(t, .)‖∞ ≤M3.

Let us consider the same function as in Theorem 3.1,

L(t) =
∫

Ω

uα(t, x)
vβ(t, x)wγ(t, x)

dx, ∀t ∈ (0,+∞),

where α, β and γ are positive constants satisfying the following conditions

α > 2 max(1,
3b2 + b3
b1

),
1
β
>

(a1 + a2)2

2a1a2
,

and( 1
2β
− (a1 + a2)2

4a1a2

)( 1
2γ
− (a1 + a3)2

4a1a3

)
>
( (α− 1)(a2 + a3)

2α
√
a2a3

− (a1 + a2)(a1 + a3)
4
√
a2

1a2a3

)2

.

The main result in this section reads as follows.

Theorem 4.1. Assume (1.4) holds. Let (u, v, w) be the solution of (4.1)–(4.3) in
(0,+∞). Suppose that σ1 = 0, and

b1 >
βb2 + γb3 +K

2
, (4.4)

where

K =
αρ̄1(

βρ2
αρ̄1

)−
p1−1

p2−p1+1

m
[q1p2−(q2+1)(p1−1)](p2−p1+1)−1

2 m
[r1p2−r2(p1−1)](p2−p1+1)−1

3

,

or

K =
αρ̄1(

γρ3
αρ̄1

)−
p1−1

p3−p1+1

m
[q1p3−q3(p1−1)](p3−p1+1)−1

2 m
[r1p3−(r3+1)(p1−1)](p3−p1+1)−1

3

.

Then for all t ∈ (0,+∞) we have

L(t) ≤
∫

Ω

ϕα1 (x)

ϕβ2 (x)ϕγ3(x)
dx.
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Corollary 4.2. Under the assumptions of Theorem 4.1, for all positive initial data
in C(Ω̄) we have

‖u(t, .)‖∞ → 0 as t→ +∞,

‖v(t, .)− σ2

b2
‖∞ → 0 as t→ +∞,

‖w(t, .)− σ3

b3
‖∞ → 0 as t→ +∞.

Proof of Theorem 4.1. From (3.5) and (3.6), we obtain for all t ∈ (0,+∞)

L′(t) ≤ −(αb1 − βb2 − γb2)L(t) + αρ̄1

∫
Ω

uα−1+p1

vβ+q1wγ+r1
dx

− βρ2

∫
Ω

uα+p2

vβ+1+q2wγ+r2
dx− γρ3

∫
Ω

uα+p3

vβ+q3wγ+1+r3
dx.

(4.5)

Now, we apply Lemma 3.3 for p = α− 1 + p1, q = β + q1, r = γ + r1, δ = α + p2,
θ = β + 1 + q2, ξ = γ + r2 and λ = α we obtain

αρ̄1

∫
Ω

uα−1+p1

vβ+q1wγ+r1
dx ≤ βρ2

∫
Ω

uα+p2

vβ+1+q2wγ+r2
dx+A1

∫
Ω

uα

vη9wη10
dx, (4.6)

where

η9 = β + [q1p2 − (q2 + 1)(p1 − 1)](p2 − p1 + 1)−1 > 0,

η10 = γ + [r1p2 − r2(p1 − 1)](p2 − p1 + 1)−1 > 0,

and A1 = αρ̄1(
βρ2
αρ̄1

)−
p1−1

p2−p1+1 .
Or, applying Lemma 3.3 for p = α− 1 + p1, q = β + q1, r = γ + r1, δ = α+ p3,

θ = β + q3, ξ = γ + 1 + r3 and λ = α, we obtain

αρ̄1

∫
Ω

uα−1+p1

vβ+q1wγ+r1
dx ≤ γρ3

∫
Ω

uα+p3

vβ+q3wγ+1+r3
dx+A2

∫
Ω

uα

vη11wη12
dx, (4.7)

where

η11 = β + [q1p3 − q3(p1 − 1)](p3 − p1 + 1)−1 > 0,

η12 = γ + [r1p3 − (r3 + 1)(p1 − 1)](p3 − p1 + 1)−1 > 0,

and A2 = αρ̄1(
γρ3
αρ̄1

)−
p1−1

p3−p1+1 . By combining (4.5) with (4.6) and (4.7) we obtain

L′(t) ≤ −(αb1 − βb2 − γb3 −K)L(t), ∀t ∈ (0,+∞), (4.8)

where

K =
αρ̄1(

βρ2
αρ̄1

)−
p1−1

p2−p1+1

m
[q1p2−(q2+1)(p1−1)](p2−p1+1)−1

2 m
[r1p2−r2(p1−1)](p2−p1+1)−1

3

,

or

K =
αρ̄1(

γρ3
αρ̄1

)−
p1−1

p3−p1+1

m
[q1p3−q3(p1−1)](p3−p1+1)−1

2 m
[r1p3−(r3+1)(p1−1)](p3−p1+1)−1

3

.

Using (4.4) we deduce that the function t 7−→ L(t) is a non-increasing function.
This completes the proof of Theorem 4.1. �
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Proof of Corollary 4.2. Setting for all (t, x) ∈ (0,+∞)× Ω:

h1(t, x) = u(t, x),

h2(t, x) = v(t, x)− σ2

b2
,

h3(t, x) = w(t, x)− σ3

b3
.

For i = 1, 2, 3 we have
dhi
dt
− ai∆hi = −bihi + ρi(x, u, v, w)

upi

vqiwri
. (4.9)

Multiplying (4.9) by hi(t, x), i = 1, 2, 3 and integrating over [0, t]× Ω we obtain

1
2

∫
Ω

h2
i dx+ ai

∫ t

0

∫
Ω

|∇hi|2 dx ds+ bi

∫ t

0

∫
Ω

h2
i dx ds

=
1
2

∫
Ω

h2
i (0)dx+

∫ t

0

∫
Ω

hiρi(x, u, v)
upi

vqiwri
dx ds.

From (4.8), for all t ∈ (0,+∞), and for i = 1, 2, 3 we obtain∫ t

0

∫
Ω

hiρi(x, u, v)
upi

vqiwri
dx ds ≤ ρ̄iMi

Mpi
1 Mβ

2 M
γ
3

mqi
2 m

α
1m

ri
3

∫ t

0

∫
Ω

uα

vβwγ
dx ds < +∞.

One obviously deduces that for i = 1, 2, 3,

hi(t, .) ∈ L2(Ω),
∫ +∞

0

∫
Ω

|∇hi|2dxds < +∞,∫ +∞

0

∫
Ω

h2
i dx ds < +∞,

so that Barbalate’s lemma [3, Lemma 1.2.2] permits to conclude that

lim
t→+∞

‖hi(t, .)‖2 = 0, i = 1, 2, 3.

On the other hand, since the orbits {hi(t, .)/t ≥ 0, i = 1, 2, 3} are relatively compact
in C(Ω̄) (see [4]), it follows readily that

lim
t→+∞

‖hi(t, .)‖∞ = 0, i = 1, 2, 3.

Then proof of Corollary 4.2 is complete. �
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