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AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS
APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

NEMAT NYAMORADI, MOHAMMAD RASSOL HAMIDI

Abstract. In this article, using an iterative technique, we introduce an exten-

sion of the Lax-Milgram theorem which can be used for proving the existence
of solutions to boundary-value problems. Also, we apply of the obtained result

to the fractional differential equation

tD
α
T 0D

α
t u(t) + u(t) = λf(t, u(t)) t ∈ (0, T ),

u(0) = u(T ) = 0,

where tDαT and 0Dαt are the right and left Riemann-Liouville fractional deriv-

ative of order 1
2
< α ≤ 1 respectively, λ is a parameter and f : [0, T ]× R→ R

is a continuous function. Applying a regularity argument to this equation, we

show that every weak solution is a classical solution.

1. Introduction

Fractional differential equations form a very important and significant part of
mathematical analysis and its applications to real-world problems. On the other
hand, the Lax-Milgram theorem is a very useful tool in the wide area of functional
analysis such as the theory of operator equations in Banach spaces. It is also used
in the studies of fractional differential equations, ordinary and partial differential
equations (see [1, 3, 4] and the references therein). For example, Ervin and Roop
[3] using the Lax-Milgram theorem, investigated the existence of solutions to the
following fractional boundary value problem

−Da
(
p0D

−β
t + qtD

−β
1

)
Du(t) + b(t)Du(t) + c(t)u(t) = f(t),

u(0) = u(1) = 0,

where D represents a single spatial derivative, 0D
−β
t and tD

−β
1 are the left and

right Riemann-Liouville fractional integrals of order 0 ≤ β < 1, respectively, f, c ∈
C([0, 1]) and b ∈ C1([0, 1]), a > 0 and 0 ≤ p, q ≤ 1 with p+ q = 1.

Recently, Jiao and Zhou [7], for the first time, showed that the critical point
theory is an effective approach for studying the existence for the following fractional
boundary value problem

tD
α
T

(
0D

α
t u(t)

)
= ∇F (t, u(t)), t ∈ (0, T ),
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u(0) = u(T ) = 0,

and obtained the existence of at least one nontrivial solution.
We know that, we can only use the Lax-Milgram theorem to prove the existence

of solutions to equations in the form

Lu = f(t),

where f is independent of u and L is an operator. In our investigations, we apply
the iterative technique to generalize the Lax-Milgram theorem [2]. Moreover, we
are going to study the solvability of the following fractional differential equation

tD
α
T 0D

α
t u(t) + u(t) = λf(t, u(t)) t ∈ (0, T ),

u(0) = u(T ) = 0,
(1.1)

where tD
α
T and 0D

α
t are the right and left Riemann-Liouville fractional derivative

of order 1/2 < α ≤ 1 respectively, λ is a parameter and f : [0, T ] × R → R is a
continuous function.

This article is organized as follows: Section 2 is devoted to our main results. In
Section 3, we prove any weak solution of Problem (1.1) is a classical solution.

2. Main results

In this section, firstly, we recall some notation and theorems to obtain the results
of this work. Let (X, ‖ · ‖X) be a real Banach space with dual space X∗. Denote
by Br(x0) the ball Br(x0) = {x ∈ X : ‖x− x0‖X ≤ r}.

In the following, we state the Lax-Milgram theorem.

Theorem 2.1 ( [2, Proposition 1.2.41]). Let H be a complex Hilbert space and let
B : H ×H → C be a mapping with the following properties:

(i) The mapping x 7→ B(x, y) is linear for any y ∈ H.
(ii) B(x, α1y1 + α2y2) = ᾱ1B(x, y1) + ᾱ2B(x, y2) for every x, y1, y2 ∈ H,

α1, α2 ∈ C.
(iii) There is a constant c such that |B(x, y)| ≤ c‖x‖ ‖y‖ for every x, y ∈ H.

Then there is A ∈ L(H), ‖A‖L(H) ≤ c, such that

B(x, y) = (x,Ay), x, y ∈ H.
Moreover, if

(iv) there is a positive constant d such that

B(x, x) ≥ d‖x‖2 ∀x ∈ H,
then A is invertible, A−1 ∈ L(H) and ‖A−1‖L(H) ≤ 1

d .

The main result of this section reads as follows.

Theorem 2.2. Suppose that H is a Hilbert space, B(u, v) is a continuous coercive
bilinear form on H and F : H → H∗ satisfying the following conditions:

(F1) There exists a constant N > 0 such that

‖F (u)‖H∗ ≤ N ∀u ∈ B1(0),

where B1(0) = {u ∈ H : ‖u‖H ≤ 1}
(F2) If {uk} is a sequence in H such that uk ⇀ u weakly in H, then the sequence

{F (uk)} has a subsequence {F (ukn)} such that F (ukn) ⇀ F (u) weakly in
H∗.
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Then, there exists a constant L > 0 such that for any λ ∈ R with |λ| ≤ L, there
exists an element ũ ∈ H such that

B(ũ, v) = λ〈F (ũ), v〉 ∀v ∈ H.

Proof. Take any u0 ∈ H with ‖u0‖H ≤ 1. From the Riesz representation theorem,
there exists a unique element G(u0) ∈ H such that ‖G(u0)‖H = ‖F (u0)‖H∗ and

〈F (u0), v〉 = (G(u0), v) ∀v ∈ H, (2.1)

where (·, ·) denotes the inner product of H.
By the hypotheses of the theorem, there are two constants a > 0 and b > 0 such

that for all u, v ∈ H, we have

|B(u, v)| ≤ a‖u‖H‖v‖H ,
|B(u, u)| ≥ b‖u‖2H .

Thus, the Lax-Milgram theorem (see [2]) yields the existence of a continuous and
invertible linear operator A on H such that ‖A‖L(H) ≤ a, ‖A−1‖L(H) ≤ 1/b and

B(u, v) = (Au, v) ∀u, v ∈ H. (2.2)

Then, one can conclude the existence of a unique element u1 ∈ H such that Au1 =
λG(u0). So, in view of (2.1) and (2.2), we have that

B(u1, v) = (Au1, v) = λ(G(u0), v) = λ〈F (u0), v〉∀v ∈ H

such that

‖u1‖H = |λ| ‖A−1G(u0)‖H ≤
N |λ|
b

.

Set L = b/N . Hence if |λ| ≤ L, one can get

B(u1, v) = λ〈F (u0), v〉 ∀v ∈ H,
‖u1‖H ≤ 1.

Similarly, there exists an element u2 ∈ H such that

B(u2, v) = λ〈F (u1), v〉 ∀v ∈ H,
‖u2‖H ≤ 1.

So by induction, we have a sequence {un} such that

B(un, v) = λ〈F (un−1), v〉 ∀v ∈ H,
‖un‖H ≤ 1.

(2.3)

The reflexivity of H implies that there exists a subsequence of {un} still denoted by
{un} such that un ⇀ ũ weakly in H. Finally, in view of (F2), the desired conclusion
follows from (2.3) and letting n→ +∞. �

Now, by using Theorem 2.2, we prove the existence of one solution to Problem
(1.1). To this end, we need the following preliminaries.

Definition 2.3 ( [9, 8]). Let φ be a function defined on [0, T ]. Then, the left and
right Riemann-Liouville fractional integrals of order 0 < α < 1 on the interval [0, T ]
are respectively defined by

0I
α
t φ(t) =

1
Γ(α)

∫ t

0

(t− ξ)α−1φ(ξ)dξ,
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tI
α
Tφ(t) =

1
Γ(α)

∫ T

t

(ξ − t)α−1φ(ξ)dξ.

The left and right Riemann-Liouville fractional derivatives of order 0 < α < 1 on
the interval [0, T ] are respectively defined by

0D
α
t φ(t) =

d

dt

(
0I

1−α
t φ(t)

)
,

tD
α
Tφ(t) = − d

dt

(
tI

1−α
T φ(t)

)
.

Taking p = 2 in Definition 3.1, [6, Propositions 3.1 and 3.3], we deduce the
following definition and theorems.

Definition 2.4 ( [6]). Let 0 < α ≤ 1. The fractional derivative space Eα0 is defined
by the closure of C∞0 ([0, T ]) with respect to the norm

‖u‖Eα0 =
(
‖u‖2L2(0,T ) + ‖0Dα

t u‖2L2(0,T )

)1/2

.

Theorem 2.5 ( [6]). Let 0 < α ≤ 1. The fractional derivative space Eα0 is a
reflexive and separable Banach space.

Remark 2.6. In fact, the space Eα0 is a separable Hilbert space with the inner
product

(u, v)Eα0 =
∫ T

0

(
0D

α
t u(t) 0D

α
t v(t) + u(t)v(t)

)
dt.

Theorem 2.7 ( [6]). Assume that α > 1
2 and the sequence {uk} converges weakly

to u in Eα0 , then uk → u in C([0, T ]).

Remark 2.8 ( [6]). We have

‖u‖∞ ≤
Tα−

1
2

Γ(α)(2α− 1)1/2
‖u‖Eα0 ∀u ∈ Eα0 .

Definition 2.9. A function u ∈ Eα0 is a weak solution of Problem (1.1), provided
that ∫ T

0

(
0D

α
t u(t)0D

α
t v(t) + u(t)v(t)

)
dt = λ

∫ T

0

f(t, u(t))v(t)dt. (2.4)

for any v ∈ Eα0 .

Set

∆ = max
{
f(t, s) : (t, s) ∈ [0, T ]×

[ −Tα− 1
2

Γ(α)(2α− 1)1/2
,

Tα−
1
2

Γ(α)(2α− 1)1/2

]}
.

Theorem 2.10. Suppose that 1
2 < α ≤ 1 and f ∈ C([0, T ] × R,R), then for any

|λ| ≤ 1
∆T 1/2 , Problem (1.1) has at least one weak solution.

Proof. First, we define B(u, v) =
∫ T

0

(
0D

α
t u(t)0D

α
t v(t) + u(t)v(t)

)
dt. Since,

|B(u, v)| ≤ ‖0Dα
t u‖2‖0Dα

t v‖2 + ‖u‖2‖v‖2 ≤ 2‖u‖2Eα0 ‖v‖
2
Eα0
,

|B(u, u)| ≥ ‖u‖2Eα0 ,

it follows that B is a continuous coercive bilinear form on Eα0 with a = 2 and b = 1.
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We now define

F : Eα0 → (Eα0 )∗,

〈F (u), v〉 =
∫ T

0

f(t, u(t))v(t)dt.

Assume u ∈ Eα0 with ‖u‖Eα0 ≤ 1. Then, in view of Remark 2.8, one has

‖u‖∞ ≤
Tα−

1
2

Γ(α)(2α− 1)1/2
‖u‖Eα0 ≤

Tα−
1
2

Γ(α)(2α− 1)1/2
. (2.5)

and we have |u(t)| ≤ Tα−
1
2

Γ(α)(2α−1)1/2
for any t ∈ [0, T ]. So, we can conclude that

|f(t, u(t))| ≤ ∆ for any t ∈ [0, T ].
For any v ∈ Eα0 with ‖v‖Eα0 = 1, by the Hölder inequality, we have

|〈F (u), v〉| =
∣∣∣ ∫ T

0

f(t, u(t))v(t)dt
∣∣∣ ≤ (∫ T

0

|f(t, u)|2dt
)1/2

‖v‖L2(0,T ) ≤ ∆T 1/2.

Taking N = ∆T 1/2, Condition (F1) holds.
Suppose {uk} is a sequence in Eα0 such that uk ⇀ u weakly in Eα0 . Then,

Theorem 2.7 yields that for any t ∈ [0, T ]

uk(t)→ u(t) ∀t ∈ [0, T ].

By using it and that f is continuous, we have

f(t, uk(t))→ f(t, u(t)) as k →∞, ∀t ∈ [0, T ]. (2.6)

On the other hand, {uk} is a bounded subset of Eα0 (see [10, Theorem 3.18]). In
other words, there exists a constant K > 0 such that ‖uk‖Eα0 ≤ K for any k ∈ N.

From (2.5), we have ‖uk‖∞ ≤ KTα−
1
2

Γ(α)(2α−1)1/2
for any k ∈ N. Therefore, we have that

there exists a constant ∆0 > 0 such that

|f(t, uk(t))| < ∆0 a.e. on [0, T ], k = 1, 2, 3, . . . . (2.7)

From (2.7), (2.6) and the Lebesgue’s dominated theorem, we conclude that∫ T

0

∣∣∣f(t, uk)− f(t, u)
∣∣∣2dt→ 0.

For any v ∈ Eα0 with ‖v‖Eα0 = 1, we have

|〈F (uk)−F (u), v〉| =
∣∣∣ ∫ T

0

(
f(t, uk(t))−f(t, u(t)

)
v(t)dt

∣∣∣ ≤ ‖f(t, uk)−f(t, u)‖2 → 0,

which yields that F satisfies (F2). Then by Theorem 2.2, we obtain the desired
conclusion. �

3. Regularity

The main result of this section reads as follows.

Theorem 3.1. Under the assumptions of Theorem 2.10, every weak solution of
Problem (1.1) is a classical solution.

To prove the above theorem, we need the following lemmas and definitions.
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Definition 3.2 ( [5]). Let u ∈ L2(0, T ), v, w ∈ L2(0, T ) and∫ T

0

u(t)tDα
Tϕ(t)dt =

∫ T

0

v(t)ϕ(t)dt ∀ϕ ∈ C∞0 (0, T ),∫ T

0

u(t)0D
α
t ϕ(t)dt =

∫ T

0

w(t)ϕ(t)dt ∀ϕ ∈ C∞0 (0, T ).

The functions v and w given above will be called the weak left and the weak right
fractional derivative of order α ∈ (0, 1] of u respectively. Here, we denote them by
0D

α

t u(t) and tD
α

Tu(t) respectively.

In view of Definition 2.4, u ∈ Eα0 means that u is the limit of a Cauchy sequence
{un} ⊂ C∞0 (0, T ). In other words, un → u in L2(0, T ) and there exists an element
w ∈ L2(0, T ) such that 0D

α
t un → w in L2(0, T ). Then for any ϕ ∈ C∞0 (0, T ), we

have ∫ T

0

w(t)ϕ(t)dt = lim
n→∞

∫ T

0
0D

α
t un(t)ϕ(t)dt

= lim
n→∞

∫ T

0

un(t)tDα
Tϕ(t)dt

=
∫ T

0

u(t)tDα
Tϕ(t)dt.

So, w = 0D
α

t u however it is not clear whether 0D
α
t u(t) exists in the usual sense,

for any t ∈ [0, T ] or not (see [1, p. 202] for the case α = 1).

Remark 3.3 ( [3, Lemma 2.7]). Let u ∈ Eα0 , then for any v ∈ Eα0 , we have∫ T

0

u(t)tDα
T v(t)dt =

∫ T

0
0I
α
t 0D

α
t u(t)tDα

T v(t)dt

=
∫ T

0
0D

α
t u(t)tIαT tD

α
T v(t)dt

=
∫ T

0
0D

α
t u(t) v(t)dt.

Since C∞0 (0, T ) ⊂ Eα0 , we conclude 0D
α
t u(t) = 0D

α

t u(t) a.e. on [0, T ].

Lemma 3.4. Let u ∈ Eα0 , then 0D
α

t u is almost everywhere equal to the weak
derivative of 0I

1−α
t u in the H1(0, T ) sense. In other words

0D
α

t u(t) = D(0I
1−α
t u(t)) a.e. on [0, T ].

Proof. For any ϕ ∈ C∞0 (0, T ), we have (see [6, Remark 3.1] and [8, Theorem 2.1])∫ T

0
0D

α

t u(t)ϕ(t)dt =
∫ T

0

u(t)tDα
Tϕ(t)dt

=
∫ T

0

u(t)Ct D
α
Tϕ(t)dt

= −
∫ T

0

u(t)tI1−α
T (Dϕ(t))dt

= −
∫ T

0
0I

1−α
t u(t)Dϕ(t)dt.
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�

Lemma 3.5. Let 0 < α ≤ 1 .

(i) If 1
2 < α ≤ 1 and u ∈ L2(0, T ), then 0I

α
0 u(0) = 0.

(ii) If u ∈ C([0, T ]), then 0I
α
t u ∈ C([0, T ]).

(iii) If u ∈ C1([0, T ]) and u(0) = 0, then 0I
α
t u ∈ C1([0, T ]).

Proof. It is easy to see that

|0Iαt u(t)| ≤ tα−
1
2

Γ(α)(2α− 1)1/2
‖u‖2,

which completes the proof of (i).
Let t0 ∈ [0, T ] and {tn} be a sequence in [0, T ] such that tn → t0. We take

M = max
0≤t≤T

|u(t)|.

From u(tn − s)→ u(t0 − s) a.e. on [0, T ],

sα−1|u(tn − s)− u(t0 − s)| ≤ 2Msα−1,

and the Lebesgue’s dominated theorem, we conclude that∣∣∣ ∫ tn

0

sα−1u(tn − s)ds−
∫ t0

0

sα−1u(t0 − s)ds
∣∣∣

≤
∫ tn

0

sα−1|u(tn − s)− u(t0 − s)|ds+
∫ tn

t0

|sα−1u(t0 − s)|ds

≤
∫ ξ

0

sα−1|u(tn − s)− u(t0 − s)|ds+
∫ tn

t0

|sα−1u(t0 − s)|ds→ 0,

where ξ = max{t0, t1, t2, . . .}. This concludes the proof of (ii).
Suppose that

K = max
0≤t≤T

|u′(t)|,

then |u(tn−s)−u(t0−s)
tn−t0 | ≤ K. Hence by the Lebesgue’s dominated theorem, we con-

clude that

Γ(α)
(

0I
α
tnu(tn)− 0I

α
t0u(t0)

tn − t0

)
=
∫ t0

0

sα−1u(tn − s)− u(t0 − s)
tn − t0

ds+
∫ tn

t0

sα−1u(tn − s)− u(t0 − s)
tn − t0

ds

+
∫ tn

t0

sα−1u(t0 − s)− u(0)
t0 − s

t0 − s
tn − t0

ds→
∫ t0

0

sα−1u′(t0 − s)ds.

Thus
(

0I
α
t u(t)

)′
(t0) = 0I

α
t0u
′(t0). From this and part (ii), we can conclude (iii). �

Lemma 3.6. Suppose that for some u ∈ L2(0, T ), 0D
α

t u exists and is almost
everywhere equal to a function in C([0, T ]). Then:

(i) u is almost everywhere equal to a function ũ ∈ C([0, T ]).
(ii) 0D

α
t u(t) exists for any t ∈ [0, T ] and 0D

α
t u ∈ C([0, T ]).
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Proof. Lemma 3.4 implies that D(0I
1−α
t u) is almost everywhere equal to a func-

tion in C([0, T ]). Therefore, 0I
1−α
t u is almost everywhere equal to a function in

C1([0, T ]) (see [1, p. 204]). Thus by Lemma 3.5,
∫ t

0
u(s)ds = 0I

α
t 0I

1−α
t u(t) ∈

C1([0, T ]). Take ũ(t) = D(
∫ t

0
u(s)ds) (see [1, Lemma 8.2]), this completes the proof

of (i).
Lemma 3.5 implies that 0I

1−α
t ũ(t) ∈ C([0, T ]). Since

0I
1−α
t u(t) = 0I

1−α
t ũ(t) ∀t ∈ [0, T ], (3.1)

we can conclude 0I
1−α
t u(t) ∈ C([0, T ]). By using it and the fact that 0I

1−α
t u is

almost everywhere equal to a function in C1([0, T ]), we can conclude 0I
1−α
t u(t) ∈

C1([0, T ]). The desired conclusion can be obtained from 0D
α
t u(t) = D

(
0I

1−α
t u(t)

)
.

�

Quite similar to Lemma 3.5 and Lemma 3.6, we have the following lemmas.

Lemma 3.7. Let 1/2 < α ≤ 1.
(i) If u ∈ L2(0, T ), then T I

α
T u(T ) = 0.

(ii) If u ∈ C([0, T ]), then tI
α
T u ∈ C([0, T ]).

(iii) If u ∈ C1([0, T ]) and u(T ) = 0, then tI
α
T u ∈ C1([0, T ]).

Lemma 3.8. Suppose that u ∈ L2(0, T ), tD
α
Tu exists and is almost everywhere

equal to a function in C([0, T ]). Then:
(i) u is almost everywhere equal to a function ũ ∈ C([0, T ]).
(ii) tD

α
Tu(t) exists for any t ∈ [0, T ] and tD

α
Tu ∈ C([0, T ]).

Proof of Theorem 3.1. Suppose that u is the weak solution of Problem (1.1). Set
g(t) = λf(t, u(t))− u(t). By Definition of weak solution, one has∫ T

0
0D

α
t u(t)0D

α
t v(t)dt =

∫ T

0

g(t)v(t)dt ∀v ∈ Eα0 .

Thus from definition 3.2, we have g(t) = tD
α

T 0D
α
t u(t) and from Remark 3.3, we

can conclude g(t) = tD
α

T 0D
α

t u(t).
From Theorem 2.7, g ∈ C([0, T ]). Then Lemma 3.8 implies that tD

α
T 0D

α

t u(t)
exists for any t ∈ [0, T ], tDα

T 0D
α

t u(t) ∈ C([0, T ]) and 0D
α

t u is almost everywhere
equal to an element of C([0,T]). Then from Lemma 3.6(ii), we have 0D

α
t u exists

for any t ∈ [0, T ] and Remark 3.3 yields 0D
α

t u = 0D
α
t u a.e. on [0, T ]. Hence, we

conclude that tDα
T 0D

α
t u(t) exists for any t ∈ [0, T ].

Since g and tD
α
T 0D

α
t u are almost everywhere equal and they are continuous, we

have
tD

α
T 0D

α
t u(t) = g(t) ∀t ∈ [0, T ],

which completes the proof. �
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