HÖLDER CONTINUITY WITH EXPONENT $(1+\alpha) / 2$ IN THE TIME VARIABLE FOR SOLUTIONS OF PARABOLIC EQUATIONS

JUNICHI ARAMAKI

Abstract

We consider the regularity of solutions for some parabolic equations. We show Hölder continuity with exponent $(1+\alpha) / 2$, with respect to the time variable, when the gradient in the space variable of the solution has the Hölder continuity with exponent α.

1. Introduction

In this article we consider the Hölder continuity of solutions for the equation.

$$
\begin{equation*}
L u:=\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x, t) \frac{\partial u}{\partial x_{i}}-\frac{\partial u}{\partial t}=f \quad \text { in } Q \tag{1.1}
\end{equation*}
$$

where $Q=\Omega \times(0, T], \Omega \subset \mathbb{R}^{n}$ is a domain and $T>0$. For the classical solution $u(x, t)$ of (1.1), we shall show the Hölder continuity with exponent $(1+\alpha) / 2$ in the time variable t, when the gradient of u with respect to the space variable x has Hölder continuity with exponent α.

We assume that:
(H1) L is parabolic, i.e., for any $(x, t) \in Q$,

$$
\sum_{i, j 1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j}>0 \quad \text { for all } 0 \neq \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}
$$

Note that L is not necessary uniformly parabolic.
(H2) $a_{i j}, b_{i} \in C(Q)$ for $i, j=1, \ldots, n$ where $C(Q)$ denotes the space of continuous functions in Q.
(H3) There exist constants $\mu_{1}, \mu_{2}>0$ such that

$$
\sum_{i=1}^{n} a_{i i}(x, t) \leq \mu_{1}, \quad \sum_{i=1}^{n}\left|b_{i}(x, t)\right| \leq \mu_{2} \quad \text { for all }(x, t) \in Q .
$$

(H4) $f=f(x, t)$ is a bounded continuous function in Q satisfying

$$
|f(x, t)| \leq \mu_{3} \quad \text { for all }(x, t) \in Q
$$

[^0]In the following, for non-negative integers k, l and any set $A \subset \mathbb{R}^{n}$, we denote the space of functions $u \in C(A \times(0, T])$ such that u has continuous partial derivatives $\partial_{x}^{\alpha} u$ for $|\alpha| \leq k$ and $\partial_{t}^{j} u$ for $j \leq l$ in $A \times(0, T]$ by $C^{k, l}(A \times(0, T])$. Here

$$
\partial_{x}^{\alpha} u=\frac{\partial^{|\alpha|} u}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}}
$$

for any multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$. We also use the notation $u_{t}=\partial_{t} u, u_{x_{i}}=\partial_{x_{i}} u, u_{x_{i} x_{j}}=\partial_{x_{i}} \partial_{x_{j}} u$ etc. Now we are in a position to state our main result.

Theorem 1.1. Under the hypotheses (H1)-(H4), let $u \in C^{2,1}(Q)$ be a solution of (1.1) in Q. Assume that there exist $\alpha \in(0,1]$ and constants $C_{1}, C_{2} \geq 0$ such that

$$
\begin{equation*}
|\nabla u(x, t)-\nabla u(y, t)| \leq C_{1}|x-y|^{\alpha} \tag{1.2}
\end{equation*}
$$

for all $(x, t),(y, t) \in Q$, and

$$
\begin{equation*}
|\nabla u(x, t)| \leq C_{2} \tag{1.3}
\end{equation*}
$$

for all $(x, t) \in Q$. Here and hereafter ∇ denotes the gradient operator with respect to the space variable x.
(i) Let $\Omega^{\prime} \subset \Omega$ be a subdomain such that $\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right) \geq d>0$, and define $Q^{\prime}=\Omega^{\prime} \times(0, T]$. Then there exist $\delta>0$ depending only on $\mu_{1}, \mu_{2}, \mu_{3}$ and $\alpha, K>0$ depending only on $\mu_{1}, \mu_{2}, \mu_{3}, d, \alpha, C_{1}$ and C_{2} such that

$$
\begin{equation*}
\left|u(x, t)-u\left(x, t_{0}\right)\right| \leq K\left|t-t_{0}\right|^{(1+\alpha) / 2} \tag{1.4}
\end{equation*}
$$

for all $(x, t),\left(x, t_{0}\right) \in Q^{\prime}$ with $\left|t-t_{0}\right|<\delta$.
(ii) Furthermore, if we assume that $\partial \Omega \neq \emptyset$ and $u \in C^{1,0}(\bar{\Omega} \times(0, T])$ satisfies that there exist $\beta \in(0,1]$ and a constant $D \geq 0$ such that

$$
\left|\nabla u(x, t)-\nabla u\left(x, t_{0}\right)\right| \leq D\left|t-t_{0}\right|^{(1+\beta) / 2}
$$

for all $x \in \partial \Omega$ and $t, t_{0} \in(0, T]$, then for any $\sigma>0$ there exists $K>0$ depending only on $\mu_{1}, \mu_{2}, \mu_{3}, C_{1}, C_{2}, D$ and σ such that

$$
\left|u(x, t)-u\left(x, t_{0}\right)\right| \leq K\left|t-t_{0}\right|^{(1+\gamma) / 2}, \quad \gamma=\min \{\alpha, \beta\}
$$

for any $(x, t),\left(x, t_{0}\right) \in Q$ with $\left|t-t_{0}\right|<\sigma$.
Remark 1.2. Gilding [6] assumed that $|u(x, t)-u(y, t)| \leq C_{1}|x-y|^{\alpha}$ instead of 1.2 and 1.3 , and obtained

$$
\left|u(x, t)-u\left(x, t_{0}\right)\right| \leq K\left|t-t_{0}\right|^{\alpha}
$$

instead of (1.4). Note that the papers of Brandt [4] and Knerr (7] can be viewed as precursors to the present study. See also the discussion of Ladyzhenskaja et al 8 in $\sqrt{7}$. Then the author of [6] applied the result to the Cauchy problem for the porous media equation in one dimension. See also Aronson [2] and Bénilan [3]. On the other hand, our result can be applied to the regularity for a quasilinear parabolic type system associated with the Maxwell equation. For such application, see Aramaki 11.

2. Proof of Theorem 1.1

We shall use a modification of the arguments in [6].
(i) Let $\Omega^{\prime} \subset \Omega$ be a subdomain with $\operatorname{dist}\left(\Omega^{\prime}, \partial \bar{\Omega}\right) \geq d>0$ and define $Q^{\prime}=$ $\Omega^{\prime} \times(0, T]$. Fix arbitrary points $\left(x_{0}, t_{0}\right),\left(x_{0}, t_{1}\right) \in Q^{\prime}$ with $0<t_{0}<t_{1} \leq T$ and choose $0<\rho<d$, and define μ and C so that

$$
\mu=\max \left\{\mu_{1}, \mu_{2}, \mu_{2} C_{2}+\mu_{3}\right\} \quad \text { and } \quad C=\frac{C_{1}}{1+\alpha}
$$

Moreover, we define a set and functions

$$
\begin{aligned}
& N=\left\{x \in \mathbb{R}^{n} ;\left|x-x_{0}\right|<\rho\right\} \times\left(t_{0}, t_{1}\right] \subset Q \\
v^{ \pm}(x, t)= & \mu\left\{1+2 s \rho^{-2}(1+\rho)\right\}\left(t-t_{0}\right)+s \rho^{-2}\left|x-x_{0}\right|^{2}+C \rho^{1+\alpha} \\
& \pm\left\{u(x, t)-u\left(x_{0}, t_{0}\right)-\nabla u\left(x_{0}, t_{0}\right) \cdot\left(x-x_{0}\right)\right\}
\end{aligned}
$$

where "." denotes the inner product in \mathbb{R}^{n}. Let

$$
s=\sup _{t_{0} \leq t \leq t_{1}, x \in \Omega^{\prime}}\left|u(x, t)-u\left(x, t_{0}\right)\right| .
$$

Since

$$
\begin{gathered}
v_{t}^{ \pm}=\mu\left\{1+2 s \rho^{-2}(1+\rho)\right\} \pm u_{t}(x, t), \\
v_{x_{i}}^{ \pm}=2 s \rho^{-2}\left(x_{i}-x_{0, i}\right) \pm\left\{u_{x_{i}}(x, t)-u_{x_{i}}\left(x_{0}, t_{0}\right)\right\}, \\
v_{x_{i} x_{j}}^{ \pm}=2 s \rho^{-2} \delta_{i j} \pm u_{x_{i} x_{j}}(x, t)
\end{gathered}
$$

where $\delta_{i j}$ denotes the Kronecker delta, we have

$$
\begin{align*}
L v^{ \pm}= & -\mu-2 s \rho^{-2} \mu(1+\rho)+2 s \rho^{-2}\left\{\sum_{i=1}^{n} a_{i i}(x, t)+\sum_{i=1}^{n} b_{i}(x, t)\left(x_{i}-x_{0, i}\right)\right\} \\
& \pm L u(x, t) \mp \sum_{i=1}^{n} b_{i}(x, t) u_{x_{i}}\left(x_{0}, t_{0}\right) \\
\leq & -\mu-2 s \rho^{-2}(\mu+\mu \rho)+2 s \rho^{-2}\left(\mu_{1}+\mu_{2} \rho\right)+|f(x, t)| \tag{2.1}\\
& +\sum_{i=1}^{n}\left|b_{i}(x, t)\right|\left|u_{x_{i}}\left(x_{0}, t_{0}\right)\right| \\
\leq & -\mu-2 s \rho^{-2}(\mu+\mu \rho)+2 s \rho^{-2}\left(\mu_{1}+\mu_{2} \rho\right)+\mu_{3}+C_{2} \mu_{2} \leq 0 .
\end{align*}
$$

Here we used the definition of μ.

When $t=t_{0}$ and $\left|x-x_{0}\right| \leq \rho$, from the definition of C, we see that

$$
\begin{align*}
v^{ \pm}\left(x, t_{0}\right)= & s \rho^{-2}\left|x-x_{0}\right|^{2}+C \rho^{1+\alpha} \\
& \pm\left\{u\left(x, t_{0}\right)-u\left(x_{0}, t_{0}\right)-\nabla u\left(x_{0}, t_{0}\right) \cdot\left(x-x_{0}\right)\right\} \\
= & s \rho^{-2}\left|x-x_{0}\right|^{2}+C \rho^{1+\alpha} \\
& \pm \int_{0}^{1}\left(\nabla u\left(\theta x_{0}+(1-\theta) x\right)-\nabla u\left(x_{0}, t_{0}\right)\right) \cdot\left(x-x_{0}\right) d \theta \tag{2.2}\\
\geq & s \rho^{-2}\left|x-x_{0}\right|^{2}+C \rho^{1+\alpha} \\
& -C_{1} \int_{0}^{1}\left|\theta x_{0}+(1-\theta) x-x_{0}\right|^{\alpha} d \theta\left|x-x_{0}\right| \\
\geq & s \rho^{-2}\left|x-x_{0}\right|^{2}+C \rho^{1+\alpha}-\frac{C_{1}}{1+\alpha} \rho^{1+\alpha} \geq 0
\end{align*}
$$

When $\left|x-x_{0}\right|=\rho$ and $t_{0}<t \leq t_{1}$, using the definition of s, we can see that

$$
\begin{align*}
v^{ \pm}(x, t)= & \mu\left\{1+2 s \rho^{-2}(1+\rho)\right\}\left(t-t_{0}\right)+s+C \rho^{1+\alpha} \\
& \pm\left\{u(x, t)-u\left(x_{0}, t_{0}\right)-\nabla u\left(x_{0}, t_{0}\right) \cdot\left(x-x_{0}\right)\right\} \\
= & \mu\left\{1+2 s \rho^{-2}(1+\rho)\right\}\left(t-t_{0}\right)+s+C \rho^{1+\alpha} \\
& \pm\left\{u\left(x, t_{0}\right)-u\left(x_{0}, t_{0}\right)-\nabla u\left(x_{0}, t_{0}\right) \cdot\left(x-x_{0}\right)\right\} \tag{2.3}\\
& \pm\left\{u(x, t)-u\left(x, t_{0}\right)\right\} \\
\geq & \mu\left\{1+2 s \rho^{-2}(1+\rho)\right\}\left(t-t_{0}\right)+s+C \rho^{1+\alpha}-\frac{C_{1}}{1+\alpha} \rho^{1+\alpha}-s \\
\geq & 0
\end{align*}
$$

Thus from 2.1), 2.2 and 2.3, we see that

$$
L v^{ \pm} \leq 0 \quad \text { in } N
$$

$$
\begin{equation*}
v^{ \pm} \geq 0 \quad \text { on the parabolic boundary of } N \tag{2.4}
\end{equation*}
$$

By the maximum principle (cf. Friedman [5, p. 34] or Lieberman (9, Chapter 2, Lemma 2.3]), it follows that $v^{ \pm} \geq 0$ in N. Hence we have

$$
\begin{aligned}
& \mp\left\{u(x, t)-u\left(x_{0}, t_{0}\right)-\nabla u\left(x_{0}, t_{0}\right) \cdot\left(x-x_{0}\right)\right\} \\
& \leq C \rho^{1+\alpha}+\mu\left\{1+2 s \rho^{-2}(1+\rho)\right\}\left(t-t_{0}\right)+s \rho^{-2}\left|x-x_{0}\right|^{2}
\end{aligned}
$$

If we put $x=x_{0}$, then we see that

$$
\left|u\left(x_{0}, t\right)-u\left(x_{0}, t_{0}\right)\right| \leq C \rho^{1+\alpha}+\mu\left\{1+2 s \rho^{-2}(1+\rho)\right\}\left(t-t_{0}\right) .
$$

Since $x_{0} \in \Omega^{\prime}$ and $t \in\left(t_{0}, t_{1}\right]$ are arbitrary, it follows that

$$
\begin{align*}
s & \leq C \rho^{1+\alpha}+\mu\left\{1+2 s \rho^{-2}(1+\rho)\right\}\left(t_{1}-t_{0}\right) \\
& =C \rho^{1+\alpha}+\mu\left(t-t_{0}\right)+\frac{1}{2} s\left\{4 \mu \rho^{-2}(1+\rho)\left(t_{1}-t_{0}\right)\right\} . \tag{2.5}
\end{align*}
$$

Let ρ^{*} be the positive root of the quadratic equation $y^{2}=4 \mu(1+y)\left(t_{1}-t_{0}\right)$, i.e.,

$$
\begin{equation*}
\rho^{*}=2 \mu\left(t_{1}-t_{0}\right)+2\left\{\mu\left(t_{1}-t_{0}\right)+\mu^{2}\left(t_{1}-t_{0}\right)^{2}\right\}^{1 / 2} \tag{2.6}
\end{equation*}
$$

If we define $\delta=d^{2} /(4 \mu(1+d))$, for $t_{1}<t_{0}+\delta$, it is easily seen that $\rho^{*}<d$. Thus we can replace ρ in 2.5 with ρ^{*}. Therefore when $t_{0}<t_{1}<t_{0}+\delta$, we see that

$$
s \leq C\left(2 \mu\left(t_{1}-t_{0}\right)+2\left\{\mu\left(t_{1}-t_{0}\right)+\mu^{2}\left(t_{1}-t_{0}\right)^{2}\right\}^{1 / 2}\right)^{1+\alpha}
$$

$$
\begin{aligned}
& +\mu\left(t_{1}-t_{0}\right)+\frac{1}{2} s \\
= & C\left(2 \mu\left(t_{1}-t_{0}\right)^{1 / 2}+2\left\{\mu+\mu^{2}\left(t_{1}-t_{0}\right)\right\}^{1 / 2}\right)^{1+\alpha}\left(t_{1}-t_{0}\right)^{(1+\alpha) / 2} \\
& +\mu\left(t_{1}-t_{0}\right)^{(1-\alpha) / 2}\left(t_{1}-t_{0}\right)^{(1+\alpha) / 2}+\frac{1}{2} s
\end{aligned}
$$

Since $t_{1}-t_{0}<\delta$, we have

$$
s \leq 2\left[C\left(2 \mu \delta^{1 / 2}+2\left\{\mu+\mu^{2} \delta\right\}^{1 / 2}\right)^{1+\alpha}+\mu \delta^{(1-\alpha) / 2}\right]\left(t_{1}-t_{0}\right)^{(1+\alpha) / 2}
$$

Thus we have

$$
\left|u\left(x_{0}, t_{1}\right)-u\left(x_{0}, t_{0}\right)\right| \leq K\left(t_{1}-t_{0}\right)^{(1+\alpha) / 2}
$$

where

$$
K=2\left[C\left(2 \mu \delta^{1 / 2}+2\left\{\mu+\mu^{2} \delta\right\}^{1 / 2}\right)^{1+\alpha}+\mu \delta^{(1-\alpha) / 2}\right]
$$

for any $t_{1}<t_{0}+\delta$. Since $\left(x_{0}, t_{0}\right)$ and $\left(x_{0}, t_{1}\right)$ with $t_{0}<t_{1} \leq T$ are arbitrary points in Q^{\prime}, we get the conclusion of (i).
(ii) When $\left(x_{0}, t_{0}\right),\left(x_{0}, t_{1}\right) \in Q$ with $0<t_{0}<t_{1}<t_{0}+\sigma$, we choose ρ^{*} as in 2.6. We define

$$
\begin{gathered}
N^{*}=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|<\rho^{*}\right\} \times\left(t_{0}, t_{1}\right] \subset \mathbb{R}^{n} \times(0, T], \\
w^{ \pm}(x, t)=v^{ \pm}(x, t)+D\left(t_{1}-t_{0}\right)^{(1+\beta) / 2} \text { in } N^{*} \cap Q, \\
s=\sup _{t_{0} \leq t \leq t_{1}, x \in \bar{\Omega}}\left|u(x, t)-u\left(x, t_{0}\right)\right| .
\end{gathered}
$$

By a similar argument as in the proof of (i), we have

$$
L w^{ \pm} \leq 0 \quad \text { in } N^{*} \cap Q
$$

$w^{ \pm} \geq 0 \quad$ on the parabolic boundary of $N^{*} \cap Q$.
If we choose $\mu=\max \left\{\mu_{1}, \mu_{2}, \mu_{2} C_{2}+\mu_{3}, D \sigma^{(1+\beta) / 2}\right\}$, from a similar argument as in (i) we can get the conclusion of (ii).

Acknowledgments. We would like to thank the anonymous referee for his or her very kind advice about a previous version of this article.

References

[1] J. Aramaki; Existence and uniqueness of a classical solution for a quasilinear parabolic type equation associated with the Maxwell equation, to appear.
[2] D. G. Aronson, L. A. Caffarelli; Optimal regularity for one-dimensional porous medium flow, Rev. Mat. Iberoamericana 2, (1986), 357-366.
[3] P. Bénilan; A strong L^{p} regularity for solutions of the porous media equation, in: Contributions to Nonlinear Partial Differential Equations (Eds. C. Bardos et al.), Reserch Notes in Mathematics 89, Pitman, London, (1983), 39-58.
[4] A. Brandt; Interior Schauder estimates for parabolic differential- (or difference-) equations via the maximum principle, Israel J. Math. 7, (1969), 254-262.
[5] A. Friedman; Partial Differential Equations of Parabolic Type, Princeton Hall Inc., Englewood Cliffs, NJ, (1964).
[6] B. H. Gilding; Hölder continuity of solutions of parabolic equations, J. London Math. Soc., Vol. 13(2), (1976), 103-106.
[7] B. F. Knerr; Parabolic interior Schauder estimates by the maximum pronciple, Arch. Rational Mech. Anal. 75, (1980), 51-58.
[8] O. A. Ladyzhenskaja, V. A. Solonnikov, N. N. Ural'ceva; Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs 23 AMS, Providence, RI, (1968).
[9] G. M. Lieberman; Second Order Parabolic Differential Equations, World Scientific, (2005).

Junichi Aramaki
Division of Science, Faculty of Science and Engineering, Tokyo Denki University,
Hatoyama-machi, Saitama 350-0394, Japan
E-mail address: aramaki@mail.dendai.ac.jp

[^0]: 2010 Mathematics Subject Classification. 35A09, 35K10, 35D35.
 Key words and phrases. Hölder continuity; parabolic equation.
 © 2015 Texas State University - San Marcos.
 Submitted February 16, 2015. Published April 13, 2015.

