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REGULARITY CRITERIA FOR 3D BOUSSINESQ EQUATIONS
WITH ZERO THERMAL DIFFUSION

ZHUAN YE

Abstract. In this article, we consider the three-dimensional (3D) incompress-
ible Boussinesq equations with zero thermal diffusion. We establish a regular-

ity criterion for the local smooth solution in the framework of Besov spaces in

terms of the velocity only.

1. Introduction

In this article, we consider the 3D Boussinesq equations with zero thermal dif-
fusion,

∂tu+ (u · ∇)u− µ∆u+∇P = θe3, x ∈ R3, t > 0,

∂tθ + (u · ∇)θ = 0, x ∈ R3, t > 0,

∇ · u = 0, x ∈ R3, t > 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x), x ∈ R3,

(1.1)

where µ ≥ 0 is the viscosity, u = u(x, t) ∈ R3 is the velocity, P = P (x, t) ∈ R is
the scalar pressure, θ = θ(x, t) ∈ R3 is the temperature, and e3 = (0, 0, 1)T. The
Boussinesq equations are of relevance to study a number of models coming from
atmospheric or oceanographic turbulence (see [20,24]).

It is easy to check that in the case θ = 0, the system (1.1) reduces to the 3D
classical Navier-Stokes equations. Although the local existence and uniqueness of
smooth solutions for the system (1.1) with large initial data were easily obtained
(see [6, 20]), whether the unique local smooth solution can exist globally is an
outstanding challenging open problem. Therefore, it is important to study the
mechanism of blowup and structure of possible singularities of smooth solutions to
the system (1.1). For this reason, many researchers were devoted to finding sufficient
conditions to ensure the smoothness of the solutions; see [10,9,11,26,25,27,28,29,31]
and so forth. For many interesting results on the high dimensional Boussinesq
equations with axisymmetric data, we refer the readers to [1, 14, 15, 22, 23]. We
remark that the 2D Boussinesq equations also has recently attracted considerable
attention, just name a few (see [4, 7, 5, 8, 12,13,16,18,17]).
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The aim of this paper is to improve the previous regularity criterion results on
the system (1.1). Since the concrete value of µ does not play a special role in our
discussion, for simplicity, we set µ = 1. Now we state the main results as follows

Theorem 1.1. Assume that (u0, θ0) ∈ H3(R3) × H3(R3). Let (u, θ) be a local
smooth solution of the system (1.1). If the following condition holds∫ T

0

‖u(t)‖q
Ḃ

3
p

+ 2
q
−1

p,∞

dt <∞, (1.2)

with 3
p + 2

q ≤ 2 and (p, q) 6= (∞,∞) for 1 < p, q ≤ ∞, then the solution pair (u, θ)
can be extended beyond time T . Here Ḃsp,q stands for the homogeneous Besov space.
In other words, if T <∞ is the maximal existence time, then∫ T

0

‖u(t)‖q
Ḃ

3
p

+ 2
q
−1

p,∞

dt = +∞.

Remark 1.2. When the thermal diffusion ∆θ was added in the second equation of
the system (1.1), Xiang [27] obtained the same regularity result (1.2). As a result,
Theorem 1.1 significantly improves the result (Theorem 1.1) in [27]. Moreover,
we chose not to apply the Littlewood-Paley decomposition on the system itself, in
contrast to the proof of [27].

Remark 1.3. The system (1.1) has scaling property that if (u, θ, P ) is a solution
of the system (1.1), then for any λ > 0 the functions

uλ(x, t) = λu(λx, λ2t), θλ(x, t) = λ3θ(λx, λ2t), Pλ(x, t) = λ2P (λx, λ2t),

are also solutions of (1.1) with the corresponding initial data u0,λ(x) = λu0(λx)
and θ0,λ(x) = λ3θ0(λx). It is an obvious fact that the assumption (1.2) does belong
to the invariant spaces.

The method may also be adapted with almost no change to the study of the
following Bénard system:

∂tu+ (u · ∇)u− µ∆u+∇P = θe3, x ∈ R3, t > 0,

∂tθ + (u · ∇)θ = u3, x ∈ R3, t > 0,

∇ · u = 0, x ∈ R3, t > 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x), x ∈ R3,

(1.3)

which describes convective motions in a heated incompressible fluid (see [2, Chap.
6]). Because of the similar structure to Boussinesq system (1.1), it is not difficult to
show that Bénard system (1.3) admits the same conclusion as Theorem 1.1, namely,
we have the following result.

Theorem 1.4. Assume that (u0, θ0) ∈ H3(R3) × H3(R3). Let (u, θ) be a local
smooth solution of the system (1.3). If the following condition holds∫ T

0

‖u(t)‖q
Ḃ

3
p

+ 2
q
−1

p,∞

dt <∞, (1.4)

with 3
p + 2

q ≤ 2 and (p, q) 6= (∞,∞) for 1 < p, q ≤ ∞, then the solution pair (u, θ)
can be extended beyond time T . In other words, if T <∞ is the maximal existence
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time, then ∫ T

0

‖u(t)‖q
Ḃ

3
p

+ 2
q
−1

p,∞

dt = +∞.

2. Proof of Theorem 1.1

As stated above that the local smooth solution was obtained, we only need to
establish a priori estimates. Throughout the paper, C represents a real positive
constant which may be different in each occurrence.

Proof of Theorem 1.1. Multiplying the second equation of (1.1) by |θ|p−2θ and and
integrating the resulting equation over R3 yield that

‖θ(t)‖Lp ≤ ‖θ0‖Lp , ∀p ∈ [1,∞]. (2.1)

Testing (1.1)1 and (1.1)2 by u and θ, respectively, it gives

1
2
d

dt
(‖u(t)‖2L2 + ‖θ(t)‖2L2) + ‖∇u‖2L2 ≤ ‖u‖L2‖θ‖L2 , (2.2)

which together with (2.1) implies that

‖u(t)‖2L2 + ‖θ(t)‖2L2 +
∫ t

0

‖∇u(τ)‖2L2 dτ ≤ C <∞. (2.3)

Multiplying equation (1.1)1 by ∆u, integration by parts and taking the divergence
free property into account, one concludes that

1
2
d

dt
‖∇u(t)‖2L2 + ‖∆u‖2L2 = −

∫
R3
θe3 ·∆u dx+

∫
R3

(u · ∇u) ·∆u dx. (2.4)

Integrating by parts and using Young inequality, we obtain

−
∫

R3
θe3 ·∆u dx ≤ ‖∆u‖L2‖θ‖L2 ≤ 1

4
‖∆u‖2L2 + C‖θ‖2L2 . (2.5)

To bound the remainder term, we split it into the following two cases:
Case 1: 2 < q ≤ ∞. The following bilinear estimate (see [30])

‖ff‖Ḃs2,2 ≤ C‖f‖Ḃ−α∞,∞‖f‖Ḃs+α2,2
, for any s > 0, α > 0

and Young inequality allow us to show that∫
R3

(u · ∇u) ·∆u dx

≤
∫

R3
∇ · (u⊗ u) ·∆u dx

≤ C‖u⊗ u‖Ḣ1‖∆u‖L2

≤ C(‖u‖Ḃ−β∞,∞‖u‖Ḃ1+β
2,2

)‖∆u‖L2 (0 < β ≤ 1)

≤ C‖u‖
Ḃ

3
p
−β

p,∞

(‖∇u‖1−βL2 ‖∆u‖βL2)‖∆u‖L2

≤ 1
4
‖∆u‖2L2 + C‖u‖

2
1−β

Ḃ
3
p
−β

p,∞

‖∇u‖2L2

=
1
4
‖∆u‖2L2 + C‖u‖q

Ḃ
3
p

+ 2
q
−1

p,∞

‖∇u‖2L2

(
q =

2
1− β

∈ (2,∞]
)
,

(2.6)
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where we have used

‖u‖Ḃ1+β
2,2

≈ ‖u‖Ḣ1+β ≤ C‖∇u‖1−βL2 ‖∆u‖βL2 , for 0 ≤ β ≤ 1;

‖u‖Ḃ−β∞,∞ ≤ C‖u‖Ḃ
3
p
−β

p,∞

, for 1 ≤ p ≤ ∞.

Case 2: 1 < q ≤ 2. Now we recall the following interpolation inequality due to
Meyer-Gerard-Oru [21] (see also [3, Theorem 2.42])

‖f‖Lm ≤ C‖Λsf‖
2
m

L2‖f‖
m−2
m

Ḃ−α∞,∞
, (2.7)

for any f ∈ Ḣs ∩ Ḃ−α∞,∞, s = α(m2 − 1) > 0 and 2 < m <∞. Hence, by using (2.7)
with m = 4, we obtain∫

R3
(u · ∇u) ·∆u dx

= −
∫

R3
(∂ku · ∇u) · ∂ku dx (∇ · u = 0)

≤ C‖∇u‖L2‖∇u‖2L4

≤ C‖∇u‖L2‖Λα∇u‖L2‖∇u‖Ḃ−α∞,∞ (0 < α ≤ 1)

≤ C‖∇u‖L2(‖∇u‖1−αL2 ‖∆u‖αL2)‖∇u‖Ḃ−α∞,∞
≤ C‖∇u‖2−αL2 ‖∆u‖αL2‖u‖

Ḃ
1−α+ 3

p
p,∞

≤ 1
4
‖∆u‖2L2 + C‖u‖

2
2−α

Ḃ
1−α+ 3

p
p,∞

‖∇u‖2L2

=
1
4
‖∆u‖2L2 + C‖u‖q

Ḃ
3
p

+ 2
q
−1

p,∞

‖∇u‖2L2

(
q =

2
2− α

∈ (1, 2]
)
,

(2.8)

where the following fact has been applied

‖∇u‖Ḃ−α∞,∞ ≤ C‖u‖
Ḃ

1−α+ 3
p

p,∞

.

Substituting (2.5) and (2.6) (or (2.8)) into (2.4), we arrive at

d

dt
‖∇u(t)‖2L2 + ‖∆u‖2L2 ≤ C‖θ‖2L2 + C‖u‖q

Ḃ
3
p

+ 2
q
−1

p,∞

‖∇u‖2L2 . (2.9)

It thus follows from the Gronwall inequality that

‖∇u(t)‖2L2 +
∫ t

0

‖∆u(τ)‖2L2 dτ

≤ (‖∇u0‖2L2 + 1)exp
[
C

∫ T

0

(
‖θ(τ)‖2L2 + ‖u(τ)‖q

Ḃ
3
p

+ 2
q
−1

p,∞

)
dτ
]
− 1

≤ C <∞.

(2.10)

The Hölder inequality and Gagliardo-Nirenberg inequality lead to

‖u · ∇u‖L3+δ ≤ C‖u‖
L

18+6δ
3−δ
‖∇u‖L6

≤ C‖u‖
3

6+2δ

L2 ‖∆u‖
3+2δ
6+2δ

L2 ‖∆u‖L2

≤ C‖u‖
3

6+2δ

L2 ‖∆u‖
9+4δ
6+2δ

L2 ,

(2.11)
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where 0 < δ < 3. It follows from the bounds (2.1), (2.3) and (2.10) that

u · ∇u ∈ L
2(6+2δ)
9+4δ

(
0, T ;L3+δ(R3)

)
, (2.12)

θ ∈ L
2(6+2δ)
9+4δ

(
0, T ;L3+δ(R3)

)
. (2.13)

Recall the first equation of (1.1), namely

∂tu−∆u+∇P = f := −(u · ∇)u+ θe3. (2.14)

As a consequence of (2.12) and (2.13), it leads to

f ∈ L
2(6+2δ)
9+4δ

(
0, T ;L3+δ(R3)

)
. (2.15)

According to the divergence-free condition, we can rewrite equation (2.14) as

∂tu−∆u = (I +RiRj)f, (2.16)

where the singular operator Ri is the classical Riesz operator, more precisely

Ri =
∂xi√
−∆

.

Now we recall the following Maximal LqtLpx regularity for the heat kernel (see [19])

Proposition 2.1. The operator A defined by

Af(x, t) :=
∫ t

0

e(t−s)∆∆f(s, x) ds

is bounded from Lp(0, T ;Lq(Rn)) to Lp(0, T ;Lq(Rn)) for very (p, q) ∈ (1,∞) ×
(1,∞) and T ∈ (0,∞].

Applying operator ∆ to (2.16), we have that the velocity ∆u can be solved by
the Duhamel’s Principle,

∆u(x, t) = et∆∆u0(x) +
∫ t

0

e(t−s)∆∆(I +RiRj)f(x, s) ds. (2.17)

By Proposition 2.1, one concludes from (2.17) that

‖∆u‖
L

12+4δ
9+4δ
T L3+δ

x

≤ ‖et∆∆u0‖
L

12+4δ
9+4δ
T L3+δ

x

+
∥∥∫ t

0

e(t−s)∆∆(I +RiRj)f(x, s) ds
∥∥
L

12+4δ
9+4δ
T L3+δ

x

≤ C‖H(t, x)‖
L

12+4δ
9+4δ
T L1

x

‖∆u0‖L3+δ
x

+ C
∥∥(I +RiRj)f(x, s)

∥∥
L

12+4δ
9+4δ
T L3+δ

x

≤ C(T )‖u0‖H3 + C‖f‖
L

12+4δ
9+4δ
T L3+δ

x

≤ C <∞,

(2.18)

where we have used the boundedness of the Calderon-Zygmund operator between
the Lp (1 < p <∞) space and H3(R3) ↪→ L3+δ(R3) for 0 < δ < 3.

Now we deduce that from the bounds (2.3), (2.10) and (2.18) that

u ∈ L
12+4δ
9+4δ

(
0, T ;W 2,3+δ(R3)

)
. (2.19)

Thus, we have
∇u ∈ L1

(
0, T ;L∞(R3)

)
. (2.20)
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The above key estimate (2.20) as well as the local well-posedness result ensures
implies that the local smooth solution pair (u, θ) can be extended beyond time T .
This completes the proof. �

3. Proof of Theorem 1.4

Proof of Theorem 1.4. The proof is largely the same as Theorem 1.1 with only some
modifications, thus we only say some words.

Testing (1.3)1 and (1.3)2 by u and θ, respectively, adding them up, we obtain

1
2
d

dt
(‖u(t)‖2L2 + ‖θ(t)‖2L2) + ‖∇u‖2L2 ≤ 2‖u‖L2‖θ‖L2 , (3.1)

which together with Gronwall inequality yields

‖u(t)‖2L2 + ‖θ(t)‖2L2 +
∫ t

0

‖∇u(τ)‖2L2 dτ ≤ C <∞. (3.2)

The Sobolev interpolation together with (3.2) gives

u ∈ L
4p

3(p−2)
(
0, T ;Lp(R3)

)
, 2 ≤ p ≤ 6. (3.3)

Recalling the second equation of (1.3)

∂tθ + (u · ∇)θ = u3,

it is easy to see that

θ ∈ L
4p

3(p−2)
(
0, T ;Lp(R3)

)
, 2 ≤ p ≤ 6. (3.4)

Thus,
θ ∈ L

2(6+2δ)
9+4δ

(
0, T ;L3+δ(R3)

)
,

where δ is the stated in previous section. Thus, we can obtain the desired result
immediately with only some modifications correspondingly. �
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tions of the Boussinesq equations, Nagoya Math. J., 155 (1999), 55-80.

[7] D. Chae, J. Wu; The 2D Boussinesq equations with logarithmically supercritical velocities,
Adv. Math. 230 (2012) 1618-1645.

[8] R. Danchin, M. Paicu; Global existence results for the anisotropic Boussinesq system in
dimension two, Math. Models Methods Appl. Sci., 21 (2011) 421-457.

[9] J. Fan, T. Ozawa; Regularity criteria for the 3D density-dependent Boussinesq equations,

Nonlinearity 22 (2009) 553-568.
[10] J. Fan, Y. Zhou; A note on regularity criterion for the 3D Boussinesq system with partial

viscosity, Appl. Math. Lett. 22 (2009) 802-805.



EJDE-2015/97 REGULARITY CRITERIA 7

[11] S. Gala, Z. Guo, M. Ragusa, A. Maria; A remark on the regularity criterion of Boussinesq

equations with zero heat conductivity, Appl. Math. Lett. 27 (2014), 70-73.

[12] T. Hmidi, S. Keraani, F. Rousset; Global well-posedness for a Navier-Stokes-Boussinesq
system with critical dissipation, J. Differ. Equ. 249 (2010) 2147-2174.

[13] T. Hmidi, S. Keraani, F. Rousset; Global well-posedness for Euler-Boussinesq system with

critical dissipation, Commun. Partial Differ. Equ. 36 (3) (2011) 420-445.
[14] T. Hmidi, F. Rousset; Global well-posedness for the Navier-Stokes-Boussinesq system with

axisymmetric data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 (2010) 1227-1246.
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