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EXACT CONTROLLABILITY FOR A STRING EQUATION IN
DOMAINS WITH MOVING BOUNDARY IN ONE DIMENSION

HAICONG SUN, HUIFEN LI, LIQING LU

Abstract. We consider a string equation in a domain with moving boundary.

By using the multiplier method in non-cylindrical domains, we establish the
exact boundary controllability in domains with moving boundary, and obtain

a weaker condition on the time controllability.

1. Introduction and main results

Let T > 0. For any given k ∈ (0, 1), set αk(t) = 1 + kt for t ∈ [0, T ]. Denote by
Q̂kT the non-cylindrical domain in R2,

Q̂kT = {(x, t) ∈ R2; 0 < x < αk(t), t ∈ (0, T )}.

Consider the controlled string equation in Q̂kT :

utt − uxx = 0 in Q̂kT ,

u(0, t) = 0, u(αk(t), t) = v on (0, T ),

u(0) = u0, ut(0) = u1 in (0, 1),

(1.1)

where u is the state variable, v is the control variable and (u0, u1) ∈ L2(0, 1) ×
H−1(0, 1) is any given initial data. (1.1) may describe the motion of a string with
a fixed endpoint and a moving one. By Milla Miranda [11], for 0 < k < 1, any
(u0, u1) ∈ L2(0, 1)×H−1(0, 1) and v ∈ L2(0, T ), (1.1) admits a unique solution in
the sense of transposition.

The goal of this article is to study the exact controllability of (1.1) in the following
sense.

Definition 1.1. Problem (1.1) is said to be exactly controllable at time T , if
for any initial state (u0, u1) ∈ L2(0, 1) × H−1(0, 1) and any preassigned state
(u0
T , u

1
T ) ∈ L2(0, αk(T )) × H−1(0, αk(T )), there is a control v ∈ L2(0, T ) such

that the corresponding solution of (1.1) in the sense of transposition satisfies

u(T ) = u0
T , ut(T ) = u1

T .
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For k ∈ (0, 1), set

T̄k =
2

1− k
. (1.2)

Our main result is stated as follows.

Theorem 1.2. Suppose that k ∈ (0, 1). Then for any given T > T̄k, Problem (1.1)
is exactly controllable at time T .

Remark 1.3. It is easy to check that

T̄ , lim
k→0

T̄k = lim
k→0

2
1− k

= 2.

And we can easily find that T̄k < T ∗k , where T ∗k = e
2k(1+k)

1−k −1
k is the controllability

time in [6]. Indeed, we have

T ∗k =
e

2k(1+k)
1−k − 1
k

>
2(1 + k)

1− k
> T̄k ,

for 0 < k < 1.

Similar to [8, Theorem 4.1], we use the Hilbert Uniqueness Method (HUM) to
seek a control v in the special form v(t) = wx(αk(t), t), where w is the solution of
the homogeneous problem

wtt − wxx = 0 in Q̂kT ,

w(0, t) = 0, w(αk(t), t) = 0 on (0, T ),

w(0) = w0, wt(0) = w1 in (0, 1),

(1.3)

where k ∈ (0, 1), (w0, w1) ∈ H1
0 (0, 1) × L2(0, 1) is any given initial value, αk(t) =

1 + kt is the function given in (1.1). According to the existence theorem in [4],
Problem (1.3) has a unique solution

w ∈ C([0, T ];H1
0 (0, αk(t))) ∩ C1([0, T ];L2(0, αk(t))).

We define the energy of the above system as

E(t) =
1
2

∫ αk(t)

0

(w2
x + w2

t )dx for t ≥ 0 . (1.4)

Next, we deduce a growth estimate of the energy of problem (1.3).

Theorem 1.4. Let w(x, t) be a solution of the problem (1.3) in Q̂kT . Then E(t) is
nonincreasing for t ≥ 0 and

1− k
(1 + k)(1 + kt)

E(0) ≤ E(t) ≤ 1 + k

(1− k)(1 + kt)
E(0) for t ≥ 0. (1.5)

Remark 1.5. In the case of k = 1, some results have been obtained in [6]. However,
we do not extend the approach developed in this paper to the case k = 1.

Remark 1.6. We can obtain the same results as in this article for a more general
function αk(t), as long as it meets the condition 0 < α′k(t) < 1.

Remark 1.7. It would be quite interesting to the study Dirichlet control for multi-
dimensional wave equations in non-cylindrical domains by the same approach as
this paper. We shall consider Neumann control for wave equations in domains with
moving boundary in the forthcoming papers.
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Control and stabilization for wave equations in domains with moving bound-
ary has been widely studied and many results are given, see [3, 4, 5, 9, 11, 12] and
the references therein. Under a restrictive assumption on the domain with moving
boundary, Bardos et al [1] considered the exact controllability and stabilization
of (1.1) for multi-dimensional wave equations in non-cylindrical domains. Using a
suitable change of variables, Cavalcanti et al [2] studied the existence and asymp-
totic behavior of global regular solutions of the mixed problem for the Kirchhoff
nonlinear model. By using the same transformation, Cui et al [6] considered the
exact boundary controllability for a one-dimensional wave equation and obtained
the controllability time. A damped Klein-Gordon equation in a non-cylindrical do-
main was studied in [7], there the authors obtained the existence of global solutions
and the exponential decay of the energy. The stabilization and controllability for
the wave equation with variable coefficients in domains with moving boundary was
investigated in [10]. Under some appropriate geometric conditions, the energy de-
cay estimates was established and the exact controllability was also obtained by
the Rimannian geometry method. It is well known that the Riemannian geometry
method was first introduced in [13] for the controllability of the wave equation with
variable coefficients.

Motivated by [1, 6, 10], we study the exact boundary controllability of (1.1).
Instead of transforming the problem from a non-cylindrical domain into a cylindrical
domain, we study the problem directly in non-cylindrical domains. By using a
modified multiplier method, we obtain a controllability time which is smaller than
that in [6].

The rest of this article is organized as follows. In section 2, we prove three
lemmas which will be needed in the sequel. Section 3 we prove our main results.

2. Preliminaries

In this section, we establish three key lemmas which are needed in proving our
main results. The first lemma gives a equality on the energy of the solution to
problem (1.3).

Lemma 2.1. Let w(x, t) be a solution of (1.3) in Q̂kT . Then

E(T )− E(0) =
k(k2 − 1)
2
√

1 + k2

∫ T

0

w2
x(αk(t), t)dt. (2.1)

Proof. Multiply(1.3) by wt and integrate on Q̂kT , we obtain

0 =
∫ T

0

∫ αk(t)

0

(wtt − wxx)wt dx dt

=
∫ T

0

∫ αk(t)

0

[(
1
2
w2
t )t + (

1
2
w2
x)t − (wxwt)x] dx dt

Let us denote by Σ the boundary of Q̂kT and by ν = (νx, νt) the unit outward
normal at (x, t) on Σ. First, Gauss-Green formula implies

0 =
∫

Σ

[
1
2

(w2
t + w2

x)νt − (wxwt)νx]dΣ. (2.2)

Since w is a solution to (1.3), w(0, t) = 0 and w(αk(t), t) = 0, then we have
kwx(αk(t), t) + wt(αk(t), t) = 0 and wt(0, t) = 0. Substituting these equalities in
(2.2), (2.1) is proved. �
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Remark 2.2. Without loss of generality, let 0 < t1 < t2 < T , replacing T by t2
and 0 by t1, we have

E(t2)− E(t1) =
k(k2 − 1)
2
√

1 + k2

∫ t2

t1

w2
x(αk(t), t)dt.

Moreover it is easy to check that the energy of (1.3) is decreasing for k ∈ (0, 1) and
is conserved for k = 1.

Lemma 2.3. Suppose that w is the solution of (1.3). Let T > 0 be given, we have
the equality

(1− k2)√
1 + k2

∫ T

0

w2
x(αk(t), t)dt

= 2TE(T )− 2
∫ 1

0

xwt(0)wx(0)dx+ 2
∫ 1+kT

0

xwt(T )wx(T )dx.

(2.3)

Proof. (i) Multiplying (1.3) by 2xwx and integrating by parts on Q̂kT , we have

0 =
∫ T

0

∫ αk(t)

0

(wtt − wxx)2xwx dx dt

=
∫ T

0

∫ αk(t)

0

[(2xwxwt)t − (xw2
t + xw2

x)x + w2
t + w2

x] dx dt

=
∫

Σ

[(2xwtwx)νt − (xw2
t + xw2

x)νx]dΣ + 2
∫ T

0

E(t)dt

=
∫ 1+kT

0

2xwt(T )wx(T )dx−
∫ 1

0

2xw1wx(x, 0)

+
k2 − 1√
1 + k2

∫ T

0

(1 + kt)w2
x(αk(t), t)dt+ 2

∫ T

0

E(t)dt.

This implies

1− k2

√
1 + k2

∫ T

0

(1 + kt)w2
x(αk(t), t)dt

= 2
∫ T

0

E(t)dt−
∫ 1

0

2xwt(0)wx(0, x)dx+
∫ 1+kT

0

2xwt(T )wx(T )dx.

(2.4)

(ii) Multiplying (1.3) by 2twt and integrating by parts on Q̂kT yields

1− k2

√
1 + k2

∫ T

0

ktw2
x(αk(t), t)dt = 2

∫ T

0

E(t)dt− 2TE(T ). (2.5)

Equality (2.3) follows easily from (2.4) and (2.5). �

Using Cauchy’s inequality, we can obtain easily the following result.

Lemma 2.4. Denote by w the solution of (1.3). For t ∈ (0, T ) and k ∈ (0, 1), we
have the estimate

|
∫ 1+kt

0

2xwtwxdx| ≤ 2(1 + kt)E(t). (2.6)
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3. Proof of main results

In this section, we prove the exact controllability for the string equation (1.1)
in the non-cylindrical domain Q̂kT (Theorem 1.2) for 0 < k < 1 by the Hilbert
Uniqueness Method (HUM). We first need to prove Theorem 1.4.

Proof of Theorem 1.4. From (2.1) and (2.3), it is easy to check that
2
k

(E(0)− E(T ))

= 2TE(T )− 2
∫ 1

0

xwt(0)wx(0)dx+
∫ 1+kT

0

2xwt(T )wx(T )dx.
(3.1)

Rearranging this equality, we have

E(0) + k

∫ 1

0

xw1wx(0, x)dx = (1 + kT )E(T ) + k

∫ 1+kT

0

xwtwx dx.

Using (2.6), one can easily obtain

(1− k)E(0) ≤ (1 + k)(1 + kT )E(T ),

(1 + k)E(0) ≥ (1− k)(1 + kT )E(T ),

for T > 0. Then we have the estimates:
1− k

(1 + k)(1 + kT )
E(0) ≤ E(T ) ≤ 1 + k

(1− k)(1 + kT )
E(0).

�

Proof of Theorem 1.2. We apply HUM as in [8, chapter 4]. For any (w0, w1) ∈
H1

0 (0, 1)× L2(0, 1), let w be the solution of (1.3). Consider the problem

utt − uxx = 0 in Q̂kT ,

u(0, t) = 0, u(αk(t), t) = wx(αk(t), t) on (0, T ),

u(T ) = 0, ut(T ) = 0 in (0, 1).

(3.2)

It is well known that (3.2) admits a unique solution such that

(u(0), ut(0)) ∈ L2(0, 1)×H−1(0, 1).

Then, we introduce a map Λ : H1
0 (0, 1) × L2(0, 1) → H−1(0, 1) × L2(0, 1) defined

by
Λ(w0, w1) = (u1,−u0),

where u0 = u(0), u1 = ut(0).
Then the map Λ is an isomorphism ofH1

0 (0, 1)×L2(0, 1) ontoH−1(0, 1)×L2(0, 1).
To simplify our analysis, we introduce the following notation:

F := H1
0 (0, 1)× L2(0, 1) F ′ := H−1(0, 1)× L2(0, 1).

In fact, multiplying equation (3.2) by w and integrating on QkT , we obtain that∫ 1

0

(w0u1 − w1u0)dx =
1− k2

√
1 + k2

∫ T

0

w2
x(αk(t), t)dt. (3.3)

Hence we have

〈Λ(w0, w1), (w0, w1)〉F ′,F =
1− k2

√
1 + k2

∫ T

0

w2
x(αk(t), t)dt, (3.4)
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for every (w0, w1) ∈ F .
Recalling estimate (1.5) and equality (2.1) , we have

(1− k)T − 2
(1− k)(1 + kT )

E(0) ≤ 〈Λ(w0, w1), (w0, w1)〉F ′,F ≤
(1 + k)T + 2

(1 + k)(1 + kT )
E(0). (3.5)

From these inequalities, we conclude that Λ is a coercive linear map for T > T̄k
and is bounded. Therefore, Λ is a surjection by Lax-Milgram Theorem. It follows
that Λ is an isomorphism.

Since Λ is an isomorphism, for any initial value (u0, u1) ∈ L2(0, 1)×H−1(0, 1),
there exists (w0, w1) ∈ H1

0 (0, 1)× L2(0, 1) such that

Λ(w0, w1) = (u1,−u0).

Then u is the solution of (1.1) with v = wx(αk(t), t). Furthermore, (u(0), ut(0)) =
(u0, u1) and (u(T ), ut(T )) = (0, 0). This completes the proof. �
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